Cores and Weights of Multipartitions and Blocks of Ariki-Koike Algebras

Kai Meng Tan

Summer 2024

Kai Meng Tan (NUS)

Cores and Weights

Summer 2024 1 / 19

▶ < ∃ ▶</p>

Throughout $e \in \mathbb{Z}_{\geq 2}$.

イロト イヨト イヨト イヨト

β -sets and Abaci

A β -set B is a subset of \mathbb{Z} such that $\max(B)$ and $\min(\mathbb{Z} \setminus B)$ both exist.

A β -set B is a subset of \mathbb{Z} such that $\max(B)$ and $\min(\mathbb{Z} \setminus B)$ both exist. Given a β -set B, we defined its charge $\mathfrak{z}(B) := |B \cap \mathbb{Z}_{\geq 0}| - |\mathbb{Z}_{\leq 0} \setminus B|$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

β -sets and Abaci

A β -set B is a subset of \mathbb{Z} such that $\max(B)$ and $\min(\mathbb{Z} \setminus B)$ both exist.

Given a β -set B, we defined its charge $\mathfrak{z}(B) := |B \cap \mathbb{Z}_{\geq 0}| - |\mathbb{Z}_{<0} \setminus B|$.

An ∞ -abacus is just a (horizontal) number line. We may represent any subset S of \mathbb{Z} by placing a bead at each number which is an element of S. We call this the ∞ -abacus display of S.

A β -set B is a subset of \mathbb{Z} such that $\max(B)$ and $\min(\mathbb{Z} \setminus B)$ both exist.

Given a β -set B, we defined its charge $\mathfrak{z}(B) := |B \cap \mathbb{Z}_{\geq 0}| - |\mathbb{Z}_{<0} \setminus B|$.

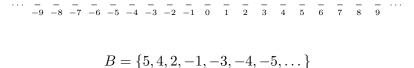
An ∞ -abacus is just a (horizontal) number line. We may represent any subset S of \mathbb{Z} by placing a bead at each number which is an element of S. We call this the ∞ -abacus display of S.

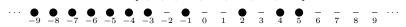
We obtain the *e*-abacus display of S by cutting up its ∞ -abacus display into sections [ie, ie + e - 1] $(i \in \mathbb{Z})$, and putting the section [ie, ie + e - 1] directly on top of [(i + 1)e, (i + 1)e + e - 1].

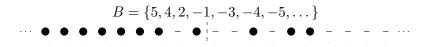
イロト イヨト イヨト

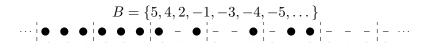
 $\cdots -9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9$

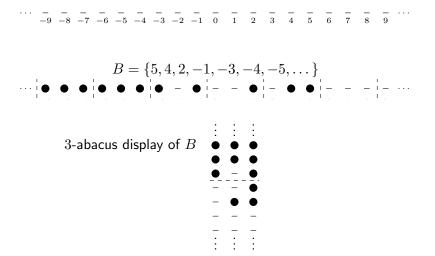
<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○











▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

(日) (四) (日) (日) (日)

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

If $|\lambda| := \sum_{i=1}^{\infty} \lambda_i = n$, we say that λ is a partition of n.

(日) (四) (日) (日) (日)

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

If $|\lambda| := \sum_{i=1}^{\infty} \lambda_i = n$, we say that λ is a partition of n. Also, $\ell(\lambda) := \max\{i : \lambda_i > 0\}$ and we identify λ with $(\lambda_1, \dots, \lambda_{\ell(\lambda)})$.

< □ > < 同 > < 回 > < 回 > < 回 >

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

If $|\lambda| := \sum_{i=1}^{\infty} \lambda_i = n$, we say that λ is a partition of n. Also, $\ell(\lambda) := \max\{i : \lambda_i > 0\}$ and we identify λ with $(\lambda_1, \dots, \lambda_{\ell(\lambda)})$.

Given $s\in\mathbb{Z},$ the $\beta\text{-set}$ with charge s associated to λ is

$$\beta_s(\lambda) = \{\lambda_i + s - i : i \in \mathbb{Z}^+\}.$$

< □ > < 同 > < 回 > < 回 > < 回 >

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

If $|\lambda| := \sum_{i=1}^{\infty} \lambda_i = n$, we say that λ is a partition of n. Also, $\ell(\lambda) := \max\{i : \lambda_i > 0\}$ and we identify λ with $(\lambda_1, \dots, \lambda_{\ell(\lambda)})$.

Given $s\in\mathbb{Z},$ the $\beta\text{-set}$ with charge s associated to λ is

$$\beta_s(\lambda) = \{\lambda_i + s - i : i \in \mathbb{Z}^+\}.$$

Conversely, given a β -set $B = \{b_1 > b_2 > \cdots \}$, it is associated to the unique partition $\lambda = (\lambda_1, \lambda_2, \dots)$ where

$$\lambda_i = |\{m \in \mathbb{Z} \setminus B : m < b_i\}|.$$

<ロト <問ト < 注ト < 注ト 二 注

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a weakly decreasing infinite sequence of non-negative integers which are eventually 0.

If $|\lambda| := \sum_{i=1}^{\infty} \lambda_i = n$, we say that λ is a partition of n. Also, $\ell(\lambda) := \max\{i : \lambda_i > 0\}$ and we identify λ with $(\lambda_1, \dots, \lambda_{\ell(\lambda)})$.

Given $s\in\mathbb{Z},$ the $\beta\text{-set}$ with charge s associated to λ is

$$\beta_s(\lambda) = \{\lambda_i + s - i : i \in \mathbb{Z}^+\}.$$

Conversely, given a β -set $B = \{b_1 > b_2 > \cdots \}$, it is associated to the unique partition $\lambda = (\lambda_1, \lambda_2, \dots)$ where

$$\lambda_i = |\{m \in \mathbb{Z} \setminus B : m < b_i\}|.$$

Indeed, $\beta_{\mathfrak{s}(B)}(\lambda) = B$.

イロト 不得 トイヨト イヨト 二日

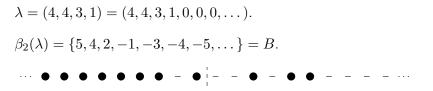
$\lambda = (4, 4, 3, 1) = (4, 4, 3, 1, 0, 0, 0, \dots).$

< □ > < □ > < □ > < □ > < □ >

$$\lambda = (4, 4, 3, 1) = (4, 4, 3, 1, 0, 0, 0, \dots).$$

$$\beta_2(\lambda) = \{5, 4, 2, -1, -3, -4, -5, \dots\} = B.$$

イロト イヨト イヨト イヨト



A D N A B N A B N A B N

$$\lambda = (4, 4, 3, 1) = (4, 4, 3, 1, 0, 0, 0, \dots).$$

$$\beta_2(\lambda) = \{5, 4, 2, -1, -3, -4, -5, \dots\} = B.$$

.... • • • • • • • • • - • - • - • • • - - - ...

 $\beta_3(\lambda) = \{6, 5, 3, 0, -2, -3, -4, \dots\} = B.$

・ロト ・四ト ・ヨト ・ヨト

$$\lambda = (4, 4, 3, 1) = (4, 4, 3, 1, 0, 0, 0, \dots).$$

$$\beta_2(\lambda) = \{5, 4, 2, -1, -3, -4, -5, \dots\} = B.$$

$$\dots \bullet \bullet \bullet \bullet \bullet \bullet - \bullet | - - \bullet - \bullet \bullet - - - \dots$$

$$\beta_3(\lambda) = \{6, 5, 3, 0, -2, -3, -4, \dots\} = B.$$

$$\dots \bullet \bullet \bullet \bullet \bullet \bullet \bullet - | \bullet - - \bullet - \bullet - \bullet - \dots$$

イロト イヨト イヨト イヨト

Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition. Take any $s \in \mathbb{Z}$, and look the *e*-abacus display of $\beta_s(\lambda)$.

(日)

Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition. Take any $s \in \mathbb{Z}$, and look the *e*-abacus display of $\beta_s(\lambda)$.

When we slide the beads up their respective runners to fill up the vacant positions above them, we obtain (the *e*-abacus display of) the *e*-core of λ , denoted core_{*e*}(λ).

Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition. Take any $s \in \mathbb{Z}$, and look the *e*-abacus display of $\beta_s(\lambda)$.

When we slide the beads up their respective runners to fill up the vacant positions above them, we obtain (the *e*-abacus display of) the *e*-core of λ , denoted core_{*e*}(λ).

The *e*-weight of λ , denoted wt_e(λ), is the total number of times the beads move one position up their runners to obtain its *e*-core.

Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition. Take any $s \in \mathbb{Z}$, and look the *e*-abacus display of $\beta_s(\lambda)$.

When we slide the beads up their respective runners to fill up the vacant positions above them, we obtain (the *e*-abacus display of) the *e*-core of λ , denoted core_{*e*}(λ).

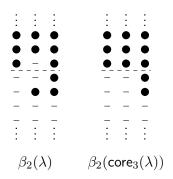
The *e*-weight of λ , denoted wt_e(λ), is the total number of times the beads move one position up their runners to obtain its *e*-core.

 $\operatorname{core}_e(\lambda)$ and $\operatorname{wt}_e(\lambda)$ are independent of the charge s.

 $\lambda = (4, 4, 3, 1).$

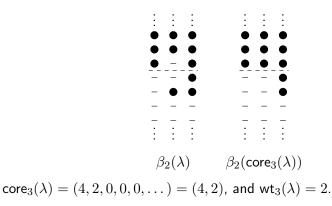
< □ > < □ > < □ > < □ > < □ >

 $\lambda = (4, 4, 3, 1).$



< □ > < □ > < □ > < □ > < □ >

 $\lambda = (4, 4, 3, 1).$



< □ > < □ > < □ > < □ > < □ > < □ >

An ℓ -multipartition $\lambda = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ is an ℓ -tuple of partitions.

(日)

An ℓ -multipartition $\lambda = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ is an ℓ -tuple of partitions.

An ℓ -multicharge $\mathbf{s} = (s_1, \ldots, s_\ell)$ is an ℓ -tuple of integers.

(日)

An ℓ -multipartition $\lambda = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ is an ℓ -tuple of partitions.

An ℓ -multicharge $\mathbf{s} = (s_1, \ldots, s_\ell)$ is an ℓ -tuple of integers.

The **Uglov map** U_e sends the pair $(\lambda; s)$ to the partition $U_e(\lambda; s)$ which has an *e*-abacus display that can be obtained as follows:

An ℓ -multipartition $\lambda = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ is an ℓ -tuple of partitions.

An ℓ -multicharge $\mathbf{s} = (s_1, \ldots, s_\ell)$ is an ℓ -tuple of integers.

The **Uglov map** U_e sends the pair $(\lambda; s)$ to the partition $U_e(\lambda; s)$ which has an *e*-abacus display that can be obtained as follows:

• Stack the ∞ -abacus displays of $\beta_{s_i}(\lambda^{(i)})$ on top of each other, with the display of $\beta_{s_1}(\lambda^{(1)})$ at the bottom and that of $\beta_{s_\ell}(\lambda^{(\ell)})$ at the top.

l-Multipartitions and the Uglov Map

An ℓ -multipartition $\lambda = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ is an ℓ -tuple of partitions.

An ℓ -multicharge $\mathbf{s} = (s_1, \ldots, s_\ell)$ is an ℓ -tuple of integers.

The **Uglov map** U_e sends the pair $(\lambda; s)$ to the partition $U_e(\lambda; s)$ which has an *e*-abacus display that can be obtained as follows:

- Stack the ∞ -abacus displays of $\beta_{s_i}(\lambda^{(i)})$ on top of each other, with the display of $\beta_{s_1}(\lambda^{(1)})$ at the bottom and that of $\beta_{s_\ell}(\lambda^{(\ell)})$ at the top.
- Cut up this stacked ∞ -abaci into sections with positions [ie, ie + e 1] $(i \in \mathbb{Z})$, and put the section with positions [ie, ie + e 1] on top of that with positions [(i + 1)e, (i + 1)e + e 1].

イロト 不得 トイラト イラト 一日

Example

$$\lambda = (\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}) = ((1), (1, 1), (2)), \mathbf{s} = (s_1, s_2, s_3) = (-1, 2, 1).$$

$$\beta_{s_3}(\lambda^{(3)}) = \{2, -1, -2, -3, ...\} \quad \cdots \mid \bullet \quad \bullet \quad \bullet \mid - - - \bullet \mid - - - - \mid \cdots \\ \beta_{s_2}(\lambda^{(2)}) = \{2, 1, -1, -2, ...\} \quad \cdots \mid \bullet \quad \bullet \quad \bullet \mid - - - \bullet \mid - - - - \mid \cdots \\ \beta_{s_1}(\lambda^{(1)}) = \{-1, -3, -4, ...\} \quad \cdots \mid \bullet \quad - \bullet \mid - - - - \mid \cdots \\ \vdots \quad \vdots \quad \vdots \\ \mathbf{U}_3(\lambda; \mathbf{s}) \quad \bullet \quad - \bullet \\ - & - & - \\ \vdots \quad \vdots \quad \vdots \\ \end{array}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Example

Kai Meng Tan (NUS)

Cores and Weights

불▶ < 불▶ 불 ∽ < Summer 2024 10 / 19

イロト イヨト イヨト イヨト

e-Core and e-Weight of a Multipartition

Definition

Let λ be an ℓ -multipartition and let s be an ℓ -multicharge. We define the *e*-core and the *e*-weight of $(\lambda; s)$ to be those of $U_e(\lambda; s)$; i.e.

$$egin{aligned} \mathsf{core}_e(oldsymbol{\lambda};\mathbf{s}) &= \mathsf{core}_e(\mathsf{U}_e(oldsymbol{\lambda};\mathbf{s})); \ \mathsf{wt}_e(oldsymbol{\lambda};\mathbf{s}) &= \mathsf{wt}_e(\mathsf{U}_e(oldsymbol{\lambda};\mathbf{s})). \end{aligned}$$

e-Core and e-Weight of a Multipartition

Definition

Let λ be an ℓ -multipartition and let s be an ℓ -multicharge. We define the *e*-core and the *e*-weight of $(\lambda; s)$ to be those of $U_e(\lambda; s)$; i.e.

$$egin{aligned} \mathsf{core}_e(oldsymbol{\lambda};\mathbf{s}) &= \mathsf{core}_e(\mathsf{U}_e(oldsymbol{\lambda};\mathbf{s})); \ \mathsf{wt}_e(oldsymbol{\lambda};\mathbf{s}) &= \mathsf{wt}_e(\mathsf{U}_e(oldsymbol{\lambda};\mathbf{s})). \end{aligned}$$

Example

$$\begin{aligned} \mathsf{core}_3(((1),(1,1),(2));(-1,2,1)) &= \mathsf{core}_3(4,4,3,1) = (4,2) \\ \mathsf{wt}_3(((1),(1,1),(2));(-1,2,1)) &= \mathsf{wt}_3(4,4,3,1) &= 2. \end{aligned}$$

The extended affine Weyl group $\widehat{\mathbf{W}}_\ell$

Given any nonempty set X, the symmetric group \mathfrak{S}_{ℓ} on ℓ letters has a natural right place permutation action on X^{ℓ} via

$$(x_1,\ldots,x_\ell)^\sigma = (x_{\sigma(1)},\ldots,x_{\sigma(\ell)}) \qquad (\sigma \in \mathfrak{S}_\ell).$$

The extended affine Weyl group $\widehat{\mathbf{W}}_\ell$

Given any nonempty set X, the symmetric group \mathfrak{S}_{ℓ} on ℓ letters has a natural right place permutation action on X^{ℓ} via

$$(x_1,\ldots,x_\ell)^\sigma = (x_{\sigma(1)},\ldots,x_{\sigma(\ell)}) \qquad (\sigma \in \mathfrak{S}_\ell).$$

This right action gives rise to the extended affine Weyl group $\widehat{\mathbf{W}}_{\ell} = \mathbb{Z}^{\ell} \rtimes \mathfrak{S}_{\ell}$, which has a natural right action on the pairs of ℓ -multipartitions and their respective associated ℓ -multicharges via

$$(\boldsymbol{\lambda}; \mathbf{s})^{\mathbf{t}\sigma} = (\boldsymbol{\lambda}^{\sigma}; (\mathbf{s} + e\mathbf{t})^{\sigma}) \qquad (\mathbf{t} \in \mathbb{Z}^{\ell}, \sigma \in \mathfrak{S}_{\ell}).$$

Let $\overline{\mathscr{A}_e^{\ell}} = \{(s_1, \dots, s_\ell) \in \mathbb{Z}^\ell : s_1 \le s_2 \le \dots \le s_\ell \le s_1 + e\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let
$$\mathscr{A}_e^\ell = \{(s_1, \ldots, s_\ell) \in \mathbb{Z}^\ell : s_1 \le s_2 \le \cdots \le s_\ell \le s_1 + e\}.$$

Theorem (Li-T.)

Let λ be an ℓ -multipartition and \mathbf{s} be an ℓ -multicharge. Let $(\boldsymbol{\mu}; \mathbf{t}) \in (\lambda; \mathbf{s})^{\widehat{\mathbf{W}}_{\ell}}$, the $\widehat{\mathbf{W}}_{\ell}$ -orbit of $(\lambda; \mathbf{s})$. • core_e $(\boldsymbol{\mu}; \mathbf{t}) = \text{core}_{e}(\lambda; \mathbf{s})$.

 $@ wt_e(\boldsymbol{\mu}; \mathbf{t}) = \min(wt_e((\boldsymbol{\lambda}; \mathbf{s})^{\widehat{\mathbf{W}}_{\ell}})) \text{ if and only if } \mathbf{t} \in \overline{\mathscr{A}_e^{\ell}}.$

Ariki-Koike Algebras

Let $\mathbf{r} = (r_1, \ldots, r_\ell) \in \mathbb{Z}^\ell$ and $n \in \mathbb{Z}^+$. Let \mathbb{F} be a field of characteristic p (p = 0 or prime), and $q \in \mathbb{F}$ with either $q = 1_{\mathbb{F}}$ or q is a primitive e-th root of $1_{\mathbb{F}}$.

< (17) > < (27 >)

Ariki-Koike Algebras

Let $\mathbf{r} = (r_1, \ldots, r_\ell) \in \mathbb{Z}^\ell$ and $n \in \mathbb{Z}^+$. Let \mathbb{F} be a field of characteristic p (p = 0 or prime), and $q \in \mathbb{F}$ with either $q = 1_{\mathbb{F}}$ or q is a primitive e-th root of $1_{\mathbb{F}}$.

The Ariki-Koike algebra $\mathcal{H}_n = \mathcal{H}_{\mathbb{F},q,\mathbf{r}}(n)$ is the unital \mathbb{F} -algebra generated by $\{T_0, T_1, \ldots, T_{n-1}\}$ subject to:

$$\begin{aligned} (T_0 - q^{r_1})(T_0 - q^{r_2}) \cdots (T_0 - q^{r_\ell}) &= 0; \\ (T_i - q)(T_i + 1) &= 0 & (1 \le i \le n - 1); \\ T_0 T_1 T_0 T_1 &= T_1 T_0 T_1 T_0; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & (1 \le i \le n - 2); \\ T_i T_j &= T_j T_i & (|i - j| \ge 2). \end{aligned}$$

Ariki-Koike Algebras

Let $\mathbf{r} = (r_1, \ldots, r_\ell) \in \mathbb{Z}^\ell$ and $n \in \mathbb{Z}^+$. Let \mathbb{F} be a field of characteristic p (p = 0 or prime), and $q \in \mathbb{F}$ with either $q = 1_{\mathbb{F}}$ or q is a primitive e-th root of $1_{\mathbb{F}}$.

The Ariki-Koike algebra $\mathcal{H}_n = \mathcal{H}_{\mathbb{F},q,\mathbf{r}}(n)$ is the unital \mathbb{F} -algebra generated by $\{T_0, T_1, \ldots, T_{n-1}\}$ subject to:

$$\begin{aligned} (T_0 - q^{r_1})(T_0 - q^{r_2}) \cdots (T_0 - q^{r_\ell}) &= 0; \\ (T_i - q)(T_i + 1) &= 0 & (1 \le i \le n - 1); \\ T_0 T_1 T_0 T_1 &= T_1 T_0 T_1 T_0; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & (1 \le i \le n - 2); \\ T_i T_j &= T_j T_i & (|i - j| \ge 2). \end{aligned}$$

When $\ell = 1$, \mathcal{H}_n is the Iwahori-Hecke algebra of type A. When $\ell = 2$, \mathcal{H}_n is the Iwahori-Hecke algebra of type B.

 \mathcal{H}_n is cellular (in the sense of Graham-Lehrer); its cell modules are called **Specht modules**, indexed by the set of ℓ -multipartitions of n.

 \mathcal{H}_n is cellular (in the sense of Graham-Lehrer); its cell modules are called **Specht modules**, indexed by the set of ℓ -multipartitions of n.

Let $\boldsymbol{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ be an ℓ -multipartition.

 \mathscr{H}_n is cellular (in the sense of Graham-Lehrer); its cell modules are called **Specht modules**, indexed by the set of ℓ -multipartitions of n.

Let $\boldsymbol{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ be an ℓ -multipartition.

The elements of its Young diagram $[\lambda] = \{(a, b, j) \in (\mathbb{Z}^+)^3 : j \leq \ell, \ a \leq \ell(\lambda^{(j)}), \ b \leq \lambda_a^{(j)}\}$ are called **nodes**.

 \mathscr{H}_n is cellular (in the sense of Graham-Lehrer); its cell modules are called **Specht modules**, indexed by the set of ℓ -multipartitions of n.

Let $\boldsymbol{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)})$ be an ℓ -multipartition.

The elements of its Young diagram $[\lambda] = \{(a, b, j) \in (\mathbb{Z}^+)^3 : j \leq \ell, \ a \leq \ell(\lambda^{(j)}), \ b \leq \lambda_a^{(j)}\}$ are called **nodes**.

The residue of $(a, b, j) \in [\lambda]$ is the residue class of $b - a + r_j$ modulo e, and (a, b, j) is called an *i*-node if its residue equals *i*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Lyle-Mathas 07)

Let λ and μ be ℓ -multipartitions of n. The Specht modules S^{λ} and S^{μ} lie in the same block of \mathcal{H}_n if and only if λ and μ have the same number of *i*-nodes for all $i \in \mathbb{Z}/e\mathbb{Z}$.

► < ∃ ►</p>

Theorem (Lyle-Mathas 07)

Let λ and μ be ℓ -multipartitions of n. The Specht modules S^{λ} and S^{μ} lie in the same block of \mathcal{H}_n if and only if λ and μ have the same number of *i*-nodes for all $i \in \mathbb{Z}/e\mathbb{Z}$.

Theorem (James)

 $(\ell = 1)$ The partitions λ and μ have the same number of *i*-nodes for all $i \in \mathbb{Z}/e\mathbb{Z}$ if and only if λ and μ have the same *e*-core and the same *e*-weight.

Weights of Multipartitions

Definition (Fayers 06)

Let $\boldsymbol{\lambda}$ be an ℓ -multipartition of n. Define

$$\mathsf{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \sum_{j=1}^{\ell} c_{\overline{r_j}}(\boldsymbol{\lambda}) + \frac{1}{2} \sum_{i \in \mathbb{Z}/e\mathbb{Z}} (c_i(\boldsymbol{\lambda}) - c_{i+1}(\boldsymbol{\lambda}))^2,$$

where $c_i(\lambda)$ is the number of *i*-nodes in $[\lambda]$, and $\overline{r_j}$ is the residue class of r_j modulo e.

→ < ∃ →</p>

Weights of Multipartitions

Definition (Fayers 06)

Let $\boldsymbol{\lambda}$ be an ℓ -multipartition of n. Define

$$\mathsf{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \sum_{j=1}^{\ell} c_{\overline{r_j}}(\boldsymbol{\lambda}) + \frac{1}{2} \sum_{i \in \mathbb{Z}/e\mathbb{Z}} (c_i(\boldsymbol{\lambda}) - c_{i+1}(\boldsymbol{\lambda}))^2,$$

where $c_i(\lambda)$ is the number of *i*-nodes in $[\lambda]$, and $\overline{r_j}$ is the residue class of r_j modulo e.

Theorem (Fayers 06)

 $\operatorname{wt}_{\mathscr{H}}(\boldsymbol{\lambda})$ is a block invariant, $\operatorname{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) \in \mathbb{Z}_{\geq 0}$, and when $\ell = 1$, $\operatorname{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \operatorname{wt}_{e}(\boldsymbol{\lambda})$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Jacon-Lecouvey 21) If $\mathbf{r} \in \overline{\mathscr{A}_{e}^{\ell}}$, then $\mathsf{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \mathsf{wt}_{e}(\mathsf{U}_{e}(\boldsymbol{\lambda};\mathbf{r})) \ (= \mathsf{wt}_{e}(\boldsymbol{\lambda};\mathbf{r})).$

(日)

Theorem (Jacon-Lecouvey 21) If $\mathbf{r} \in \overline{\mathscr{A}_{e}^{\ell}}$, then $\operatorname{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \operatorname{wt}_{e}(\mathsf{U}_{e}(\boldsymbol{\lambda};\mathbf{r})) \ (= \operatorname{wt}_{e}(\boldsymbol{\lambda};\mathbf{r})).$ Corollary (Li-T.)

$$\mathsf{wt}_{\mathscr{H}}(\boldsymbol{\lambda}) = \min(\mathsf{wt}_{e}((\boldsymbol{\lambda};\mathbf{r})^{\widehat{\mathbf{W}}_{\ell}})).$$

A D N A B N A B N A B N

There have been several attempts to generalise cores of partitions in the classification of blocks of \mathcal{H}_n :

• • • • • • • • • •

There have been several attempts to generalise cores of partitions in the classification of blocks of \mathcal{H}_n :

• Fayers 06: Hub $\in \mathbb{Z}^{\ell}$.

There have been several attempts to generalise cores of partitions in the classification of blocks of \mathcal{H}_n :

- Fayers 06: Hub $\in \mathbb{Z}^{\ell}$.
- Jacon-Lecouvey 21: $(e; \mathbf{r})$ -cores, an ℓ -tuple of core partitions with an associated ℓ -multicharge possibly not in the $\widehat{\mathbf{W}}_{\ell}$ -orbit of \mathbf{r} .

There have been several attempts to generalise cores of partitions in the classification of blocks of \mathcal{H}_n :

- Fayers 06: Hub $\in \mathbb{Z}^{\ell}$.
- Jacon-Lecouvey 21: $(e; \mathbf{r})$ -cores, an ℓ -tuple of core partitions with an associated ℓ -multicharge possibly not in the $\widehat{\mathbf{W}}_{\ell}$ -orbit of \mathbf{r} .

Theorem (Li-T.)

Let λ and μ be ℓ -multipartitions of n. Then S^{λ} and S^{μ} lie in the same block of \mathcal{H}_n if and only if $(\lambda; \mathbf{r})$ and $(\mu; \mathbf{r})$ have the same *e*-core.

There have been several attempts to generalise cores of partitions in the classification of blocks of \mathcal{H}_n :

- Fayers 06: Hub $\in \mathbb{Z}^{\ell}$.
- Jacon-Lecouvey 21: $(e; \mathbf{r})$ -cores, an ℓ -tuple of core partitions with an associated ℓ -multicharge possibly not in the $\widehat{\mathbf{W}}_{\ell}$ -orbit of \mathbf{r} .

Theorem (Li-T.)

Let λ and μ be ℓ -multipartitions of n. Then S^{λ} and S^{μ} lie in the same block of \mathcal{H}_n if and only if $(\lambda; \mathbf{r})$ and $(\mu; \mathbf{r})$ have the same *e*-core.

Corollary (Nakayama's 'Conjecture' for Ariki-Koike algebras)

Two Specht modules S^{λ} and S^{μ} (possibly of different algebras) lie in the same block if and only if $\operatorname{core}_{e}(\lambda; \mathbf{r}) = \operatorname{core}_{e}(\mu; \mathbf{r})$ and $\min(\operatorname{wt}_{e}((\lambda; \mathbf{r})^{\widehat{\mathbf{W}}_{\ell}})) = \min(\operatorname{wt}_{e}((\mu; \mathbf{r})^{\widehat{\mathbf{W}}_{\ell}})).$

▲ 白型 ▶ ▲ 三 ▶