Homotopy equivalences over rings with finite Gorenstein weak global dimension

Junpeng Wang (Northwest Normal University)

This is a joint work with Profs. Sergio Estrada Thanks also to: Profs. Zhongkui Liu, Li Liang, Christensen, and Thompson ICAR 21, 2024, Shanghai Jiaotong University, Shanghai

August 9, 2024

Outline

Gorenstein global dimension vs Gorenstein weak global dimension

- 2 Chen's homotopy equivalence
- Our results

Gorenstein projective and Gorenstein flat modules

- Let R be a ring. Denote by R-Mod the category of left R-modules and by \mathcal{GP} (resp. \mathcal{GF} and \mathcal{GI}) its subcategory consisting of all Gorenstein projective (resp. Gorenstein flat and Gorenstein injective) modules.
- A left R-module M is called **Gorenstein projective** (resp. **Gorenstein flat**) if there exists a totally acyclic complex P^{\bullet} of projective left R-modules(resp. an **F**-totally acyclic complex P^{\bullet} of flat left R-modules)such that $M = Z^{0}(P^{\bullet})$.
- A complex P^{\bullet} of projective left R-modules is called **totally** acyclic if $\operatorname{Hom}_R(P^{\bullet},Q)$ is acyclic for any projective left R-module Q; A complex P^{\bullet} of flat left R-modules is called **F-totally** acyclic if $I \otimes_R P^{\bullet}$ is acyclic for any injective right R-module I.

Gorenstein projective and Gorenstein flat modules

• It is an open problem whether or not $\mathcal{GP} \subseteq \mathcal{GF}$ for any ring R.

Proposition (W E) Let R be a left virtually Gorenstein ring (that is, R satisfies $\mathcal{GP}^{\perp} = {}^{\perp}\mathcal{GI}$). Then $\mathcal{GP} \subseteq \mathcal{GF}$.

Gorenstein projective dimension and Gorenstein flat dimension

- Let R be a ring and M a left R-module. As usual, the notations $\operatorname{Gpd}_R(M)$ and $\operatorname{Gfd}_R(M)$ stand for the Gorenstein projective and Gorenstein flat dimensions of M, respectively. That is, the \mathcal{GP} -resolution and \mathcal{GF} -resolution dimensions of M, respectively.
- ullet It is an open problem whether or not $\mathcal{GP}\subseteq\mathcal{GF}$ for any ring R. So we do not know that

$$\mathsf{Gfd}_R(M) \leq \mathsf{Gpd}_R(M)$$

hold in general.

Gorenstein (weak) global dimension of rings

If we take the supremum from all modules, we can get two invariants of R:

$$\begin{split} & \operatorname{\mathsf{Ggldim}}(R) \stackrel{\mathit{df}}{=} \sup \{ \operatorname{\mathsf{Gpd}}_R(M) \mid M \text{ is a left } R\text{-module} \} \\ & \operatorname{\mathsf{Gwgldim}}(R) \stackrel{\mathit{df}}{=} \sup \{ \operatorname{\mathsf{Gfd}}_R(M) \mid M \text{ is a left } R\text{-module} \} \end{split}$$

- They are a refinement of gldim(R) and wgldim(R) respectively.
- It is know that $wgldim(R) \leq gldim(R)$, the key is $P \subseteq \mathcal{F}$.
- Although we do not know whether or not $\mathcal{GP} \subseteq GF$, using different methods, we (CELTW; WYSZ) obtain an inequality as follows.

$$\mathsf{Gwgldim}(R) \leq \mathsf{Ggldim}(R).$$

Gorenstein (weak) global dimension of rings, continued

• Note that the inequality

$$\mathsf{Gwgldim}(R) \leq \mathsf{Ggldim}(R)$$

can be strict and even can form an extreme.

• For example, let $R=F_{\alpha}$ be the free Boolean ring on \aleph_{α} generators with α an infinite cardinality. Then one has $\operatorname{Gwgldim}(R)=0$ and $\operatorname{Ggldim}(R)=\infty$.

Three different generalizations of Gorenstein rings

A ring R is called *Gorenstein* (resp. *Ding-Chen*) if it is a two-sided Noetherian (resp. two-sided coherent) ring with finite self-injective (self-FP-injective) dimension on both sides; A ring R is called *left Gorenstein* if $Ggldim(R) < \infty$.

Three different generalizations of Gorenstein rings

• We summarize that generalizations of Gorenstein rings go in three different directions:

In summary, the second and the third ones all admit finite Gorenstein weak global dimension, and hence are left and right virtually Gorenstein.

lyengar-Krause's homotopy equivalence

- As usual, denote by K(R-GProj) (resp. K(R-GInj)) the homotopy category of Gorenstein projective (resp. Gorenstein injective) left R-modules. Its homotopy subcategory consisting of projective (resp. injective) left R-modules is denoted by K(R-Proj) (resp. K(R-Inj)).
- We also denote by $K_{\rm ac}(R\text{-Proj}$ (resp. $K_{\rm ac}(R\text{-Inj})$) the homotopy subcategory of K(R-Proj) (resp. K(R-Inj) consisting of exact complexes of projective (resp. injective) left R-modules.

lyengar-Krause's homotopy equivalence

Theorem A Let R be a commutative Noetherian ring with a duality complex D, then there is a triangle equivalence

$$K(R-Proj) \simeq K(R-Inj)$$

Asadollahi, Hafezi and Salarian (2014) proved that

Let R be a commutative Noetherian ring with a duality complex D, then there is a triangle equivalence $\mathrm{K}(R\text{-}\mathsf{GProj})\simeq\mathrm{K}(R\text{-}\mathsf{GInj})$ which restricts to a triangle equivalence $\mathrm{K}(R\text{-}\mathsf{Proj})\simeq\mathrm{K}(R\text{-}\mathsf{Inj})$.

Chen's homotopy equivalence

Using the tools of balanced pairs, Chen (2010) obtained a parallel result.

Theorem B Let R be a left Gorenstein ring (that is, $Ggldim(R) < \infty$). Then there is a triangle equivalence $K(R\text{-}GProj) \simeq K(R\text{-}GInj)$ which restricts to a triangle equivalence $K(R\text{-}Proj) \simeq K(R\text{-}Inj)$.

For commutative Gorenstein rings, Chen's equivalence extends lyengar-Krause's homotopy equivalence.

The question

Question Does the same result hold for any Ding-Chen ring?

A general result

Using the tools of torsion pairs (or stable t-structures) of triangulated categories,

Theorem 0 Let R be a left virtually Gorenstein ring (i.e., \mathcal{GP}^{\perp} = $^{\perp}\mathcal{GI}$). Then we have a triangle equivalence

$$K(\mathsf{dgGProj}) \simeq K(\mathsf{dgGInj})$$

Affirmative answer to the question

Recall that a ring R is Ding-Chen if and only if R is a two-sided coherent ring with $\operatorname{Gwgldim}(R) < \infty$.

Theorem C Let R be a ring with $\mathsf{Gwgldim}(R) < \infty$. Then there is a triangle equivalence $\mathsf{K}(R\text{-}\mathsf{GProj}) \simeq \mathsf{K}(R\text{-}\mathsf{GInj})$ which restricts to a triangle equivalence $\mathsf{K}(R\text{-}\mathsf{Proj}) \simeq \mathsf{K}(R\text{-}\mathsf{Inj})$.

The use of finiteness of Gorenstein weak global dimension

• Gwgldim $(R) < \infty$ implies that R is left (and right) virtually Gorenstein, so Theorem 0 applies to obtain

$$K(dgGProj) \simeq K(dgGInj)$$
.

• $\mathsf{Gwgldim}(R) < \infty$ also implies that

$$K(dgGProj) = K(R-GProj)$$
 and $K(dgGInj) = K(R-GInj)$.

• the restrictness is easy.

Compare Theorem B and Theorem C

- ullet Applying Theorem C, one can obtain a triangle equivalence ${
 m K}_{
 m ac}(\mbox{\it R-Proj}) \simeq {
 m K}_{
 m ac}(\mbox{\it R-Inj}).$
- Using symmetry of Gwgldim(R), one can also obtain the triangle equivalences for right R-modules from Theorem C.

An application of Theorem C

• Let *R* be a Ding-Chen ring. Then we have a triangle equivalence:

$$K(R ext{-}\mathsf{Flat}\mathsf{Cot}) \simeq K(R ext{-}\mathsf{FInj}\mathsf{FProj})$$

Thank you!