(De)Coloring in operad theory with applications to homotopy theory of relative Rota-Baxter algerbas

> Jun Chen Nanjing University

The 21st International Conference on

Representations of algebras

— ICRA 21 Shanghai 2024 —

2024. 08. 08

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2 Deformation theory and homotopy theory for Rota-Baxter Lie algebras

Minimal model for relative Rota-Baxter Lie algebras via (de)coloring of operads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Deformation theory and homotopy theory for Rota-Baxter Lie algebras

Minimal model for relative Rota-Baxter Lie algebras via (de)coloring of operads

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Part I: Hochschild cohomology

Let **k** be a field of characteristic zero. Let (A, μ) be an associative algebra and M be an A-bimodule.

Definition (Hochschild 1945)

The Hochschild cochain complex of A over M is $(C^{\bullet}_{Alg}(A, M), \partial^{\bullet}_{Alg})$ with

•
$$C_{Alg}^n(A, M) = \operatorname{Hom}(A^{\otimes n}, M), n \ge 0,$$

•
$$\partial_{\mathrm{Alg}}^n(f)(a_1 \otimes \cdots \otimes a_{n+1})$$

= $(-1)^{n-1}a_1f(a_2 \otimes \cdots \otimes a_{n+1}) + f(a_1 \otimes \cdots \otimes a_n)a_{n+1}$
+ $\sum_{i=1}^n (-1)^{n-i+1}f(a_1 \otimes \cdots \otimes a_ia_{i+1} \otimes \cdots \otimes a_{n+1}).$

In particular, we write $C^{\bullet}_{Alg}(A) := C^{\bullet}_{Alg}(A, A)$.

Definition (Hochschild cohomology)

For $n \ge 0$, the n-th Hochschild cohomology group of A is defined to be

$$\mathrm{H}^n_{\mathrm{Alg}}(A) = \mathrm{H}^n(C^{\bullet}_{\mathrm{Alg}}(A)).$$

For a \mathbb{Z} -graded vector space V, define sV as $(sV)_p = V_{p-1}, p \in \mathbb{Z}$.

Theorem (Gerstenhaber 1963)

For an associative algebra A, $sC^{\bullet}_{Alg}(A)$ together with differential $-\partial^{\bullet}_{Alg}$ and the Gerstenhaber Lie bracket $[,]_G$ is a **dg Lie algebra** (called Gerstenhaber dg Lie algebra).

Gerstenhaber Lie bracket: $[f,g]_G = f\overline{\circ}g - (-1)^{(n-1)}g\overline{\circ}f$ with

$$f \overline{\circ} g = \sum_{i=1}^{n} (-1)^{(i-1)(m-1)} f(\mathrm{Id}^{\otimes i-1} \otimes g \otimes \mathrm{Id}^{\otimes n-i}).$$

M. Gerstenhaber, *The cohomology structure of an associative ring*. Ann. Math. (2) **78** (1963) 267-288.

Definition (Differential graded Lie algebra)

A differential graded Lie algebra (aka dgla) is a triple (L, l_1, l_2) , where

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $L = \bigoplus_{i \in \mathbb{Z}} L_i$ is a graded space, $l_1 : L \to L$ and $l_2 : L \otimes L \to L$ such that
- (i) (L, l_1) is a cochain complex,
- (ii) (L, l_2) is a graded Lie algebra,

(iii) l_1 is a derivation with respect to $l_2 = [,]$. i.e. $l_1[a, b] = [l_1(a), b] + (-1)^{|a|}[a, l_1(b)].$

Part I: Differential graded Lie algebras

Definition (Maurer-Cartan elements)

Let L be a dgla. An element $\alpha \in L_{-1}$ is a Maurer-Cartan element if

$$l_1(\alpha) - \frac{1}{2}l_2(\alpha \otimes \alpha) = 0.$$

Proposition (Twisting procedure)

Let L be a dgla. Given a Maurer-Cartan element $\alpha \in L_{-1}$, it produces a new dgla $L^{\alpha} = (L, l_1^{\alpha}, l_2^{\alpha})$ by imposing

$$l_1^{\alpha}(x) = l_1(x) - l_2(\alpha \otimes x)$$
 and $l_2^{\alpha}(x \otimes y) = l_2(x \otimes y)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Part I: Algebraic deformation theory of associative algebras

Theorem

 (i) Even if V is only a (ungraded) vector space, the Hochschild cochain complex (with zero differential)

$$\mathfrak{C}_{Alg}(V) = \prod_{n=0}^{\infty} \operatorname{Hom}((sV)^{\otimes n}, sV)$$

is still a **graded Lie algebra** (*called Gerstenhaber Lie algebra*) *endowed with the Gerstenhaber Lie bracket.*

(ii) There is a 1-1 correspondence $\left\{\begin{array}{c}
Maurer-Cartan \ elements\\
in \ \mathfrak{C}_{Alg}(V)\end{array}\right\} \leftrightarrow \left\{\begin{array}{c}
Associative \ algebra\\
structures \ on \ V\end{array}\right\}.$

(iii) Let μ be an associative algebra structure on V, the twisted dgla $\mathfrak{C}_{Alg}(V)^{\mu}$ is exactly the Gerstenhaber dg Lie algebra $sC^{\bullet}_{Alg}(V)$.

Definition (Homotopy associative algebras)

Let V be a graded vector space. A homotopy associative algebra structure on graded space V is defined to be a Maurer-Cartan element in the graded Lie algebra $\overline{\mathfrak{C}_{Alg}}(V) = \prod^{\infty} \operatorname{Hom}((sV)^{\otimes n}, sV).$

Equivalently, this definition coincides with the following.

n=1

Definition (Stasheff 1963)

An A_{∞} -algebra structure on a graded space V consists of $\{m_n : V^{\otimes n} \to V\}_{n \ge 1}$ with $|m_n| = n - 2$ and the Stasheff identities:

$$\sum_{i+j+k=n,i,k\geq 0,j\geq 1}(-1)^{i+jk}m_{i+1+k}\circ(\mathrm{id}^{\otimes i}\otimes m_j\otimes\mathrm{id}^{\otimes k})=0,\forall n\geq 1.$$

Part I: A_{∞} -algebras

Stasheff identities:

$$\sum_{i+j+k=n,i,k\geq 0,j\geq 1} (-1)^{i+jk} m_{i+1+k} \circ (\mathrm{id}^{\otimes i} \otimes m_j \otimes \mathrm{id}^{\otimes k}) = 0, \forall n \geq 1.$$

- n = 1, $m_1 \circ m_1 = 0$ with $|m_1| = -1$, i.e. m_1 is a differential;
- n = 2, $m_1 \circ m_2 = m_2 \circ (id \otimes m_1 + m_1 \otimes id)$, i.e. m_1 is a derivation with respect to m_2 ;
- n = 3, $m_2 \circ (m_2 \otimes \mathrm{id}) m_2 \circ (\mathrm{id} \otimes m_2) =$ $-(m_1 \circ m_3 + m_3 \circ (m_1 \otimes \mathrm{id}^{\otimes 2} + \mathrm{id} \otimes m_1 \otimes \mathrm{id} + m_1 \otimes \mathrm{id}^{\otimes 2})) = -\partial(m_3)$, i.e. m_2 is associative up to homotopy.
- J. D. Stasheff, *Homotopy associativity of H -spaces. I, II.* Trans. Amer. Math. Soc. **108** (1963), 275-292; ibid. 108 1963 293-312.

(日)(1)</p

Stasheff identities:

$$\sum_{i+j+k=n,i,k\geq 0,j\geq 1} (-1)^{i+jk} m_{i+1+k} \circ (\mathrm{id}^{\otimes i} \otimes m_j \otimes \mathrm{id}^{\otimes k}) = 0, \forall n \geq 1.$$

We rewrite the Stasheff identities as follows: for $n \ge 2$,

$$\partial(m_n) := m_1 \circ m_n - (-1)^{n-2} m_n \circ m_1 = \sum_{j=2}^{n-1} \sum_{i=1}^{n-j+1} \pm m_{n-j+1} \circ_i m_j.$$

In operads, we present $m_n : A^{\otimes n} \to A$ as the following tree (with *n* leaves):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Part I: Operad of A_{∞} -algebras

$$\partial(m_n) := m_1 \circ m_n - (-1)^{n-2} m_n \circ m_1 = \sum_{j=2}^{n-1} \sum_{i=1}^{n-j+1} \pm m_{n-j+1} \circ_i m_j.$$

Then the **Stasheff identities** can be presented by the following.

Definition (Operad of A_{∞} -algebras)

The dg operad of A_{∞} -algebra, denoted by Ass_{∞} , is the free graded operad generated by $m_n, n \ge 2$ with $|m_n| = n - 2$ endowed with the above differential.

Theorem (Ginzburg-Kapranov 94)

The operad Ass is Koszul and

 $\mathcal{A}ss_{\infty} \cong \Omega(\mathcal{A}ss^{\mathsf{i}}),$

where Ass^i is its Koszul dual cooperad. The dg operad Ass_{∞} is called the minimal model of Ass.

V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203-272.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

Let V be a vector space. Then

$$\operatorname{Hom}(\mathcal{A}ss^{i},\operatorname{End}_{V})=\prod_{n=1}^{\infty}\operatorname{Hom}(\mathcal{A}ss^{i}(n),\operatorname{End}_{V}(n))$$

has a graded Lie algebra structure, which is exactly the Gerstenhaber Lie algebra.

M. Kontsevich and Y. Soibelman, *Deformations of algebras over operads and the Deligne conjecture*, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud. 21 (2000), 255-307.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 Deformation theory and homotopy theory for Rota-Baxter Lie algebras

Minimal model for relative Rota-Baxter Lie algebras via (de)coloring of operads

Four steps:

formal deformations \downarrow deformation complex \downarrow L_{∞} -structure \leftarrow -- derived bracket (Chengming Bai, Li Guo, Yunhe Sheng et al.) \updownarrow minimal model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Rota-Baxter operators)

Let $(\mathfrak{g}, \ell = [-, -])$ be a Lie algebra. A linear map $T : \mathfrak{g} \to \mathfrak{g}$ is said to be a **Rota-Baxter operator of weight** λ if it satisfies

$$[T(a), T(b)] = T([a, T(b)] + [T(a), b] + \lambda[a, b]),$$

or equivalently,

$$\ell \circ (T \otimes T) = T \circ \ell \circ (\mathrm{Id}_{\mathfrak{g}} \otimes T + T \otimes \mathrm{Id}_{\mathfrak{g}} + \lambda \cdot \mathrm{Id}_{\mathfrak{g}} \otimes \mathrm{Id}_{\mathfrak{g}}).$$
(1)

The triple (\mathfrak{g}, ℓ, T) is called a Rota-Baxter Lie algebra.

Remark

The operad of Rota-Baxter Lie algebras is **NOT** Koszul as relation (1) contains terms of degree 3:

 $\ell \circ (T \otimes T), \ T \circ \ell \circ (\mathrm{Id}_{\mathfrak{g}} \otimes T) \text{ and } T \circ \ell \circ (T \otimes \mathrm{Id}_{\mathfrak{g}}).$

Definition (Rota-Baxter Lie modules)

Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . A Rota-Baxter Lie module over \mathfrak{g} is a vector space M such that

(i) *M* is a representation for the Lie algebra (\mathfrak{g}, ℓ) ;

(ii) there is a linear map $T_M: M \to M$ such that

 $T(a)T_M(m) = T_M(aT_M(m) + T(a)m + \lambda am)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for $a \in \mathfrak{g}$, $m \in M$.

$$[T(a), T(b)] = T(\underline{[a, T(b)]} + [T(a), b] + \lambda[a, b])$$

Proposition

(i) Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . Define

$$[a, b]_{\star} := [a, T(b)] + [T(a), b] + \lambda[a, b]$$

for any $a, b \in \mathfrak{g}$. Then $\mathfrak{g}_{\star} = (\mathfrak{g}, [-, -]_{\star}, T)$ is a Rota-Baxter Lie algebra. (ii) Let M be a Rota-Baxter Lie module over (\mathfrak{g}, ℓ, T) . Define

$$a \triangleright m := T(a)m - T(am).$$

Then " \triangleright " make M into a Rota-Baxter Lie module over \mathfrak{g}_{\star} which is denoted by " $_{\triangleright}M$ ".

Definition (Cohomology of Rota-Baxter operators)

Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra with weight λ . Then the Chevalley-Eilenberg cochain complex of \mathfrak{g}_* over ${}_{\triangleright}\mathfrak{g}$

 $\mathcal{C}^{ullet}_{\mathrm{RBO}}(\mathfrak{g}) := (\mathcal{C}^{ullet}_{\mathrm{Lie}}(\mathfrak{g}_{\star}, {}_{arsigma}\mathfrak{g}), \partial)$

is called the **cochain complex of Rota-Baxter operator** *T. Its cohomology, denoted by*

 $\mathrm{H}^{ullet}_{\mathrm{RBO}}(\mathfrak{g})$

is called the cohomology of Rota-Baxter operator T.

Proposition

 $\mathrm{H}^{\bullet}_{\mathrm{RBO}}(\mathfrak{g})$ controls the infinitesimal deformation of T.

Part II: Cohomology theory of Rota-Baxter Lie algebras

Next, we construct a chain map $\phi^{\bullet} : C^{\bullet}_{Lie}(\mathfrak{g}) \to C^{\bullet}_{RBO}(\mathfrak{g})$ as follows:

• For
$$n = 0$$
, define $\phi_0 = \operatorname{Id}_{\operatorname{Hom}(k,\mathfrak{g})}$;

• for
$$n \ge 1$$
, $f \in C^n_{\text{Lie}}(\mathfrak{g})$, define $\phi^n(f)$ as

$$\phi^{n}(f)(a_{1}\otimes \ldots \otimes a_{n})$$

$$=f(T(a_{1})\otimes \ldots \otimes T(a_{n}))$$

$$-\sum_{k=0}^{n-1}\sum_{1\leqslant i_{1}<\cdots< i_{k}\leqslant n}\lambda^{n-k-1}T \circ f(a_{1}\otimes \ldots \otimes T(a_{i_{1}})\otimes \ldots \otimes T(a_{i_{k}})\otimes \ldots \otimes a_{n}).$$

Part II: Cohomology theory of Rota-Baxter Lie algebras

Definition (Cohomology of Rota-Baxter Lie algebras)

Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra with weight. The negative shift of the mapping cone of the chain map $\phi : C^{\bullet}_{\mathrm{Lie}}(\mathfrak{g}) \to C^{\bullet}_{\mathrm{RBO}}(\mathfrak{g})$, denoted by

 $(C^{\bullet}_{\text{RBLA}}(\mathfrak{g}), \delta),$

is called the cochain complex of Rota-Baxter Lie algebra (g, ℓ , T). Its cohomology, denoted by

 $\mathrm{H}^{\bullet}_{\mathrm{RBLA}}(\mathfrak{g}),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is called the cohomology of Rota-Baxter Lie algebra (g, ℓ, T) .

Proposition

 $\mathrm{H}^{\bullet}_{\mathrm{RBLA}}(\mathfrak{g})$ controls the infinitesimal deformation of ℓ and T simultaneously.

Part II: L_{∞} -algebra associated to Rota-Baxter Lie algebras

Given a graded space V, define

$$\mathfrak{C}_{\mathrm{RBLA}}(V)_{\lambda} = \mathfrak{C}_{\mathrm{Lie}}(V) \oplus \mathfrak{C}_{\mathrm{RBO}}(V),$$

where

$$\mathfrak{C}_{\mathrm{Lie}}(V) = \mathrm{Hom}(S^{c}(sV), sV), \mathfrak{C}_{\mathrm{RBO}}(V) = \mathrm{Hom}(S^{c}(sV), V).$$

Theorem (C.-Qi-Wang-Zhou 2024)

(i) There is an L_{∞} -algebra structure on $\mathfrak{C}_{RBLA}(V)$.

(ii) If V concentrates in degree 0, there is a bijection

 $\left\{\begin{array}{l} \text{Rota-Baxter Lie algebra}\\ \text{structure } (\ell, T) \text{ on } V\end{array}\right\} \leftrightarrow \mathrm{MC}(\mathfrak{C}_{\mathrm{RBLA}}(V)).$

(continued)

J. Chen, Z. Qi, K. Wang, G. Zhou, (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Theorem (C.-Qi-Wang-Zhou 2024)

(i) There is an L_{∞} -algebra structure on $\mathfrak{C}_{RBLA}(V)$.

(ii) If V concentrates in degree 0, there is a bijection

 $\left\{\begin{array}{l} \text{Rota-Baxter Lie algebra}\\ \text{structure } (\ell, T) \text{ on } V\end{array}\right\} \leftrightarrow \mathrm{MC}(\mathfrak{C}_{\mathrm{RBLA}}(V)).$

(iii) Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra. The cochain complex $C^{\bullet}_{\mathrm{RBLA}}(\mathfrak{g})$ of (\mathfrak{g}, ℓ, T) can be realized as the twisted L_{∞} -algebra $\mathfrak{C}_{\mathrm{RBLA}}(V)^{(\ell, T)}_{\lambda}$.

- (iv) Let (\mathfrak{g}, ℓ, T) be a Rota-Baxter Lie algebra. The <u>cochain complex</u> $C^{\bullet}_{\text{RBO}}(\mathfrak{g})$ of <u>T</u> can be realized as the twisted L_{∞} -algebra $\mathfrak{C}_{\text{RBLA}}(V)^{(\ell,0)}_{\lambda}$.
 - J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Part II: Homotopy Rota-Baxter Lie algebras

$$\mathfrak{C}_{\mathrm{RBLA}}(V) = \mathrm{Hom}(\bigoplus_{n=0}^{\infty} S^n(sV), sV) \oplus \mathrm{Hom}(\bigoplus_{n=0}^{\infty} S^n(sV), V)$$

Definition (Homotopy Rota-Baxter Lie algebras)

Let $V = \bigoplus_{i \in \mathbb{Z}} V_i$ be a graded space. A homotopy Rota-Baxter Lie algebra structure of weight λ on V is defined to be a Maurer-Cartan element in the L_{∞} -algebra $\overline{\mathfrak{C}_{\text{RBLA}}}(V)$, where

$$\overline{\mathfrak{C}_{\mathrm{RBLA}}}(V) = \mathrm{Hom}(\bigoplus_{n=1}^{\infty} S^n(sV), sV) \oplus \mathrm{Hom}(\bigoplus_{n=1}^{\infty} S^n(sV), V)$$

is the L_{∞} -subalgebra of $\mathfrak{C}_{\mathrm{RBLA}}(V)_{\lambda}$.

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Part II: Homotopy Rota-Baxter Lie algebras

By solving the Maurer-Cartan equation, we have the following equivalent definition.

Definition (Homotopy Rota-Baxter Lie algebras)

A homotopy Rota-Baxter Lie algebra of weight λ is a graded space V equipped with two family of anti-symmetric graded maps $\{\ell_n : V^{\otimes n} \to V\}_{n \ge 1}$ and $\{T_n : V^{\otimes n} \to V\}_{n \ge 1}$ with $|\ell_n| = n - 2$ and $|T_n| = n - 1$, subject to $\sum_{i=1}^n \sum_{\sigma \in \operatorname{Sh}(i,n-i)} \operatorname{sgn}(\sigma)(-1)^{i(n-i)}\ell_{n-i+1}(\ell_i \otimes \operatorname{id}^{\otimes n-i})r_{\sigma} = 0$ (2)

and

$$\sum \pm \ell_k (T_{r_1} \otimes \cdots \otimes T_{r_k}) r_{\sigma}$$

$$= \sum \pm T_{r_1} (\ell_p (T_{r_2} \otimes \cdots \otimes T_{r_q} \otimes \operatorname{id}^{\otimes p-q+1}) \otimes \operatorname{id}^{r_1-1}) r_{\sigma}.$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Part II: Homotopy Rota-Baxter Lie algebras

$$\sum_{k=1}^{k} \pm \ell_{k} (T_{r_{1}} \otimes \cdots \otimes T_{r_{k}}) r_{\sigma}$$

$$= \sum_{k=1}^{k} \pm T_{r_{1}} (\ell_{p} (T_{r_{2}} \otimes \cdots \otimes T_{r_{q}} \otimes \operatorname{id}^{\otimes p-q+1}) \otimes \operatorname{id}^{r_{1}-1}) r_{\sigma},$$
(3)

Example

• When n = 2, we have

$$\begin{split} \ell_2 \circ (\mathcal{T}_1 \otimes \mathcal{T}_1) &- \mathcal{T}_1 \circ \ell_2 \circ (\mathcal{T}_1 \otimes \mathrm{id} + \mathrm{id} \otimes \mathcal{T}_1 + \lambda \mathrm{id} \otimes \mathrm{id}) \\ &= \partial(\mathcal{T}_2). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

That is, T_1 is a Rota-Baxter operator of weight λ up to homotopy.

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The dg operad $_{\lambda}\mathfrak{RBL}_{\infty}$ of homotopy Rota-Baxter Lie algebra is the free operad generated by ℓ_n , T_n with $|\ell_n| = n - 2$, $|T_n| = n - 1$.

The generators ℓ_n , $n \ge 2$, and T_n , $n \ge 1$, are represented by the following:

(continued)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Part II: The operad of homotopy Rota-Baxter Lie algebras

$$\sum_{i=1}^{n} \sum_{\sigma \in \operatorname{Sh}(i,n-i)} \operatorname{sgn}(\sigma) (-1)^{i(n-i)} \ell_{n-i+1} (\ell_i \otimes \operatorname{id}^{\otimes n-i}) r_{\sigma} = 0$$
(2)

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The action of differential operator ∂ on generators can be expressed by shuffle trees as follows:

(continued)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Part II: The operad of homotopy Rota-Baxter Lie algebras

$$\sum_{k=1}^{n} \pm \ell_{k} (T_{r_{1}} \otimes \cdots \otimes T_{r_{k}}) r_{\sigma}$$

$$= \sum_{k=1}^{n} \pm T_{r_{1}} (\ell_{p} (T_{r_{2}} \otimes \cdots \otimes T_{r_{q}} \otimes \operatorname{id}^{\otimes p-q+1}) \otimes \operatorname{id}^{r_{1}-1}) r_{\sigma},$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Operad of homotopy Rota-Baxter Lie algebras)

The action of differential operator ∂ on generators can be expressed by shuffle trees as follows:

$$\partial \int_{\tau_n}^{1} = \sum \pm \tau_{l_1} \int_{\tau_k}^{1} \sigma_{l_k} + \sum \pm \int_{\tau_1}^{1} \sigma_{l_k} \sigma_{l_k} + \sum \pm \int_{\tau_1}^{1} \sigma_{l_k} \sigma_{l_k} + \sum \sigma_{l$$

Theorem (C.-Qi-Wang-Zhou 2024)

 $_{\lambda}\mathfrak{RBL}_{\infty}$ is the minimal model of the operad of Rota-Baxter Lie algebras

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

Deformation theory and homotopy theory for Rota-Baxter Lie algebras

Minimal model for relative Rota-Baxter Lie algebras via (de)coloring of operads

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Definition (Relative RB Lie algebras of weight 0)

Let $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$ be a Lie algebra and $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation. An O-operator (or relative Rota-Baxter operator of weight 0) is a linear operator $T : V \to \mathfrak{g}$ satisfying

$$[T(v_1), T(v_2)]_{\mathfrak{g}} = T(\rho(T(v_1))(v_2) - \rho(T(v_2)(v_1)))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for any $v_1, v_2 \in V$.

Definition (Operad of relative RB Lie algebra of weight 0)

Let $C = \{b, r\}$ be a set of colors. The **colored operad** of relative Rota-Baxter Lie algebra of weight 0 is the free colored operad with generators

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

and modulo the relations of relative Rota-Baxter Lie algebras. Where

- (i) ℓ is the Lie bracket of \mathfrak{g} ,
- (ii) ρ_L is the left g-action on V,
- (iii) ρ_R is the right g-action on V,
- (iv) T is the O-operator from V to \mathfrak{g} .

Part III: Coloring of operads

Let C be a set of colors, $\mathcal{P} = \mathcal{F}(E)/(I)$ be an operad. (i) We introduced the concept of the **nice coloring** \mathbb{C} of \mathcal{P}

- \Rightarrow Colored operad $\mathcal{N}_{\mathbb{C}}(\mathcal{P})$.
- (ii) Furthermore, $\mathbb C$ induces a coloring of the minimal model $\mathcal P_\infty$
 - $\Rightarrow \quad \mathsf{Minimal model} \ \ \mathcal{N}_{\mathbb{C}}(\mathcal{P}_{\infty}) \ \ \mathsf{for} \ \mathcal{N}_{\mathbb{C}}(\mathcal{P}).$

Theorem (Coloring process, C.-Qi-Wang-Zhou 2024)

Let \mathcal{P} be an operad with the minimal model \mathcal{P}_{∞} . For a nice coloring \mathbb{C} of \mathcal{P} , it induces a coloring \mathbb{C} on \mathcal{P}_{∞} such that

 $\mathcal{N}_{\mathbb{C}}(\mathcal{P}_{\infty}) = \mathcal{N}_{\mathbb{C}}(\mathcal{P})_{\infty}.$

That is to say $\mathcal{N}_{\mathbb{C}}(\mathcal{P}_{\infty})$ is the minimal model of $\mathcal{N}_{\mathbb{C}}(\mathcal{P})$.

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring in operad theory with applications to homotopy theory of operated algebras, preprint 2024.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (C.-Qi-Wang-Zhou 2024)

- (i) The dg colored operad N_ℂ(₀ℜ𝔅𝔅_∞) is the minimal model of the colored operad of relative Rota-Baxter Lie algebras with weight 0.
- (ii) Moreover, the L_{∞} -algebra induced by the minimal model $\mathcal{N}_{\mathbb{C}}(_{0}\mathfrak{RBL}_{\infty})$ is isomorphic to the L_{∞} -algebra found by Lazarev-Sheng-Tang 2021.
- A. Lazarev, Y. Sheng, R. Tang, Deformations and Homotopy Theory of Relative Rota-Baxter Lie Algebras. Comm. Math. Phys. 383 (2021), no. 1, 595-631.
- J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

Definition (Relative RB Lie algebras with weight λ)

- (i) A LieAct triple (g, h, ρ) consists of two Lie algebras (g, [·, ·]g), (h, [·, ·]h) and a Lie algebra homomorphism ρ : g → Der(h).
- (ii) A relative Rota-Baxter Lie algebra of weight λ is a LieAct triple (g, h, ρ) equipped with an operator T : h → g satisfying

 $[T(h_1), T(h_2)]_{\mathfrak{g}} = T(\rho(T(h_1))(h_2) - \rho(T(h_2))(h_1) + \lambda[h_1, h_2]_{\mathfrak{h}})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for any $h_1, h_2 \in \mathfrak{h}$.

Definition (Operad of relative RB Lie algebra with weight λ)

Let $C = \{b, r\}$ be a set of colors. The colored operad of relative Rota-Baxter Lie algebra is the free colored operad with generators

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and modulo the relations of relative Rota-Baxter Lie algebras with weight.

Theorem (C.-Qi-Wang-Zhou 2024)

 $\mathcal{N}_{\mathbb{C}'}(_{\lambda}\mathfrak{RBL}_{\infty})$ is the minimal model of the colored operad of relative Rota-Baxter Lie algebra with weight λ .

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let C be a set of colors, \mathcal{P}_C be a C-colored operad and $(\mathcal{P}_C)_{\infty}$ be the minimal model of \mathcal{P}_C . Assume that $\mathcal{P}_C = \mathcal{N}_{\mathbb{C}}(\mathcal{P})$ for a nice coloring \mathbb{C} and an operad \mathcal{P} .

Theorem (Decoloring process, C.-Qi-Wang-Zhou 2024)

By the process of decolorization of $(\mathcal{P}_{C})_{\infty}$, we obtain a minimal model \mathcal{P}_{∞} of \mathcal{P} .

J. Chen, Z. Qi, K. Wang, G. Zhou, (*De*)colouring of (coloured) operads and homotopy theory of (relative) Rota-Baxter Lie algebras with arbitrary weight, preprint 2024.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you very much

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)