(De)Coloring in operad theory with applications to homotopy theory of relative Rota-Baxter algerbas

> Jun Chen Nanjing University

The 21st International Conference on

Representations of algebras

— ICRA 21 Shanghai 2024 —

2024. 08. 08

² [Deformation theory and homotopy theory for Rota-Baxter Lie algebras](#page-14-0)

³ [Minimal model for relative Rota-Baxter Lie algebras via \(de\)coloring of](#page-31-0) [operads](#page-31-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[Deformation theory and homotopy theory for Rota-Baxter Lie algebras](#page-14-0)

³ [Minimal model for relative Rota-Baxter Lie algebras via \(de\)coloring of](#page-31-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Part I: Hochschild cohomology

Let **k** be a field of characteristic zero. Let (A, μ) be an associative algebra and M be an A-bimodule.

Definition (Hochschild 1945)

The **Hochschild cochain complex** of A over M is $(C_{\text{Alg}}^{\bullet}(A, M), \partial_{\text{Alg}}^{\bullet})$ with

$$
\bullet \ \ C^n_{\mathrm{Alg}}(A,M)=\mathrm{Hom}(A^{\otimes n},M), n\geq 0,
$$

$$
\begin{array}{ll}\n\bullet \ \partial_{\mathrm{Alg}}^n(f)(a_1\otimes \cdots \otimes a_{n+1}) \\
&= (-1)^{n-1}a_1f(a_2\otimes \cdots \otimes a_{n+1}) + f(a_1\otimes \cdots \otimes a_n)a_{n+1} \\
&+ \sum_{i=1}^n (-1)^{n-i+1}f(a_1\otimes \cdots \otimes a_i a_{i+1}\otimes \cdots \otimes a_{n+1}).\n\end{array}
$$

In particular, we write $C_{\mathrm{Alg}}^{\bullet}(A) := C_{\mathrm{Alg}}^{\bullet}(A, A)$.

Definition (Hochschild cohomology)

For $n \geq 0$, the n-th **Hochschild cohomology group** of A is defined to be

$$
\mathrm{H}^n_{\mathrm{Alg}}(A)=\mathrm{H}^n(\mathcal{C}^\bullet_{\mathrm{Alg}}(A)).
$$

For a Z-graded vector space V, define sV as $(sV)_{p} = V_{p-1}, p \in \mathbb{Z}$.

Theorem (Gerstenhaber 1963)

For an associative algebra A, s $\mathcal{C}^\bullet_{\rm Alg}(\mathcal{A})$ together with differential $-\partial^\bullet_{\rm Alg}$ and the Gerstenhaber Lie bracket $[,]_G$ is a dg Lie algebra (called Gerstenhaber dg Lie algebra).

Gerstenhaber Lie bracket: $[f, g]_G = f \overline{\circ} g - (-1)^{(n-1)(m-1)} g \overline{\circ} f$ with

$$
f\overline{\circ}g=\sum_{i=1}^n(-1)^{(i-1)(m-1)}f(\operatorname{Id}^{\otimes i-1}\otimes g\otimes \operatorname{Id}^{\otimes n-i}).
$$

M. Gerstenhaber, The cohomology structure of an associative ring. Ann. Math. (2) 78 (1963) 267-288.

Definition (Differential graded Lie algebra)

A differential graded Lie algebra (aka dgla) is a triple (L, l_1, l_2) , where

- $\mathcal{L} = \bigoplus_{i \in \mathbb{Z}} \mathcal{L}_i$ is a graded space, $l_1: \mathcal{L} \to \mathcal{L}$ and $l_2: \mathcal{L} \otimes \mathcal{L} \to \mathcal{L}$ such that
- (i) (L, l_1) is a cochain complex,
- (ii) (L, l_2) is a graded Lie algebra,
- (iii) l_1 is a derivation with respect to $l_2 = [,]$. i.e. $l_1[a,b] = [l_1(a),b] + (-1)^{|a|}[a, l_1(b)].$

Part I: Differential graded Lie algebras

Definition (Maurer-Cartan elements)

Let L be a dgla. An element $\alpha \in L_{-1}$ is a **Maurer-Cartan element** if

$$
l_1(\alpha)-\frac{1}{2}l_2(\alpha\otimes\alpha)=0.
$$

Proposition (Twisting procedure)

Let L be a dgla. Given a Maurer-Cartan element $\alpha \in L_{-1}$, it produces a new dgla $L^{\alpha} = (L, l_1^{\alpha}, l_2^{\alpha})$ by imposing

$$
I_1^{\alpha}(x) = I_1(x) - I_2(\alpha \otimes x) \quad \text{and} \quad I_2^{\alpha}(x \otimes y) = I_2(x \otimes y).
$$

Part I: Algebraic deformation theory of associative algebras

Theorem

(i) Even if V is only a (ungraded) vector space, the Hochschild cochain complex (with zero differential)

$$
\mathfrak{C}_{Alg}(V)=\prod_{n=0}^{\infty}\mathrm{Hom}((sV)^{\otimes n},sV)
$$

is still a graded Lie algebra (called Gerstenhaber Lie algebra) endowed with the Gerstenhaber Lie bracket.

(ii) There is a 1-1 correspondence\n
$$
\begin{cases}\n\text{Maurer-Cartan elements} \\
\text{in } \mathfrak{C}_{\text{Alg}}(V) \\
\end{cases} \leftrightarrow \begin{cases}\n\text{Associative algebra} \\
\text{structures on } V\n\end{cases}.
$$

(iii) Let μ be an associative algebra structure on V, the twisted dgla $\mathfrak{C}_{Alg}(V)^{\mu}$ is exactly the Gerstenhaber dg Lie algebra $sC_{\text{Alg}}^{\bullet}(V)$.

Definition (Homotopy associative algebras)

Let V be a graded vector space. A homotopy associative algebra structure on graded space V is defined to be a Maurer-Cartan element in the graded Lie algebra $\overline{\mathfrak{C}_{\mathcal{A} \mathcal{C}}}(\mathcal{V}) = \prod_{v \in \mathcal{C}}^{\infty} \mathrm{Hom}((\mathcal{S} \mathcal{V})^{\otimes n}, \mathcal{S} \mathcal{V}).$

 $n=1$

Equivalently, this definition coincides with the following.

Definition (Stasheff 1963)

An A_∞ -algebra structure on a graded space V consists of $\{m_n:V^{\otimes n}\to V\}_{n\geqslant 1}$ with $|m_n| = n - 2$ and the Stasheff identities:

$$
\sum_{i+j+k=n, i,k\geq 0, j\geq 1} (-1)^{i+jk} m_{i+1+k}\circ (\mathrm{id}^{\otimes i} \otimes m_j \otimes \mathrm{id}^{\otimes k}) = 0, \forall n \geq 1.
$$

Part I: A_{∞} -algebras

Stasheff identities:

$$
\sum_{i+j+k=n, i,k\geq 0, j\geq 1} (-1)^{i+jk} m_{i+1+k}\circ (\mathrm{id}^{\otimes i} \otimes m_j \otimes \mathrm{id}^{\otimes k}) = 0, \forall n \geq 1.
$$

- $n = 1$, $m_1 \circ m_1 = 0$ with $|m_1| = -1$, i.e. m_1 is a differential;
- $n = 2$, $m_1 \circ m_2 = m_2 \circ (\text{id} \otimes m_1 + m_1 \otimes \text{id})$, i.e. m_1 is a derivation with respect to m_2 ;
- $n = 3$, $m_2 \circ (m_2 \otimes id) m_2 \circ (id \otimes m_2) =$ $-(m_1\circ m_3+m_3\circ (m_1\otimes \mathrm{id}^{\otimes 2}+\mathrm{id}\otimes m_1\otimes \mathrm{id}+m_1\otimes \mathrm{id}^{\otimes 2}))=-\partial(m_3)$, i.e. m_2 is associative up to homotopy.
- \blacksquare J. D. Stasheff, Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 1963 293-312.

KORKAR KERKER SAGA

Stasheff identities:

$$
\sum_{i+j+k=n, i,k\geq 0, j\geq 1} (-1)^{i+jk} m_{i+1+k}\circ (\mathrm{id}^{\otimes i} \otimes m_j \otimes \mathrm{id}^{\otimes k}) = 0, \forall n \geq 1.
$$

We rewrite the Stasheff identities as follows: for $n \ge 2$,

$$
\partial(m_n) := m_1 \circ m_n - (-1)^{n-2} m_n \circ m_1 = \sum_{j=2}^{n-1} \sum_{i=1}^{n-j+1} \pm m_{n-j+1} \circ_i m_j.
$$

In operads, we present $m_n : A^{\otimes n} \to A$ as the following tree (with n leaves):

Part I: Operad of A_{∞} -algebras

$$
\partial(m_n) := m_1 \circ m_n - (-1)^{n-2} m_n \circ m_1 = \sum_{j=2}^{n-1} \sum_{i=1}^{n-j+1} \pm m_{n-j+1} \circ_i m_j.
$$

Then the **Stasheff identities** can be presented by the following.

Definition (Operad of A_{∞} -algebras)

The dg operad of A_∞-algebra, denoted by \mathcal{A} ss_∞, is the free graded operad generated by m_n , $n > 2$ with $|m_n| = n - 2$ endowed with the above differential.

KELK KØLK VELKEN EL 1990

Theorem (Ginzburg-Kapranov 94)

The operad Ass is Koszul and

 $\mathcal{A} \mathsf{ss}_\infty \cong \Omega(\mathcal{A} \mathsf{ss}^\mathsf{i}),$

where \mathcal{A} ssⁱ is its **Koszul dual cooperad**. The dg operad \mathcal{A} ss_∞ is called the minimal model of Ass.

V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203-272.

Theorem

Let V be a vector space. Then

$$
\operatorname{Hom}(\mathcal{A}ss^i,\operatorname{End}_{V})=\prod_{n=1}^{\infty}\operatorname{Hom}(\mathcal{A}ss^i(n),\operatorname{End}_{V}(n))
$$

has a graded Lie algebra structure, which is exactly the Gerstenhaber Lie algebra.

M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud. 21 (2000), 255-307.

KORK EXTERNE PROVIDE

[Deformation theory and homotopy theory for Rota-Baxter Lie algebras](#page-14-0)

[Minimal model for relative Rota-Baxter Lie algebras via \(de\)coloring of](#page-31-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Four steps:

formal deformations ⇓ deformation complex ⇓ L_{∞} -structure \leftarrow derived bracket (Chengming Bai, Li Guo, Yunhe Sheng et al.) $\hat{\mathbb{I}}$ minimal model

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition (Rota-Baxter operators)

Let $(\mathfrak{g}, \ell = [-, -])$ be a Lie algebra. A linear map $T : \mathfrak{g} \to \mathfrak{g}$ is said to be a Rota-Baxter operator of weight λ if it satisfies

$$
[T(a), T(b)] = T([a, T(b)] + [T(a), b] + \lambda[a, b]),
$$

or equivalently,

$$
\ell \circ (T \otimes T) = T \circ \ell \circ (\mathrm{Id}_{\mathfrak{g}} \otimes T + T \otimes \mathrm{Id}_{\mathfrak{g}} + \lambda \cdot \mathrm{Id}_{\mathfrak{g}} \otimes \mathrm{Id}_{\mathfrak{g}}).
$$
 (1)

The triple (g, ℓ, T) is called a Rota-Baxter Lie algebra.

Remark

The operad of Rota-Baxter Lie algebras is **NOT** Koszul as relation (1) contains terms of degree 3:

$$
\ell \circ (\mathcal{T} \otimes \mathcal{T}), \ \mathcal{T} \circ \ell \circ (\mathrm{Id}_{\mathfrak{g}} \otimes \mathcal{T}) \text{ and } \mathcal{T} \circ \ell \circ (\mathcal{T} \otimes \mathrm{Id}_{\mathfrak{g}}).
$$

Definition (Rota-Baxter Lie modules)

Let (g, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . A Rota-Baxter Lie module over a is a vector space M such that

(i) M is a representation for the Lie algebra (\mathfrak{g}, ℓ) ;

(ii) there is a linear map $T_M : M \to M$ such that

 $T(a)T_M(m) = T_M(aT_M(m) + T(a)m + \lambda am)$

KORKARYKERKER POLO

for $a \in \mathfrak{g}$, $m \in M$.

Part II: Descendent properties

$$
[T(a), T(b)] = T([a, T(b)] + [T(a), b] + \lambda[a, b])
$$

Proposition

(i) Let (g, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . Define

$$
[a, b]_{\star} := [a, T(b)] + [T(a), b] + \lambda [a, b]
$$

for any a, $b \in \mathfrak{g}$. Then $\mathfrak{g}_* = (\mathfrak{g}, [-, -]_*, T)$ is a Rota-Baxter Lie algebra.

(ii) Let M be a Rota-Baxter Lie module over $(\mathfrak{g}, \ell, \mathcal{T})$. Define

$$
a \triangleright m: = T(a)m - T(am).
$$

Then " \triangleright " make M into a Rota-Baxter Lie module over \mathfrak{g}_* which is denoted by " $\sim M''$.

Definition (Cohomology of Rota-Baxter operators)

Let (g, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . Then the Chevalley-Eilenberg cochain complex of \mathfrak{g}_* over $\mathfrak{g}_\mathfrak{g}$

 $C_{\text{RBO}}^{\bullet}(\mathfrak{g}) := (C_{\text{Lie}}^{\bullet}(\mathfrak{g}_{\star},\beta_{\mathfrak{g}}), \partial)$

is called the cochain complex of Rota-Baxter operator T . Its cohomology, denoted by

 $\mathrm{H}^\bullet_\mathrm{RBO}(\mathfrak{g})$

KORKARYKERKER POLO

is called the cohomology of Rota-Baxter operator T .

Proposition

 $\mathrm{H}^\bullet_\mathrm{RBO}(\mathfrak{g})$ controls the infinitesimal deformation of T.

Part II: Cohomology theory of Rota-Baxter Lie algebras

Next, we construct a chain map $\phi^\bullet : C^\bullet_{\text{Lie}}(\mathfrak{g}) \to C^\bullet_{\text{RBO}}(\mathfrak{g})$ as follows:

$$
C_{\text{Lie}}^{\bullet}(\mathfrak{g}) : \quad 0 \longrightarrow \text{Hom}(k, \mathfrak{g}) \stackrel{d^0}{\longrightarrow} \text{Hom}(\mathfrak{g}, \mathfrak{g}) \longrightarrow \text{Hom}(\wedge^n \mathfrak{g}, \mathfrak{g}) \stackrel{d^n}{\longrightarrow} \text{Hom}(\wedge^{n+1} \mathfrak{g}, \mathfrak{g}) \longrightarrow
$$

$$
\downarrow_{\phi^0} \qquad \qquad \downarrow_{\phi^0} \qquad \qquad \downarrow_{\phi^n} \qquad \qquad \downarrow_{\phi^{n+1}} \qquad \qquad \downarrow_{\phi^{n+1}} \qquad \qquad \downarrow_{\phi^{n+1}}
$$

$$
C_{\text{RBO}}^{\bullet}(\mathfrak{g}) : \quad 0 \longrightarrow \text{Hom}(k, \mathfrak{g}) \stackrel{\partial^0}{\longrightarrow} \text{Hom}(\mathfrak{g}, \mathfrak{g}) \longrightarrow \text{Hom}(\wedge^n \mathfrak{g}, \mathfrak{g}) \stackrel{\partial^n}{\longrightarrow} \text{Hom}(\wedge^{n+1} \mathfrak{g}, \mathfrak{g}) \longrightarrow
$$

• For
$$
n = 0
$$
, define $\phi_0 = \mathrm{Id}_{\mathrm{Hom}(k, \mathfrak{g})}$;

• for
$$
n \ge 1
$$
, $f \in C_{\text{Lie}}^n(\mathfrak{g})$, define $\phi^n(f)$ as

$$
\phi^{n}(f)(a_{1} \otimes \ldots \otimes a_{n})
$$
\n
$$
=f(T(a_{1}) \otimes \ldots \otimes T(a_{n}))
$$
\n
$$
-\sum_{k=0}^{n-1} \sum_{1 \leq i_{1} < \cdots < i_{k} \leq n} \lambda^{n-k-1} T \circ f(a_{1} \otimes \ldots \otimes T(a_{i_{1}}) \otimes \ldots \otimes T(a_{i_{k}}) \otimes \ldots \otimes a_{n}).
$$

Part II: Cohomology theory of Rota-Baxter Lie algebras

Definition (Cohomology of Rota-Baxter Lie algebras)

Let $(\mathfrak{g}, \ell, \mathcal{T})$ be a Rota-Baxter Lie algebra with weight. The negative shift of the mapping cone of the chain map $\phi: C^\bullet_{\rm Lie}(\mathfrak{g}) \to C^\bullet_{\rm RBO}(\mathfrak{g})$, denoted by

 $(\mathcal{C}_{\text{RBLA}}^{\bullet}(\mathfrak{g}),\delta),$

is called the cochain complex of Rota-Baxter Lie algebra (g, ℓ, T) . Its cohomology, denoted by

 $H_{\text{RBLA}}^{\bullet}(\mathfrak{g}),$

KELK KØLK VELKEN EL 1990

is called the cohomology of Rota-Baxter Lie algebra (g, ℓ, T) .

Proposition

 $\mathrm{H}^\bullet_\mathrm{RBLA}(\mathfrak{g})$ controls the infinitesimal deformation of ℓ and $\mathcal T$ simultaneously.

Part II: L_{∞} -algebra associated to Rota-Baxter Lie algebras

Given a graded space V, define

$$
\mathfrak{C}_{\mathrm{RBLA}}(V)_{\lambda}=\mathfrak{C}_{\mathrm{Lie}}(V)\oplus \mathfrak{C}_{\mathrm{RBO}}(V),
$$

where

$$
\mathfrak{C}_{\mathrm{Lie}}(V)=\mathrm{Hom}(\mathcal{S}^c(\mathfrak{s} V),\mathfrak{s} V), \mathfrak{C}_{\mathrm{RBO}}(V)=\mathrm{Hom}(\mathcal{S}^c(\mathfrak{s} V),V).
$$

Theorem (C.-Qi-Wang-Zhou 2024)

(i) There is an L_{∞} -algebra structure on $\mathfrak{C}_{\mathrm{RBLA}}(V)$.

 (ii) If V concentrates in degree 0, there is a bijection

 $\left\{\n\begin{array}{c}\n\text{Rota-Baxter Lie algebra} \\
\text{structure } (\ell, T) \text{ on } V\n\end{array}\n\right\} \leftrightarrow \text{MC}(\mathfrak{C}_{\text{RBLA}}(V)).$

(continued) J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Theorem (C.-Qi-Wang-Zhou 2024)

(i) There is an L_{∞} -algebra structure on $\mathfrak{C}_{\mathrm{RBLA}}(V)$.

 (ii) If V concentrates in degree 0, there is a bijection

 $\left\{\n\begin{array}{c}\n\text{Rota-Baxter Lie algebra} \\
\text{structure } (\ell, T) \text{ on } V\n\end{array}\n\right\} \leftrightarrow \text{MC}(\mathfrak{C}_{\text{RBLA}}(V)).$

(iii) Let $(\mathfrak{g}, \ell, \mathcal{T})$ be a Rota-Baxter Lie algebra. The cochain complex $C_{\text{RBLA}}^{\bullet}(\mathfrak{g})$ of $(\mathfrak{g}, \ell,\mathcal{T})$ can be realized as the twisted L_{∞} -algebra $\mathfrak{C}_{\text{RBLA}}(V)^{(\ell,\mathcal{T})}_{\lambda}$ $\lambda^{\left(\epsilon,\ell\right)}$.

(iv) Let $(\mathfrak{g}, \ell, \mathcal{T})$ be a Rota-Baxter Lie algebra. The <u>cochain complex</u> $C^\bullet_{\text{RBO}}(\mathfrak{g})$ of $\underline{\mathcal{T}}$ can be realized as the twisted L $_\infty$ -algebra $\mathfrak{C}_{\rm RBLA}(V)^{(\ell,0)}_\lambda$ $\lambda^{\mathfrak{e},\mathsf{u}}$.

KORKAR KERKER SAGA

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Part II: Homotopy Rota-Baxter Lie algebras

$$
\mathfrak{C}_{\mathrm{RBLA}}(V)=\mathrm{Hom}(\bigoplus_{n=0}^{\infty}S^n(sV),sV)\oplus \mathrm{Hom}(\bigoplus_{n=0}^{\infty}S^n(sV),V)
$$

Definition (Homotopy Rota-Baxter Lie algebras)

Let $V = \bigoplus V_i$ be a graded space. A homotopy Rota-Baxter Lie algebra i∈Z $\mathsf{structure}$ of weight λ on $\mathsf V$ is defined to be a Maurer-Cartan element in the L_{∞} -algebra $\overline{\mathfrak{C}_{\rm BBLA}}(V)$, where

$$
\overline{\mathfrak{C}_{\operatorname{RBLA}}}(V) = \operatorname{Hom}(\bigoplus_{n=1}^{\infty} S^n(sV), sV) \oplus \operatorname{Hom}(\bigoplus_{n=1}^{\infty} S^n(sV), V)
$$

is the L_{∞} -subalgebra of $\mathfrak{C}_{\mathrm{RBLA}}(V)_{\lambda}$.

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Part II: Homotopy Rota-Baxter Lie algebras

By solving the Maurer-Cartan equation, we have the following equivalent definition.

Definition (Homotopy Rota-Baxter Lie algebras)

A homotopy Rota-Baxter Lie algebra of weight λ is a graded space V equipped with two family of anti-symmetric graded maps $\{\ell_n : V^{\otimes n}\to V\}_{n\geqslant 1}$ and $\{\mathcal{T}_n: V^{\otimes n} \to V\}_{n \geqslant 1}$ with $|\ell_n| = n - 2$ and $|\mathcal{T}_n| = n - 1$, subject to $\sum_{n=1}^{\infty}$ $\sum_{\substack{\text{sgn}(\sigma)(-1)^{i(n-i)}\ell_{n-i+1}(\ell_i \otimes \text{id}^{\otimes n-i})}}$ r_σ = 0 (2) i=1 σ∈Sh(i,n−i)

and
\n
$$
\sum \pm \ell_k (T_{r_1} \otimes \cdots \otimes T_{r_k}) r_{\sigma}
$$
\n
$$
= \sum \pm T_{r_1} (\ell_p (T_{r_2} \otimes \cdots \otimes T_{r_q} \otimes \mathrm{id}^{\otimes p-q+1}) \otimes \mathrm{id}^{r_1-1}) r_{\sigma}.
$$
\n(3)

Part II: Homotopy Rota-Baxter Lie algebras

$$
\sum \pm \ell_k (\mathcal{T}_{r_1} \otimes \cdots \otimes \mathcal{T}_{r_k}) r_{\sigma}
$$
\n
$$
= \sum \pm \mathcal{T}_{r_1} (\ell_\rho (\mathcal{T}_{r_2} \otimes \cdots \otimes \mathcal{T}_{r_q} \otimes \mathrm{id}^{\otimes \rho - q + 1}) \otimes \mathrm{id}^{r_1 - 1}) r_{\sigma},
$$
\n(3)

Example

• When $n = 2$, we have

$$
\ell_2 \circ (T_1 \otimes T_1) - T_1 \circ \ell_2 \circ (T_1 \otimes id + id \otimes T_1 + \lambda id \otimes id)
$$

= $\partial(T_2)$.

KORK EXTERNE PROVIDE

That is, T_1 is a Rota-Baxter operator of weight λ up to homotopy.

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The dg operad $_{\lambda}$ RB $_{\infty}$ of homotopy Rota-Baxter Lie algebra is the free operad generated by ℓ_n , T_n with $|\ell_n| = n - 2$, $|T_n| = n - 1$.

The generators $\ell_n, n \geq 2$, and $T_n, n \geq 1$, are represented by the following:

(continued)

KELK KØLK VELKEN EL 1990

Part II: The operad of homotopy Rota-Baxter Lie algebras

$$
\sum_{i=1}^{n} \sum_{\sigma \in \text{Sh}(i,n-i)} \text{sgn}(\sigma) (-1)^{i(n-i)} \ell_{n-i+1}(\ell_i \otimes \text{id}^{\otimes n-i}) r_{\sigma} = 0 \tag{2}
$$

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The action of differential operator ∂ on generators can be expressed by shuffle trees as follows:

(continued)

KORK EXTERNE PROVIDE

Part II: The operad of homotopy Rota-Baxter Lie algebras

$$
\sum \pm \ell_k (\mathcal{T}_{r_1} \otimes \cdots \otimes \mathcal{T}_{r_k}) r_{\sigma}
$$
\n
$$
= \sum \pm \mathcal{T}_{r_1} (\ell_p (\mathcal{T}_{r_2} \otimes \cdots \otimes \mathcal{T}_{r_q} \otimes \mathrm{id}^{\otimes p-q+1}) \otimes \mathrm{id}^{r_1-1}) r_{\sigma},
$$
\n(3)

KORKARYKERKER POLO

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The action of differential operator ∂ on generators can be expressed by shuffle trees as follows:

$$
\partial \overline{f_n} = \sum \pm \overline{f_n} \overline{\partial} \overline{f_n} \overline{f_n} + \sum \pm \overline{f_n} \overline{f_n} \overline{f_n} \cdot \overline{f_n}
$$

Theorem (C.-Qi-Wang-Zhou 2024)

 λ RB \mathfrak{L}_{∞} is the minimal model of the operad of Rota-Baxter Lie algebras

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 $2Q$

[Deformation theory and homotopy theory for Rota-Baxter Lie algebras](#page-14-0)

³ [Minimal model for relative Rota-Baxter Lie algebras via \(de\)coloring of](#page-31-0) [operads](#page-31-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition (Relative RB Lie algebras of weight 0)

Let $(g, [\cdot, \cdot]_{\mathfrak{a}})$ be a Lie algebra and $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation. An **O-operator** (or relative Rota-Baxter operator of weight 0) is a linear operator $T: V \rightarrow \mathfrak{g}$ satisfying

$$
[T(v_1), T(v_2)]_{\mathfrak{g}} = T(\rho(T(v_1))(v_2) - \rho(T(v_2)(v_1))
$$

KORKARYKERKER POLO

for any $v_1, v_2 \in V$.

Definition (Operad of relative RB Lie algebra of weight 0)

Let $C = \{b, r\}$ be a set of colors. The **colored operad** of relative Rota-Baxter Lie algebra of weight 0 is the free colored operad with generators

KEL KALA KELKEL KARA

and modulo the relations of relative Rota-Baxter Lie algebras. Where

- ℓ is the Lie bracket of g,
- (ii) ρ_L is the left g-action on V,
- (iii) ρ_R is the right g-action on V,
- (iv) T is the O-operator from V to g.

Part III: Coloring of operads

Let C be a set of colors, $P = \mathcal{F}(E)/(I)$ be an operad.

(i) We introduced the concept of the nice coloring $\mathbb C$ of $\mathcal P$

 \Rightarrow Colored operad $\mathcal{N}_{\mathcal{C}}(\mathcal{P})$.

(ii) Furthermore, C induces a coloring of the minimal model P_{∞}

 \Rightarrow Minimal model $\mathcal{N}_{\Gamma}(\mathcal{P}_{\infty})$ for $\mathcal{N}_{\Gamma}(\mathcal{P})$.

Theorem (Coloring process, C.-Qi-Wang-Zhou 2024)

Let P be an operad with the minimal model \mathcal{P}_{∞} . For a nice coloring $\mathbb C$ of P, it induces a coloring $\mathbb C$ on $\mathcal P_{\infty}$ such that

 $\mathcal{N}_{\mathbb{C}}(\mathcal{P}_{\infty}) = \mathcal{N}_{\mathbb{C}}(\mathcal{P})_{\infty}.$

That is to say $\mathcal{N}_{\mathbb{C}}(\mathcal{P}_{\infty})$ is the minimal model of $\mathcal{N}_{\mathbb{C}}(\mathcal{P})$.

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

KORKAR KERKER SAGA

Theorem (C.-Qi-Wang-Zhou 2024)

- (i) The dg colored operad $\mathcal{N}_{\mathbb{C}}(\rho \mathfrak{R} \mathfrak{B} \mathfrak{L}_{\infty})$ is the minimal model of the colored operad of relative Rota-Baxter Lie algebras with weight 0.
- (ii) Moreover, the L_∞-algebra induced by the minimal model $N_{\mathbb{C}}({}_{0}R\mathfrak{B} \mathfrak{L}_{\infty})$ is isomorphic to the L_{∞} -algebra found by Lazarev-Sheng-Tang 2021.
- A. Lazarev, Y. Sheng, R. Tang, Deformations and Homotopy Theory of Relative Rota-Baxter Lie Algebras. Comm. Math. Phys. 383 (2021), no. 1, 595-631.
- J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

Definition (Relative RB Lie algebras with weight λ)

- (i) A LieAct triple (g, \mathfrak{h}, ρ) consists of two Lie algebras $(g, [\cdot, \cdot]_{\mathfrak{a}})$, $(\mathfrak{h}, [\cdot, \cdot]_{\mathfrak{h}})$ and a Lie algebra homomorphism $\rho : \mathfrak{g} \to \mathcal{D}$ er(h).
- (ii) A relative Rota-Baxter Lie algebra of weight λ is a LieAct triple (g, \mathfrak{h}, ρ) equipped with an operator $T : \mathfrak{h} \to \mathfrak{a}$ satisfying

 $[T(h_1),T(h_2)]_{\mathfrak{g}} = T(\rho(T(h_1))(h_2) - \rho(T(h_2))(h_1) + \lambda[h_1,h_2]_{\mathfrak{h}})$

KOD KAR KED KED E YOUN

for any $h_1, h_2 \in \mathfrak{h}$.

Definition (Operad of relative RB Lie algebra with weight λ)

Let $C = \{b, r\}$ be a set of colors. The colored operad of relative Rota-Baxter Lie algebra is the free colored operad with generators

KORKARYKERKER POLO

and modulo the relations of relative Rota-Baxter Lie algebras with weight.

KORK EXTERNE PROVIDE

Theorem (C.-Qi-Wang-Zhou 2024)

 $\mathcal{N}_{\mathbb{C}'}(\chi\mathfrak{RBS}_{\infty})$ is the minimal model of the colored operad of relative Rota-Baxter Lie algebra with weight λ .

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

Let C be a set of colors, P_C be a C-colored operad and $(P_C)_{\infty}$ be the minimal model of P_C . Assume that $P_C = \mathcal{N}_C(\mathcal{P})$ for a nice coloring C and an operad P .

Theorem (Decoloring process, C.-Qi-Wang-Zhou 2024)

By the process of decolorization of $(\mathcal{P}_c)_{\infty}$, we obtain a minimal model \mathcal{P}_{∞} of \mathcal{P} .

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

Thank you very much

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @