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Cluster algebras and cluster categories

Recall that a cluster algebra (Fomin–Zelevinsky, 2002) is a commu-

tative algebra endowed with a family of distinguished generators, the

cluster variables, which are assembled into finite sets of fixed cardinal-

ity called the clusters. The clusters are constructed recursively starting

from the datum of a quiver (=oriented graph). In additive categorifica-

tion, we aim at constructing, from the quiver Q of a cluster algebra A,

a triangulated category CQ and a decategorification map χ : CQ → A
which associates elements of A with the objects in CQ so as to establish

as close a correspondence as possible between the combinatorics of the

indecomposable rigid objects in CQ and those of the cluster variables

in A.
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For an acyclic quiver Q, the construction of the corresponding clus-

ter category CQ is due to Buan–Marsh–Reineke–Reiten–Todorov. As

shown by work of Derksen–Weyman–Zelevinsky, in the general case

of a quiver admitting oriented cycles, in addition to the quiver Q, we

need to consider a (non-degenerate) potential, i.e. a formal linear com-

bination W of cycles of Q. In this more general case, the construction

of the corresponding cluster category CQ,W is due to Amiot and that of

the decategorification map χ : CQ,W → A to Caldero–Chapoton, Palu,

Plamondon and others.
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Conjecture 1.1 (Amiot, 2010)
Each 2-Calabi–Yau triangulated category with a cluster-tilting object

comes from a quiver with potential.

Aim: Explain a variant of the conjecture and sketch its proof.

Plan:

1. From preprojective algebras to Amiot’s conjecture

2. Van den Bergh’s superpotential theorem

3. Sketch of proof
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1. From preprojective algebras to Amiot’s conjecture

Fix the field k = C for simplicity. Let ∆ be an ADE Dynkin diagram

and Q an orientation of ∆, e.g. Q =
−→
A3 : 1 2 3.

β α

In 1976, Gelfand–Ponomatev defined the preprojective algebra ΛQ of

Q over k, e.g. 1 2 3
β α

β∗ α∗
with relation

∑
γ∈Q1

[γ, γ∗] = 0

or with −β∗β = 0, ββ∗ − α∗α = 0, αα∗ = 0.
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Remark 1.1
1) ΛQ is finite-dimensional and selfinjective, i.e. injective as a right

module over itself. So the category modΛQ of finite dimensional

right ΛQ-modules is a Frobenius category and its stable category

modΛQ is triangulated (Happel, 1986).

2) modΛQ is 2-Calabi–Yau as a triangulated category (Crawley-

Boevey, 2000), i.e. we have

Ext1(L,M) ∼−→ DExt1(M,L)

for all L and M in modΛQ, where D = Homk(?, k).
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Remark 1.2
3) ΛQ is wild except if ∆ ∈ {A1,A2,A3,A4,D4,A5} but it is always

2-representation-finite (in the sense of Iyama, 2007), i.e. modΛQ

contains a (canonical) 2-cluster-tilting object Tcan (constructed

by Geiss–Leclerc–Schröer, 2006).
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Definition 1.1
An object T ∈ modΛQ is 2-cluster-tilting if

a) T is rigid, i.e. Ext1(T,T) = 0,

b) T is a 2-step generator of modΛQ, i.e. for any M ∈ modΛQ, there

is a triangle

T1 T0 M ΣT1

with T0, T1 ∈ add T.
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For example, if Q =
−→
A3, then EndΛQ

T is given by

R =

2

1 3

ab

c

with relations ab = 0, bc = 0, ca = 0.

This means that EndΛQ
T = JR,W is the Jacobian algebra of (R,W),

where W = abc gives the above relations.
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The Jacobian algebra has a dg refinement, called the Ginzburg dg al-

gebra ΓR,W , i.e. the completed graded path algebra of

R̃ =

2

1 3
a

b∗

t2

b

c∗
t1

c

a∗

t3

with grading |a∗| = |b∗| = |c∗| = −1, |ti| = −2 and differential

determined by d(a∗) = ∂aW = bc, d(t1) = cc∗ − b∗b, etc.
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Theorem 1.1 (Amiot, 2009)

We have a canonical triangle equivalence CR,W
∼−→ modΛQ tak-

ing ΓR,W to Tcan, where CR,W is the (generalized) cluster category

CR,W = perΓR,W/pvdΓR,W .

Here perΓR,W ⊆ D(ΓR,W) denotes the perfect derived category, i.e.

the thick subcategory generated by ΓR,W and pvdΓR,W ⊆ D(ΓR,W)

denotes the perfectly valued derived category, i.e. the full subcategory

of dg modules whose homology is of finite total dimension.
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Conjecture 1.2 (Amiot, 2010)
Let C be a Karoubian, Hom-finite triangulated category such that

a) C is algebraic, i.e. C is triangle equivalent to H0(A) for some

pretriangulated dg category A,

b) C is 2-Calabi–Yau as a triangulated category,

c) C contains a cluster-tilting object T.

Then there exists a quiver with potential (R,W) and a triangle equiv-

alence CR,W
∼−→ C taking ΓR,W to T. In particular, we have an isomor-

phism JR,W
∼−→ EndC(T).
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Evidence:

1) It is true if End(T) is hereditary (Keller–Reiten, 2008).

2) It is true if C = modΛQ, T = Tcan as above.

3) It is true if C = cm (RG), R = k[[x, y, z]], G is a suitable cyclic

group (Amiot–Iyama–Reiten, 2011, Thanhoffer–Van den Bergh,

2015).
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Incoherence in the conjecture: The Calabi–Yau structure should be

given on A, not on H0(A) ≃ C!

Theorem 1.2 (Keller–L, 2023)
After this modification, the conjecture holds.
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2. Van den Bergh’s superpotential theorem (in dimension 3)

Theorem 1.3 (Van den Bergh, 2015)
Let A be a smooth connective complete dg algebra endowed with a

left 3-Calabi–Yau structure. Then A is quasi-isomorphic to ΓR,W for a

quiver with potential (R,W).

Remark 1.3
The converse also holds (Van den Bergh, 2011).
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Terminology:

Smooth: A lies in per Ae, where Ae = A ⊗k Aop.

Connective: Hp(A) = 0 for all p > 0.

Complete: Pseudo-compact and augmented over its radical quotient

(holds for completed connective dg path algebras).

Left 3-Calabi–Yau structure: Class β ∈ HN3(A) whose image under

HN3(A) HH3(A) HomD(Ae)(Σ
3A∨,A)∼

is an isomorphism, where A∨ = RHomAe(A,Ae).

Junyang Liu On Amiot’s conjecture



On Amiot’s conjecture

3. Sketch of proof

The given triangulated category C is Karoubian and Hom-finite. A

right 2-Calabi–Yau structure on a given dg enhancement Cdg is a class

α ∈ DHC−2(Cdg) which is non-degenerate, i.e. its image in

DHH−2(Cdg) HomD(Ce
dg)
(Cdg,Σ

−2DCdg)
∼

is an isomorphism.

Notice: Cdg has a right 2-Calabi–Yau structure but we need a dg algebra

with a left 3-Calabi–Yau structure to apply Van den Bergh’s superpo-

tential theorem.
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To construct: (R,W) such that we have an exact sequence

0 pvdΓR,W perΓR,W C 0 .

Let E be a Frobenius exact category whose stable category is C and

P ⊆ E the full subcategory of projective-injective objects. Denote by

M ⊆ E the closure under finite direct sums and direct summands of T

and the projective-injective objects in E .
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Then we have the diagram (Palu, 2010)

Hb(P) Hb(P)

Hb
ac(M) Hb(M) Db(E)

Hb
ac(M) Hb(M)/Hb(P) C .

We define Γ to be the endomorphism algebra of the image of T in the

dg enhancement of Hb(M)/Hb(P). Then the bottom row becomes

0 perΓ! perΓ C 0 .
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We obtain an exact sequence

HC−2(Γ) HC−2(Cdg) HC−3(Γ
!) HC−3(Γ)

in cyclic homology whose leftmost and rightmost terms vanish. Then

the preimage β of the given right 2-Calabi–Yau structure α under the

composed isomorphism

HN3(Γ) DHC−3(Γ
!) DHC−2(Cdg)

∼ ∼

is a candidate for a left 3-Calabi–Yau structure on Γ.

Junyang Liu On Amiot’s conjecture



On Amiot’s conjecture

Subtle point: α is non-degenerate implies that β is non-degenerate!

Then by Van den Bergh’s superpotential theorem, the dg algebra Γ is

isomorphic to ΓR,W for some quiver with potential (R,W).

It follows that C is triangle equivalent to the cluster category

perΓR,W/pvdΓR,W .

Remark 1.4
All constructions and results generalize from dimension 2 to dimension

d ≥ 2.
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Summary

We characterize generalized cluster categories as algebraic triangulated

categories with an algebraic 2-CY structure and a cluster-tilting object.
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Thanks for your attention!
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