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goals of the talk

Today, we want to talk about tilting and cotilting subcatecories of the category
of representations of a quiver.
——————————————————————————-
LetM be an abelian category, Q a rooted quiver, and Rep(Q,M) the category
ofM-valued representations of Q.
——————————————————————————-
By using some recent results about cotorsion torsion triples (resp. torsion co-
torssion triples), under certain assumptions, we show that if T is a 1-tilting
(resp. 1-cotilting) subcategory ofM, then the monomorphism category �(T )
(resp. the epimorphism category  (T )) is a 1-tilting (resp. 1-cotilting) sub-
category of Rep(Q,M).



goals of the talk

We also talk about another types of induced subcategories in Rep(Q,M) and,
by using nice descriptions of monomorphisms and epimorphism categories,
show that if T is a tilting (resp. cotilting) subcategory ofM, then the epimor-
phism category  (T ) (resp. the monomorphism category �(T )) is a tilting
(resp. cotilting) subcategory of Rep(Q,M) for every finite acyclic quiver Q.

This result is a generalization of a lemma due to Zhang about induced cotilt-
ing modules in 2011.
——————————————————————————-
We finally extend Zhang’s reciprocity of the monomorphism operator and the
left perpendicular operator for cotilting modules to cotilting subcategories.
The results give us a systematical method to create new tilting and cotilting
subcategories.



Rooted Quiver

A quiver Q = (V,E, s, t) is a directed graph with vertex set V and arrow set
E. An arrow a of a quiver from a vertex v to another vertex w is denoted by
a : v ! w, we write v = s(a) the initial vertex and w = t(a) the terminal
vertex. We usually denote the quiver Q = (V,E, s, t) briefly by Q = (V,E)
or even simply by Q.

A quiver Q is said to be finite if both V and E are finite sets.



Rooted Quiver

A path p of length l > 1 with source a and target b (from a to b) is a sequence
of arrows ↵l · · ·↵2↵1, where ↵i 2 E, for all 1  i  l, and s(↵1) = a, s(↵i) =
t(↵i�1) and t(↵l) = b .

The trivial path at vertex v is denoted by ✏v .

A cycle is a path p of length l > 1 such that s(p) = t(p).

A quiver Q is called acyclic if it contains no cycles.

A quiver Q is right (resp. left) rooted if and only if there exists no path of the
form • �! • �! · · · (resp. · · · �! • �! •) in Q.

Note that the notion of rooted quivers in fact is a generalization of the notion
of finite acyclic quivers.



Quiver Representations

A quiver Q can be considered as a category whose objects are the vertices of
Q and morphisms are all paths in Q.
Assume thatM is an abelian category. AnM-valued representation X of Q
is a covariant functor X : Q!M.

Such a representation is determined by giving an object Xv := X(v) 2 M
to each vertex v of Q and a morphism Xa := X(a) : Xv ! Xw in M to
each arrow a : v ! w of Q. For the trivial path ✏v , the morphism X(✏v) is
the identity on X(v). A morphism between two representations X and Y is a
natural transformation.



Quiver Representations

TheM-valued representations of quiverQ form a category, denoted by [Q,M]
or Rep(Q,M). Note that sinceM is an abelian category, then so is Rep(Q,M)
[JP10, Theorem 1].

————————————————————————————
[JP10] M. Jardim and D. M. Prata, Representations of quivers on abelian categories and monads on projective varieties,
Sao Paulo J. Math. Sci. 4(3) (2010), 399-423. DOI 10.11606/issn.2316-9028.v4i3p399-423. MR 2856193.



The Evaluation Functor

Let M be an abelian category. For any quiver Q = (V,E) and for every
v 2 V, there is an evaluation functor ev : Rep(Q,M) ! M, which maps
everyM-valued representation X of Q to its value at vertex v , i.e. ev(X) :=
X(v) = Xv .

This, in fact, is a spatial case of the following fact about categories.

Given two categories C and D and an object A in C,
We have the following functor that is called the evaluation functor.

eA : (C ,D) // D

F // F(A)

↵ // ↵A



The Right Adjoint of the evaluation functor

It is proved that the evaluation functor ev possesses a right and also a left
adjoint gv and fv (ev

⇢ and ev
� in some references), respectively.

IfM has small products, i.e. if it satisfies Ab3*, by [HJ19, Theorem 3.7(b)]
(see also [EH99, Theorem 4.1]), ev possesses a right adjoint gv : M !
Rep(Q,M) that is defined as follows:
For each object M inM and for each vertex w 2 V,

gv(M)w :=
Y

Q(w,v)

M.

If there are no paths in Q from w to v , then this product is empty and hence
gv(M)w is the zero (or terminal) object inM.

————————————————————————————
[HJ19] H. Holm and P. Jørgensen, Cotorsion pairs in categories of quiver representations, Kyoto J. Math. 59(3) (2019),
575-606. DOI 10.1215/21562261-2018-0018. MR 3990178.



The Right Adjoint of the evaluation functor

For an arrow a : w ! w0 in Q, every path p0 2 Q(w0, v) yields a path p0a 2
Q(w, v) and the morphism gv(M)a is defined as the unique one that makes
the following diagram commutative for every p0 2 Q(w0, v):

Here the vertical morphisms ⇡⇤ are the canonical projections. IfM is a mod-
ule category, then the morphism gv(M)a maps any (mp)p2Q(w,v) 2

Q
Q(w,v) M

to (m0p0)p02Q(w0,v) 2
Q

Q(w0,v) M, where m0p0 = mp0a .



The Left Adjoint of the evaluation functor

The left adjoint of ev is also defined similarly. IfM has small coproducts, i.e.
if it satisfies Ab3, by [HJ19, Theorem 3.7(a)] (see also [EOT04, Propositions
3.1 and 3.2]), ev possesses a left adjoint fv :M! Rep(Q,M) that is defined
as follows:
For each object M inM and each w 2 V,

fv(M)w :=
a

Q(v ,w)

M.

If there are no paths in Q from v to w, then this coproduct is empty and hence
fv(M)w is the zero (or initial) object inM.

————————————————————————————
[EOT04] E. Enochs, L. Oyonarte, and B. Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra
32(4) (2004), 1319-1338. DOI 10.1081/AGB-120028784. MR 2039513.



The Left Adjoint of the evaluation functor

For an arrow a : w ! w0 in Q, each path p 2 Q(v ,w) yields a path ap 2
Q(v ,w0), and the morphism fv(M)a is defined as the unique one in M that
makes the following diagram commutative for every p 2 Q(v ,w): Here the

vertical morphisms "⇤ are the canonical injections. If M is a module cat-
egory, then the morphism fv(M)a maps any (mp)p2Q(w,v) 2

`
Q(v ,w) M to

(m0p0)p02Q(v ,w0) 2
`

Q(v ,w0) M, where

m0p0 =

8>>><
>>>:

mp if p0 = ap,

0 otherwise.



Historical points for the evaluation functor

F Mitchell in [Mi68, Section 1, Page 342], using Kan construction, de-
scribed the left adjoints of the evaluation functors and applied them to find a
projective generator for (X,A), where X is a finite poset and A is an abelian
category.

F In [EH99] Enochs and Herzog, for a a module category M, described
the right adjoints of the evaluation functors in Rep(Q,M), and used them to
construct injective representations of some quivers.

————————————————————————————
[EH99] E. Enochs and I. Herzog, A homotopy of quiver morphisms with applications to representations, Canad. J.
Math. 51(2) (1999), 294-308.

[Mi68] B. Mitchell, On the dimension of objects and categories II, J. Algebra 9 (1968), 341-368.



Projective and Injective Objects

It will be also useful to note that since the pair (ev , gv) (resp. (fv , ev)) is an
adjoint pair for every v 2 V, if E (resp. P) is an injective (resp. projective)
obeject ofM, then the functor Rep(Q,M)(�, gv(E)) ' M(ev(�),E) (resp.
Rep(Q,M)(fv(P),�) 'M(P, ev(�))) is exact and so gv(E) (resp. fv(P)) is
anM-valued injective (resp. projective) representation of Q for every v 2 V.

In the following, for every full subcategory T of M, f⇤(T ) := {fv(T)|v 2
V and T 2 T } and g⇤(T ) := {gv(T)|v 2 V and T 2 T }. Also, for every
vertex v 2 V, fv(T ) := {fv(T)|T 2 T } and gv(T ) := {gv(T)|T 2 T }.



The Stalk Functors

LetM be an abelian category. For any quiver Q = (V,E, s, t) and for every
v 2 V, there is a stalk functor sv : M ! Rep(Q,M), which maps an object
M 2M to the stalk representation sv(M) given by sv(M)w = 0 for w , v and
sv(M)v = M.

For every arrow a of Q, the morphism sv(M)a is zero. For every full subcat-
egory T ofM, we set s⇤(T ) := {sv(T)|v 2 V and T 2 T }. Also, for every
vertex v 2 V, sv(T ) := {sv(T)|T 2 T }.



The Left Adjoint of the stalk functor

Under some assumption, it is proved in [HJ19, Theorem 4.5] that sv has a left
adjoint cv and a right adjoint kv , respectively. Let us be more precise.
IfM satisfies Ab3, for each representation X 2 Rep(Q,M), we denote by 'X

v
the unique morphism in M that makes the following diagram commutative
for every arrow a of Q:

Here, "a denotes the canonical injection. The assignment X 7! 'X
v is a functor

from Rep(Q,M) to the category of morphisms inM and so there is a functor
cv : Rep(Q,M) ! M given by X 7! Coker 'X

v , where Coker 'X
v is the

cokernel of 'X
v . It is proved in [HJ19, Theorem 4.5(a)] that the functor cv is

the left adjoint of sv .



The Right Adjoint of the stalk functor

Dually, if M satisfies Ab3*, for each representation X 2 Rep(Q,M), we
denote by  X

v the unique morphism inM that makes the following diagram
commutative for every arrow a of Q: Here, ⇡a denotes the canonical pro-

jection. This construction yields a functor kv : Rep(Q,M) ! M given by
X 7! Ker  X

v , where Ker  X
v is the kernel of  X

v . It is proved in [HJ19, Theo-
rem 4.5(b)] that the functor kv is the right adjoint of sv .



Monic and Epic Representations

We can now define the following subcategories of Rep(Q,M) for every sub-
category T ofM:

�(T ) := {X 2 Rep(Q,M)| 'X
v is monic and Xv , cv(X) 2 T ; 8 v 2 V},

 (T ) := {X 2 Rep(Q,M)|  X
v is epic and Xv , kv(X) 2 T ; 8 v 2 V}.

These categories are nothing but the separated monomorphism and epimor-
phism categories in the sense of Zhang and Xiong [ZX19, Sections 2 and 6]
that satisfy some local conditions; see also [Zh11]. For this reason, although
we follow notations from [HJ19], we will call �(T ) := Mon(Q,T ) (resp.
 (T ) := Epi(Q,T )) the monomorphism category (resp. the epimorphism
category) associated to T following some recent work on representation the-
ory of algebras.



Monic and Epic Representations

Note that the definition of the monomorphism (resp. epimorphism) category
�(T ) (resp. (T )) in [HJ19, Section 7] is slightly di↵erent from its definition
in this talk.

Indeed, any representation X in �(T ) (resp.  (T )) as defined in [HJ19, Sec-
tion 7] does not need to satisfy Xv 2 T for all v 2 V. But if Q is left (resp.
right) rooted and T is closed under coproduct (resp. product), then by [HJ19,
Proposition 7.2(a)] (resp. [HJ19, Proposition 7.2(b)]) this seeming di↵erence
is not real.

————————————————————————————
[Zh11] P. Zhang, Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra 339
(2011), 181-202. DOI 10.1016/j.jalgebra.2011.05.01. MR 2811319.

[ZX19] P. Zhang and B. L. Xiong, Separated monic representations II: Frobenius subcategories and RSS equivalences,
Trans. Am. Math. Soc. 372 (2) (2019), 981-1021. DOI 10.1090/tran/7622. MR 3968793.



Tilting Subcategories

Definition (k -Tilting Subcategories)

Let k be a non-negative integer andM be an abelian category with
enough projectives. An additively closed full subcategory T ofM, i.e.,
one which is closed under taking finite direct sums and summands, is
called weak k-tilting if

(i) For each positive integer i, ExtiM(T ,T ) = 0, i.e. ExtiM(T1,T2) = 0
for all T1,T2 2 T ;

(ii) The projective dimension of any object of T is at most k ;

(iii) For any projective P in M, there is an exact sequence 0 ! P !
T0 ! · · ·! Tk ! 0, where Ti 2 T for every i = 0, · · · , k .

A weak k-tilting subcategory ofM is called k-tilting if it is additionally
contravariantly finite inM. The subcategory T is called a tilting
subcategory if there is a non-negative integer k such that T is a k-tilting
subcategory.



Cotorsion Torsion Triple

Recently, Bauer, Botnan, Oppermann, and Steen introduced the notion of
cotorsion torsion triples, studied their relationship with tilting subcategories
and proved the following nice result, see [BBOS20, Subsections 2.1 and 2.2].
Recall that a cotorsion torsion triple in an abelian category M is a triple of
subcategories (C,T ,F ) such that the pair (C,T ) is a (hereditary) complete
cotorsion pair and the pair (T ,F ) is a torsion pair, see [BBOS20, Definition
2.9].

————————————————————————————
[BBOS20] U. Bauer, M. B. Botnan, S. Oppermann, and J. Steen, Cotorsion torsion triples and the representation theory
of filtered hierarchical clustering, Adv. Math. 369 (2020), 107171. DOI 10.1016/j.aim.2020.107171. MR 4091895.



BBOS’ Correspondence I

Theorem ([BBOS20, Theorem 2.29]) Let M be an abelian category with
enough projectives. Then there are mutually inverse bijections between the
collection of 1-tilting subcategories and the collection of cotorsion torsion
triples as follows:

where Fac T is the full subcategory of M consisting of factor objects of
objects in T .



Cotilting Subcategories

Dually, an additively closed full subcategory T ofM is called a weak cotilt-
ing subcategory if and only if it is weakly tilting inMop. In other words:

Definition (k -Cotilting Subcategories)

Let k be a non-negative integer andM be an abelian category with
enough injectives. An additively closed full subcategory T ofM is called
weak k-cotilting subcategory if

(i) For each positive integer i, ExtiM(T ,T ) = 0, i.e. ExtiM(T1,T2) = 0
for all T1,T2 2 T ;

(ii) The injective dimension of any object of T is at most k ;

(iii) For any injective I inM, there is an exact sequence 0! Tk ! · · ·!
T0 ! I ! 0, where Ti 2 T , for every i = 0, · · · , k .

A weak k -cotilting subcategory ofM is called k -cotilting if it is additionally
covariantly finite inM. The subcategory T is called a cotilting subcategory
if there is a non-negative integer k such that T is a k -cotilting subcategory.



Torsion Cotorsion Triple

As a dual version of the notion of cotorsion torsion triple, Bauer, Botnan, Op-
permann, and Steen introduced the notion of torsion cotorsion triples, studied
their relationship with weakly cotilting subcategories and proved the follow-
ing nice result, see [BBOS20, Subsection 2.3].
Recall that a torsion cotorsion triple in an abelian category M is a triple of
subcategories (T ,F ,D) such that the pair (T ,F ) is a torsion pair and the
pair (F ,D) is a (hereditary) complete cotorsion pair, see [BBOS20, Page 29
before Theorem 2.33].



BBOS’ Correspondence II

Theorem ([BBOS20, Theorem 2.34]) Let M be an abelian category with
enough injectives. Then there are mutually inverse bijections between the
collection of 1-cotilting subcategories and the collection of torsion cotorsion
triples as follows:

where Sub T is the full subcategory ofM consisting of subobjects of objects
in T .



Induced 1-cotilting and 1-tilting subcategories

We start with the following lemma that may be well-known for the specialist.
It is convenient to recall that an abelian category satisfies Ab4 if it satisfies
Ab3, i.e. if it has small coproducts, and any coproduct of monomorphisms is
a monomorphism. The axioms Ab3* and Ab4* are dual to Ab3 and Ab4.

Lemma
Let X and Y be two subcategories of an abelian categoryM that
satisfies Ab3 and Ab3* and Q = (V,E) be a quiver. The pair (X,Y) is a
torsion pair inM if and only if the induced pair (Rep(Q,X),Rep(Q,Y)) is
a torsion pair in Rep(Q,M).



Induced 1-cotilting and 1-tilting subcategories

Theorem
LetM be an abelian category that satisfies Ab4 and Ab4* and which has
enough projectives and injectives. If Q = (V,E, s, t) is a left (resp. right)
rooted quiver and T is a 1-tilting (resp. 1-cotilting) subcategory ofM,
then the monomorphism category �(T ) (resp. the epimorphism category
 (T )) is a 1-tilting (resp. 1-cotilting) subcategory of Rep(Q,M).



An Example

Let Q = (V,E) be a finite acyclic quiver. IfM is an abelian category with
enough projectives, by [BBOS20, Proposition 3.9], the subcategory

T := add g⇤(ProjM) = add {gv(P)|v 2 V and P 2 ProjM}

is a 1-tilting subcategory of Rep(Q,M) and so we have a 1-tilting subcategory
that is not, in general, of the form �(T ) for some tilting subcategory T of
M. For instance, if Q is the line quiver

�!
A2 = • �! •, then for a nonzero

projective object P, the representation P �! 0 is in T but it is not in �(T )
for every subcategory T ofM.



An Example

Dually, If M is an abelian category with enough injectives, by [BBOS20,
Theorem 3.12], the subcategory

C := add f⇤(InjM) = add {fv(I)|v 2 V and I 2 InjM}

is a 1-cotilting subcategory of Rep(Q,M) and so we have a cotilting subcat-
egory that is not, in general, of the form  (C) for some cotilting subcategory
C ofM.
For instance, if Q is the line quiver

�!
A2 = • �! •, then for a nonzero injective

object I, the representation 0 �! I is in C but it is not in  (C) for every
subcategory C ofM.



An Example

In the above example, the subcategory T has a nice description and we can
show that T =  (ProjM). Indeed, by [BBOS20, Corollary 3.10], the pair
(Rep(Q,ProjM),Fac T) is a cotorsion pair and T = Rep(Q,ProjM)\Fac T.
On the other hand, by [HJ19, Theorem B], the pair (Rep(Q,ProjM), (M))
is a cotorsion pair and one can easily show that

 (ProjM) = Rep(Q,ProjM) \ (M)

as the finite product of projective objects is projective. Hence, T =  (ProjM).
Dually, one can easily show that C = �(InjM).



Monomorphism and Epimorphism Categories

Subcategories Proj M and InjM are self orthogonal and in the
following we gave a generalization of the above mentioned results
to self orthogonal subcategories ofM.

Theorem
Let Q = (V,E, s, t) be a quiver,M an abelian category, and T an
additively closed subcategory ofM such that Ext1M(T ,T ) = 0. Then, the
following statements hold:

(i) If Q is left rooted, M satisfies Ab4, and T is closed under small
coproducts, then �(T ) = Add f⇤(T );

(ii) If Q is right rooted, M satisfies Ab4*, and T is closed under small
products, then  (T ) = Prod g⇤(T ).



Induced cotilting and tilting subcategories

Let k be a non-negative integer, � an Artin algebra, and Q the line quiver with
at least one arrow. By combining theorem above and [Zh11, Lemma 3.7], if
T is a k -cotilting �-module, then �(add T) is a (k + 1)-cotilting subcategory
of Rep(Q, �-mod), where �-mod is the category of all finitely generated left
�-modules.
In the following we give a generalization of Zhang’s lemma in categorical
sense by following Bauer, Botnan, Oppermann, and Steen in [BBOS20, Sec-
tion 3].
We need the following lemmas which are of independent interest.



Induced weak 2-cotilting and 2-tilting subcategories

Lemma
Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. Then if T is a weak 1-cotilting
(resp. 1-tilting) subcategory ofM, then �(T ) (resp.  (T )) is a weak
2-cotiltiing (resp. 2-tiltiing) subcategory of Rep(Q,M).



New Adjoint Pairs

As a generalization of [Zh11, Lemma 1.2], we have the following lemma due
to Bauer, Botnan, Oppermann, and Steen. For the convenience of the reader
we give the proof.

Lemma ([BBOS20, Lemma 3.8])

Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category.
Then for every vertex w 2 V, the functor fw (resp. gw) has a left (resp.
right) adjoint that we denote it by f 0w (resp. g0w).



Induced Functorialy Finite Subcategories

Lemma
Let Q = (V,E, s, t) be a finite acyclic quiver,M an abelian category, and
T a self orthogonal additively closed subcategory ofM. Then if T is a
contravariantly (resp. covariantly) finite subcategory ofM, then �(T )
and  (T ) are contravariantly (resp. covariantly) finite subcategories of
Rep(Q,M).



Induced 2-cotilting and 2-tilting subcategories

Now, by combining Lemmas above, we have the following theorem:

Theorem
Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. If T is a 1-cotilting (resp. 1-tilting)
subcategory ofM, then the monomorphism category �(T ) (resp. the
epimorphism category  (T )) is a 2-cotilting (resp. 2-tilting) subcategory
of Rep(Q,M). ⇤



Induced cotilting and tilting subcategories

In fact, based on the proof of theorem above , we have the following result
that can be considered as a generalization of [Zh11, Lemma 3.7], [BBOS20,
Proposition 3.9], and their dual.

Theorem
Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. If T is a tilting (resp. cotilting)
subcategory ofM, then the monomorphism category �(T ) and the
epimorphism category  (T ) are tilting (resp. cotilting) subcategories of
Rep(Q,M). ⇤



An Example

Let K be a field and � = KQ/I an algebra with the quiver Q:

1
2

3

i

n

n + 1

a1

a2an

an+1

a3

ai�1ai

an�1

and the admissible ideal I of KQ generated by paths ai+1ai for every 1  i  n.
It is well-known that � is an n-Auslander algebra.



An Example

Indeed, the global and dominant dimensions of � are n + 1, and 0 ! � !
(
Ln+1

i=2 I(i)) � I(2) ! I(2) ! I(n + 1) ! · · · ! I(2) ! I(1) ! 0 is the
minimal injective resolution of �.
Also, by some results in the literature, it is not di�cult to show that for every
integer 0  k  n + 1, Tk = projk (�) \ injn+1�k (�) is a k -tilting and
(n + 1 � k)-cotilting subcategory of �-mod. Hence, the following statements
hold:

(1) For every left rooted quiver Q, the monomorphism category �(T1) is a
1-tilting subcategory of Rep(Q, �-mod);

(2) For every right rooted quiver Q, the epimorphism category  (Tn) is a
1-cotilting subcategory of Rep(Q, �-mod);

(3) For every finite acyclic quiverQ, the epimorphism category (Tk ) (resp.
the monomorphism category �(Tk )) is a (k + 1)-tilting and (n + 1 �
k )-cotilting (resp. k -tilting and (n + 2 � k )-cotilting subcategory of
Rep(Q, �-mod).



An Example

Let now Q be the line quiver

The tilting subcategoryT1 = proj1(�)\injn(�) of �-mod induces the tilting
subcategory

T1 := add s2(T1)
S

f2(T1)
S

f1(T1)

in Rep(
�!
A3, �-mod) that clearly is not of the form  (C) or �(C) for every

subcategory C ofM.
The cotilting subcategory Tn = projn(�) \ inj1(�) of �-mod also induces
the cotilting subcategory

Tn := add s2(Tn)
S

g2(Tn)
S

g3(Tn)

in Rep(
�!
A3, �-mod) that clearly is not of the form  (C) or �(C) for every

subcategory C ofM.



Zhang’s Reciprocity

The key result of this section is a generalization of a reciprocity due to Zhang
of the monomorphism operator “�” and the left perpendicular operator “?”
and its dual version to tilting and cotilting subcategories.
Let us be more precise. Let Q be the finite line quiver with n > 1, � an

Artin algebra, and X a full subcategory of �-mod. In 2011, Zhang intro-
duced the monomorphism category Sn(X) and showed that for a cotilting
�-module T , there is a canonical construction of a cotilting module m(T)
over the triangular matrix algebra Tn(�), such that Sn(?T) = ?m(T), where
?T := {X 2 �-mod|Exti�(X ,T) = 0, 8 i � 1} (see [Zh11, Theorem 3.1]).
Later, Song, Kong, and Zhang generalized this result to finite acyclic quiver
with a di↵erent method [SKZ14, Theorem 3.1].
————————————————————————————

[SKZ14] K. Song, F. Kong, and P. Zhang, Monomorphism operator and perpendicular operator, Comm. Algebra 42
(2014), 3708-3723. DOI 10.1080/00927872.2013.790975. MR 3200051.



Zhang’s Reciprocity

Based on our notations in this paper, Zhang’s result in fact says that �(?T) =
?(
`

1in fi(T)) and so by our result, we have �(?(add T)) = �(?T) =
?f⇤({T }) = ?(add f⇤(add T)) = ?�(add T).

Clearly, add T is a cotilting subcategory of �-mod and in the following we
give a generalization of this result to cotilting subcategories of abelian cat-
egories by following Song, Kong, and Zhang in [SKZ14]. We also give its
dual version.

We need the following lemmas which are of independent interest.
Here, for every full subcategory T of an abelian category M, ?T := {X 2
M|ExtiM(X ,T ) = 0, 8 i � 1} and T ? := {X 2 M|ExtiM(T ,X) = 0, 8 i �
1}.



Zhang’s Reciprocity

Lemma
Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. If T is a cotilting (resp. tilting)
subcategory ofM, then ?�(T ) = ?s⇤(T ) (resp.  (T )? = s⇤(T )?).

Lemma
Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. If T is a cotilting (resp. tilting)
subcategory ofM, then �(?T ) = ?s⇤(T ) (resp.  (T ?) = s⇤(T )?).



Zhang’s Reciprocity

Theorem (Zhang’s Reciprocity)

Let Q = (V,E, s, t) be a finite acyclic quiver andM an abelian category
with enough projectives and injectives. If T is a cotilting (resp. tilting)
subcategory ofM, then �(?T ) = ?�(T ) (resp.  (T ?) =  (T )?). ⇤

Having a look on the proof of theorem above shows that it is not necessary
to assume that the subcategory T of M is a cotilting or tilting subcategory
and like the authors in [Zh11] and [SKZ14], it is possible to rewrite the result
with weaker conditions.



Thank You


