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Kai Meng Tan (NUS)

Cores and Weights



[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.

Given a (3-set B, we defined its charge 3(B) := |BNZx>o| — |Z<o \ B|.

Kai Meng Tan (NUS) Cores and Weights Summer 2024 3/19



[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.
Given a (3-set B, we defined its charge 3(B) := |BNZx>o| — |Z<o \ B|.

An oo-abacus is just a (horizontal) number line. We may represent any
subset S of Z by placing a bead at each number which is an element of S.
We call this the co-abacus display of S.
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[-sets and Abaci

A [(-set B is a subset of Z such that max(B) and min(Z \ B) both exist.
Given a f3-set B, we defined its charge 3(B) := |B N Z>o| — |Z<o \ B.

An oo-abacus is just a (horizontal) number line. We may represent any
subset S of Z by placing a bead at each number which is an element of S.
We call this the co-abacus display of S.

We obtain the e-abacus display of S by cutting up its oo-abacus display

into sections [ie,ie +e — 1] (i € Z), and putting the section [ie,ie + e — 1]
directly on top of [(i + 1)e, (i + 1)e +e — 1].

Kai Meng Tan (NUS) Cores and Weights Summer 2024 3/19



Example

-9 -8 -7 -6 -5 -4 -3 -2 -1



Example

-9 -8 -7 -6 -5 -4 -3 -2 -1

B= {5,4,2,—1
. -
—9 —8 —7 —6 —5 —4 -3 —2 —1



Example

-9 -8 -7 -6 -5 —4 -3 -2 -1 0 1 2 3 4 5

B={54,2—-1,-3,—4,-5,...}



Example

-9 -8 -7 -6 -5 -4 -3 -2 -1 O

_{542 ~1,

—3,—



Example

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

B=1{54,2-1,-3-4,—5,...}

3-abacus display of B
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.

Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of

non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, ¢(X) := max{i : A\; > 0} and we identify A with (A1,

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.

Conversely, given a -set B = {b; > by > ---}, it is associated to the
unique partition A = (A1, A2, ...) where

)\i:\{meZ\B:m<bi}].
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Partitions

A partition A = (A, g, ...) is a weakly decreasing infinite sequence of
non-negative integers which are eventually 0.

If [A] :== 372, A\ = n, we say that A is a partition of n.
Also, €()) := max{i: A\; > 0} and we identify A\ with (A1,..., A¢(n))-

Given s € Z, the B-set with charge s associated to A is

BsA)={X\i+s—i:i€ZT}.

Conversely, given a -set B = {b; > by > ---}, it is associated to the
unique partition A = (A1, A2, ...) where

)\i:‘{mGZ\B:m<bi}’.

Indeed, 3,(5)(A) = B.
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).

Kai Meng Tan (NUS)

Cores and Weights



Example

A= (4,4,3,1) = (4,4,3,1,0,0,0, . ..

B2(A) ={5,4,2,-1,-3,—-4,-5,...}
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Example

A= (4,4,3,1) = (4,4,3,1,0,0,0,...).
Bo(A) = {5,4,2,—1,-3,—4,—5,...} = B.
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e-Core and e-Weight of a Partition

Let A = (A1, A2, ...) be a partition. Take any s € Z, and look the
e-abacus display of B5(A).
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e-Core and e-Weight of a Partition

Let A = (A1, \2,...) be a partition. Take any s € Z, and look the
e-abacus display of B5(A).

When we slide the beads up their respective runners to fill up the vacant
positions above them, we obtain (the e-abacus display of) the e-core of ),

denoted core. ().
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beads move one position up their runners to obtain its e-core.
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e-Core and e-Weight of a Partition

Let A = (A1, \2,...) be a partition. Take any s € Z, and look the
e-abacus display of 55(\).

When we slide the beads up their respective runners to fill up the vacant
positions above them, we obtain (the e-abacus display of) the e-core of ),
denoted core. ().

The e-weight of \, denoted wt.()), is the total number of times the
beads move one position up their runners to obtain its e-core.

coree(A) and wt.(\) are independent of the charge s.
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Example

A= (4,4,3,1).
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Example

A= (4,4,3,1).
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Example

A= (4,4,3,1).
o 0 0 o 060
o 0 0 o 060
e - LA N ]
- - e - - e
- @ @ - - @

B2(A)  Pa(corez(X))
corez(A\) = (4,2,0,0,0,...) = (4,2), and wtz(\) = 2.
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¢-Multipartitions and the Uglov Map
An (-multipartition A = (\(1),

;A is an (-tuple of partitions
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(-Multipartitions and the Uglov Map

An (-multipartition X = (A, ... A9)) is an /-tuple of partitions.

An (-multicharge s = (s1,...,s¢) is an {-tuple of integers.
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(-Multipartitions and the Uglov Map

An (-multipartition X = (A, ... A9)) is an /-tuple of partitions.
An (-multicharge s = (s1,...,s¢) is an {-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:
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(-Multipartitions and the Uglov Map

An (-multipartition X = (A, ... A9)) is an /-tuple of partitions.
An (-multicharge s = (s1,...,s¢) is an {-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:

e Stack the oc-abacus displays of ,(A(")) on top of each other with
the display of 5, (A\(1)) at the bottom and that of B,(A(¥)) at the top.
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(-Multipartitions and the Uglov Map

An (-multipartition X = (A, ... A9)) is an /-tuple of partitions.
An (-multicharge s = (s1,...,s¢) is an {-tuple of integers.

The Uglov map U, sends the pair (A;s) to the partition U.(A;s) which
has an e-abacus display that can be obtained as follows:

e Stack the oc-abacus displays of ,(A(")) on top of each other with
the display of 5, (A\(1)) at the bottom and that of B,(A(¥)) at the top.
@ Cut up this stacked oo-abaci into sections with positions
lie,ie + e — 1] (i € Z), and put the section with positions
[ie,ie + e — 1] on top of that with positions [(i + 1)e, (i + 1)e+e — 1].
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Example

A= ()‘(1)7)‘(2)?)‘(3)) = ((1)7 (171)7 (2))1 5= (31>52353) = (_LQ? 1)'

Bss(AB) ={2,-1,-2,-3...} - ® @ oif - @ - - - -
Bss(A@)={2,1,-1,-2,...} - ® ® ®,- @ @ — — — -
B ={~1,-3,~4,..} - @ - @1- — - — - — ...



Example

A= ()‘(1)7)‘(2)?)‘(3)) = ((1)7 (171)7 (2))1 5= (31>52353) = (_LQ? 1)'

Bss(A®) ={2,-1,-2,-3...} e e e~ - @l- — ..
Bsy M@ ={2,1,-1,-2,...} - ® @ @ - @ @, ~ - — -
551(A(1)):{71773774»"‘} @ - @ - - — = = e



Example

A= ()‘(1)7)\(2)3/\(3)> = ((1)7 (17 1)7 (2))' 5= (81752333) =\~
Bss(A®) ={2,-1,-2,-3...} ;o ° oif - oif - -
By (AP)=1{2,1,-1,-2,...} 1® ® ®,- ® @ — — -
By (AND) = {~1,-8,~4,...} 1@ - @I— - —i1- - -
ceo o
e 0o
Us(\;s) @ - @
- - e
- o0



Example

A= ()‘(1)7)‘(2)7)‘(3)) = ((1)5 (17 1)7 (2))1 5= (31752;33) = (_1a2a 1)'

Bey A3)) = {2,-1,-2,-3...} o0 0 - - @ - - I
Bsy(A®@)={2,1,-1,-2,...} - 1® ® ®,- ® @ - — —-
By AD)) = {—1,-3,—4,...} ® - @i- - -1 — -

eo o

oo o0

Us(\;s) @ - @

=(4,431) - - o

- e 0
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e-Core and e-Weight of a Multipartition

Definition
Let A be an ¢-multipartition and let s be an /-multicharge. We define the
e-core and the e-weight of (\;s) to be those of U.(A;s); i.e.

corec(A;s) = coree(Ue(A;s));
wte(A;8) = wte(Ue(A;s)).
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e-Core and e-Weight of a Multipartition

Definition
Let A be an ¢-multipartition and let s be an /-multicharge. We define the
e-core and the e-weight of (\;s) to be those of U.(A;s); i.e.

corec(A;s) = coree(Ue(A;s));
wte(A;8) = wte(Ue(A;s)).

Example

core3(((1),(1,1),(2)); (—1,2,1)) = cores(4,4,3,1) = (4,2)

WtS(((1)7 (17 1)7 (2)); (_17 2, 1)) = Wt3(47 4,3, 1) =2.

Kai Meng Tan (NUS) Cores and Weights Summer 2024 11/19



The extended affine Weyl group W,

Given any nonempty set X, the symmetric group &y on /¢ letters has a
natural right place permutation action on X* via

(xl,...,mg)”=(:ra(1),...,xa(g)) (0663).
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The extended affine Weyl group \/7\\7g

Given any nonempty set X, the symmetric group &y on /¢ letters has a
natural right place permutation action on X* via

(15, 20)7 = (To(1)s -+ > Toe)) (0 € &y).

This right action gives rise to the extended affine Weyl group
W = 7' x &, which has a natural right action on the pairs of
f-multipartitions and their respective associated /-multicharges via

(A;8) = (A% (s+et)?) (teZoey).
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Let&Tﬁ:{(sl,...,s@)625151§32§---§8g§sl+e}.

Theorem (Li-T.)
Let X be an {-multipartition and s be an {-multicharge. Let
(m;t) € (N;8)WVe, the W -orbit of (A;s).

Q core.(p;t) = corec(A;s).

Q@ wt.(p;t) = min(wte((A; s)‘m)) if and only if t € st’.
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Ariki-Koike Algebras

Let r = (ry,...,7¢) € Z' and n € Z+.
Let F be a field of characteristic p (p = 0 or prime), and ¢ € F with either
q = 1 or q is a primitive e-th root of 1p.
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Ariki-Koike Algebras

Let r = (ry,...,7¢) € Z' and n € Z+.
Let F be a field of characteristic p (p = 0 or prime), and ¢ € F with either
q = 1 or q is a primitive e-th root of 1p.

The Ariki-Koike algebra #,, = % 4 (n) is the unital F-algebra generated
by {To,T1,...,Tn—1} subject to:

(To—q¢")(To—4q") - (To—q¢") =0;
(T: —¢)(T; +1) =0 (I1<i<n-—1)
ToThToTy = ThTo Iy To;
LT T =TT (1<i<n-2);
T, = I/, (i - jl = 2).
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Ariki-Koike Algebras

Letr = (r1,...,7¢) € Z* and n € ZF.
Let F be a field of characteristic p (p = 0 or prime), and ¢ € F with either
q = 1 or q is a primitive e-th root of 1p.

The Ariki-Koike algebra #,, = % 4 (n) is the unital F-algebra generated
by {To,T1,...,T—1} subject to:

(To—q")(To—q") - (To — ¢"*) = 0;
(Ti —q)(Ti +1) =0 (1<i<n-—1);
ToThToTy = ThTo Iy To;
Tl T = Ti1TiTi (1<i<n-—2)
LTy =T, (li—jl=2).

When ¢ = 1, #,, is the lwahori-Hecke algebra of type A.
When ¢ = 2, #,, is the lwahori-Hecke algebra of type B.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer); its cell modules are called
Specht modules, indexed by the set of {-multipartitions of n.
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Specht modules, indexed by the set of {-multipartitions of n.

Let A = (A, ..., \®D) be an ¢-multipartition.
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Blocks of %,

7, is cellular (in the sense of Graham-Lehrer); its cell modules are called
Specht modules, indexed by the set of {-multipartitions of n.

Let A = (A, ..., \®D) be an ¢-multipartition.

The elements of its Young diagram .
A ={(a,b,5) € (Z+)?:j <€, a< D), b< A1 are called nodes.
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Blocks of 7,

7, is cellular (in the sense of Graham-Lehrer); its cell modules are called
Specht modules, indexed by the set of {-multipartitions of n.

Let A = (A, ..., \®D) be an ¢-multipartition.

The elements of its Young diagram .
A ={(a,b,5) € (Z+)?:j <€, a< D), b< A1 are called nodes.

The residue of (a, b, j) € [A] is the residue class of b — a + r; modulo e,
and (a, b, j) is called an i-node if its residue equals 1.
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Theorem (Lyle-Mathas 07)

Let X and p be (-multipartitions of n. The Specht modules S* and S* lie
in the same block of #,, if and only if X\ and p have the same number of
i-nodes for all i € 7/ eZ.
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Theorem (Lyle-Mathas 07)

Let X and p be (-multipartitions of n. The Specht modules S* and S* lie
in the same block of #,, if and only if X\ and p have the same number of
i-nodes for all i € 7/ eZ.

Theorem (James)

(¢ = 1) The partitions A and pi have the same number of i-nodes for all
i € Z/eZ if and only if X and 11 have the same e-core and the same
e-weight.

Kai Meng Tan (NUS) Cores and Weights Summer 2024 16 /19



Weights of Multipartitions

Definition (Fayers 06)
Let A be an /-multipartition of n. Define

wge (A Z (A + 5 > (@) = eV
zeZ/eZ

where ¢; () is the number of i-nodes in [A], and 77 is the residue class of
r; modulo e.
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Weights of Multipartitions

Definition (Fayers 06)
Let A be an /-multipartition of n. Define

wge (A Z (A + 5 > (@) = eV
zeZ/eZ

where ¢; () is the number of i-nodes in [A], and 77 is the residue class of
r; modulo e.

Theorem (Fayers 06)

wtge (A) is a block invariant, wtg (X) € Z>¢, and when ¢ =1,
wtge (A) = wte(A).
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Theorem (Jacon-Lecouvey 21)
Ifr € SZTﬁ, then

thg()\)

wte(Ue(A;1)) (= wte(A;1)).
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Theorem (Jacon-Lecouvey 21)
Ifr € QTg, then

Corollary (Li-T.)

wtge (A) = min(wte((A; ) Vo).
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (-tuple of core partitions with
an associated /-multicharge possibly not in the W-orbit of r.
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Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (-tuple of core partitions with
an associated /-multicharge possibly not in the W-orbit of r.

Theorem (Li-T.)

Let X and p be (-multipartitions of n. Then S* and S lie in the same
block of #,, if and only if (X;r) and (p;r) have the same e-core.

Kai Meng Tan (NUS) Cores and Weights Summer 2024 19/19



Cores of Multipartitions

There have been several attempts to generalise cores of partitions in the
classification of blocks of #,:

e Fayers 06: Hub € Z¢.

e Jacon-Lecouvey 21: (e;r)-cores, an (-tuple of core partitions with
an associated /-multicharge possibly not in the W y-orbit of r.

Theorem (Li-T.)

Let X and p be (-multipartitions of n. Then S* and S lie in the same
block of #,, if and only if (X;r) and (p;r) have the same e-core.

Corollary (Nakayama's ‘Conjecture’ for Ariki-Koike algebras)

Two Specht modules S* and S* (possibly of different algebras) lie in the
same block if and only if corec(A;r) = corec(p;r) and

min(wte((A; )W) = min(wte((p; r)We)).

V.
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