Constructing the queer quantum supergroup using Hecke-Clifford superalgebras

Jie Du

University of New South Wales

(joint with Haixia Gu, Zhenhua Li, and Jinkui Wan)

21st International Conference on Representations of Algebras Shanghai, August 5-9, 2024

- 1 Introduction: Motivation and History
- 2 Hecke-Clifford superalgebras and some special elements
- \bigcirc The queer q-Schur superalgebras and its standardisation
- Standard multiplication formulas and their expansions
- 5 The regular module for the quantum queer supergroup

1 The structure of a group with a BN-pair is hidden in its Weyl group.

- **1** The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).

- The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).
- **3** The structure of a quantum linear group $\mathbf{U} = \mathbf{U}(\mathfrak{gl}_m)$ (or supergroup $\mathbf{U}(\mathfrak{gl}_{m|n})$) is hidden in the Hecke algebras of symmetric groups.

- **1** The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).
- The structure of a quantum linear group $\mathbf{U} = \mathbf{U}(\mathfrak{gl}_m)$ (or supergroup $\mathbf{U}(\mathfrak{gl}_{m|n})$) is hidden in the Hecke algebras of symmetric groups. More precisely, the Hecke algebra $\mathcal{H} = \mathcal{H}_r = \mathcal{H}(\mathfrak{S}_r)$ is the algebra over $\mathbb{Q}(v)$ generated by T_1, \ldots, T_{r-1} subject to a certain relations.

- The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).
- The structure of a quantum linear group $\mathbf{U} = \mathbf{U}(\mathfrak{gl}_m)$ (or supergroup $\mathbf{U}(\mathfrak{gl}_{m|n})$) is hidden in the Hecke algebras of symmetric groups. More precisely, the Hecke algebra $\mathcal{H} = \mathcal{H}_r = \mathcal{H}(\mathfrak{S}_r)$ is the algebra over $\mathbb{Q}(v)$ generated by T_1, \ldots, T_{r-1} subject to a certain relations. It has basis $\{T_w \mid w \in \mathfrak{S}_r\}$ and its regular module \mathfrak{H} has the following matrix representation $(\boldsymbol{q} = v^2)$:

$$T_i T_w = \begin{cases} T_{s_i w} & (s_i = (i, i+1)), & \text{if } s_i w > w; \\ (\boldsymbol{q} - 1) T_w + \boldsymbol{q} T_{s_i w}, & \text{if } s_i w < w. \end{cases}$$

3/31

- The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).
- The structure of a quantum linear group $\mathbf{U} = \mathbf{U}(\mathfrak{gl}_m)$ (or supergroup $\mathbf{U}(\mathfrak{gl}_{m|n})$) is hidden in the Hecke algebras of symmetric groups. More precisely, the Hecke algebra $\mathcal{H} = \mathcal{H}_r = \mathcal{H}(\mathfrak{S}_r)$ is the algebra over $\mathbb{Q}(v)$ generated by T_1, \ldots, T_{r-1} subject to a certain relations. It has basis $\{T_w \mid w \in \mathfrak{S}_r\}$ and its regular module $_{\mathcal{H}}\mathcal{H}$ has the following matrix representation $(\mathbf{q} = v^2)$:

$$T_i T_w = \begin{cases} T_{s_i w} & (s_i = (i, i+1)), & \text{if } s_i w > w; \\ (\boldsymbol{q} - 1) T_w + \boldsymbol{q} T_{s_i w}, & \text{if } s_i w < w. \end{cases}$$

From this basic structure together with a sequence of constructions, it is possible to construct a basis $\{A(\mathbf{j})\}_{A,\mathbf{j}}$ for \mathbf{U} such that its regular representation ${}_{\mathbf{U}}\mathbf{U}$ is given by explicit multiplication formulas for $E_h \cdot A(\mathbf{j}), F_h \cdot A(\mathbf{j}), K_i \cdot A(\mathbf{j}).$

- The structure of a group with a BN-pair is hidden in its Weyl group.
- The representation theory of a semismiple complex Lie algebra is hidden in its associated Hecke algebra (KL conjecture/theorem).
- The structure of a quantum linear group $\mathbf{U} = \mathbf{U}(\mathfrak{gl}_m)$ (or supergroup $\mathbf{U}(\mathfrak{gl}_{m|n})$) is hidden in the Hecke algebras of symmetric groups. More precisely, the Hecke algebra $\mathcal{H} = \mathcal{H}_r = \mathcal{H}(\mathfrak{S}_r)$ is the algebra over $\mathbb{Q}(v)$ generated by T_1, \ldots, T_{r-1} subject to a certain relations. It has basis $\{T_w \mid w \in \mathfrak{S}_r\}$ and its regular module $_{\mathcal{H}}\mathcal{H}$ has the following matrix representation $(\mathbf{q} = v^2)$:

$$T_i T_w = \begin{cases} T_{s_i w} & (s_i = (i, i+1)), & \text{if } s_i w > w; \\ (\boldsymbol{q} - 1) T_w + \boldsymbol{q} T_{s_i w}, & \text{if } s_i w < w. \end{cases}$$

From this basic structure together with a sequence of constructions, it is possible to construct a basis $\{A(\mathbf{j})\}_{A,\mathbf{j}}$ for \mathbf{U} such that its regular representation $\mathbf{U}\mathbf{U}$ is given by explicit multiplication formulas for

$$E_h \cdot A(\mathbf{j}), F_h \cdot A(\mathbf{j}), K_i \cdot A(\mathbf{j}).$$

This question was first answered by Beilinson-Lusztig-MacPherson.

BLM Theorem

Theorem (Beilinson–Lusztig–MacPherson^[1] '90)

BLM Theorem

Theorem (Beilinson-Lusztig-MacPherson^[1] '90)

The quantum linear group $\mathbf{U}_{v}(\mathfrak{gl}_{n})$, generated by $K_{a}, K_{a}^{-1}, E_{h}, F_{h}$, has a basis

$$\{A(\mathbf{j}) \mid A = (a_{i,j}) \in M_n(\mathbb{N})^{0 \operatorname{diag}}, \mathbf{j} = (j_i) \in \mathbb{Z}^n\}$$

that satisfies the following multiplication rules:

(1)
$$K_a \cdot A(\mathbf{j}) = v^{\operatorname{ro}(A) \cdot \mathbf{e}_a} A(\mathbf{j} + \mathbf{e}_a), \quad A(\mathbf{j}) \cdot K_a = v^{\operatorname{co}(A) \cdot \mathbf{e}_a} A(\mathbf{j} + \mathbf{e}_a);$$

(2)
$$\mathsf{E}_{h} \cdot A(\boldsymbol{j}) = \boldsymbol{v}^{f(h+1)+j_{h+1}} \overline{\llbracket a_{h,h+1} + 1 \rrbracket} (A + E_{h,h+1})(\boldsymbol{j})$$

 $+ \frac{\boldsymbol{v}^{f(h)-j_{h}-1}}{1 - \boldsymbol{v}^{-2}} \Big((A - E_{h+1,h})(\boldsymbol{j} + \alpha_{h}) - (A - E_{h+1,h})(\boldsymbol{j} + \beta_{h}) \Big)$
 $+ \sum_{k < h, a_{h+1,k} \ge 1} \boldsymbol{v}^{f(k)} \overline{\llbracket a_{h,k} + 1 \rrbracket} (A + E_{h,k} - E_{h+1,k})(\boldsymbol{j} + \alpha_{h})$
 $+ \sum_{k > h+1, a_{h+1,k} \ge 1} \boldsymbol{v}^{f(k)} \overline{\llbracket a_{h,k} + 1 \rrbracket} (A + E_{h,k} - E_{h+1,k})(\boldsymbol{j});$

(3)
$$F_h \cdot A(\boldsymbol{j}) = \cdots$$

[1] A.A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GLn, Duke Math.J. 61.

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto_{U}U$) as a new development in the theory of the Schur–Weyl duality:

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

• For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{C}\mathfrak{S}_r.$$

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{CS}_r.$$

• The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{\boldsymbol{U}}\boldsymbol{U}$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{CS}_r.$$

- The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
 - A double centraliser property: $\operatorname{im}(\phi) = \operatorname{End}_{\mathbb{CS}_r}(V_n^{\otimes r}) = S(n, r)$, the Schur algebra, and $\operatorname{im}(\psi) = \operatorname{End}_{\mathfrak{U}(\mathfrak{gl}_n)}(V_n^{\otimes r})$;

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{C}\mathfrak{S}_r.$$

- The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
 - A double centraliser property: $\operatorname{im}(\phi) = \operatorname{End}_{\mathbb{CS}_r}(V_n^{\otimes r}) = S(n,r)$, the **Schur algebra**, and $\operatorname{im}(\psi) = \operatorname{End}_{\mathcal{U}(\mathfrak{gl}_n)}(V_n^{\otimes r})$;
 - A category equivalence: S(n,r)-mod $\stackrel{\sim}{\longrightarrow} \mathbb{C}\mathfrak{S}_r$ -mod $(n\geqslant r)$ given by the Schur functors;

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{C}\mathfrak{S}_r.$$

- The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
 - A double centraliser property: $\operatorname{im}(\phi) = \operatorname{End}_{\mathbb{CS}_r}(V_n^{\otimes r}) = S(n, r)$, the **Schur algebra**, and $\operatorname{im}(\psi) = \operatorname{End}_{\mathcal{U}(\mathfrak{ql}_n)}(V_n^{\otimes r})$;
 - A category equivalence: S(n,r)-mod $\stackrel{\sim}{\longrightarrow} \mathbb{CS}_r$ -mod $(n \geqslant r)$ given by the Schur functors;
 - A structural connection: $_{\mathcal{H}}\mathcal{H} \leadsto _{\mathbf{U}}\mathbf{U}$ (compare $W \leadsto \mathsf{BN}\text{-pair struct.}$).

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{CS}_r.$$

- The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
 - A double centraliser property: $\operatorname{im}(\phi) = \operatorname{End}_{\mathbb{CS}_r}(V_n^{\otimes r}) = S(n,r)$, the **Schur algebra**, and $\operatorname{im}(\psi) = \operatorname{End}_{\mathfrak{U}(\mathfrak{gl}_n)}(V_n^{\otimes r})$;
 - A category equivalence: S(n,r)-mod $\stackrel{\sim}{\longrightarrow} \mathbb{CS}_r$ -mod $(n \geqslant r)$ given by the Schur functors;
 - A structural connection: $_{\mathcal{H}}\mathcal{H}\leadsto_{\mathbf{U}}\mathbf{U}$ (compare $W\leadsto$ BN-pair struct.).

Another struct. conn.: presenting q-Schur algebras (Doty-Giaquinto).

We may view such a construction for a quantum group via its associated Hecke algebra ($_{\mathcal{H}}\mathcal{H}\leadsto _{U}U$) as a new development in the theory of the Schur–Weyl duality:

- For the natural repn V_n of \mathfrak{gl}_n , there are commuting actions $\mathfrak{U}(\mathfrak{gl}_n) \curvearrowright V_n^{\otimes r} \curvearrowleft \mathfrak{S}_r$.
- This defines two algebra homomorphisms

$$\mathcal{U}(\mathfrak{gl}_n) \stackrel{\phi}{\longrightarrow} \operatorname{End}(V_n^{\otimes r}) \stackrel{\psi}{\longleftarrow} \mathbb{C}\mathfrak{S}_r.$$

- The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
 - A double centraliser property: $\operatorname{im}(\phi) = \operatorname{End}_{\mathbb{CS}_r}(V_n^{\otimes r}) = S(n, r)$, the Schur algebra, and $\operatorname{im}(\psi) = \operatorname{End}_{\mathfrak{U}(\mathfrak{gl}_n)}(V_n^{\otimes r})$;
 - A category equivalence: S(n,r)-mod $\stackrel{\sim}{\longrightarrow} \mathbb{CS}_r$ -mod $(n \geqslant r)$ given by the Schur functors;
 - A structural connection: $_{\mathcal{H}}\mathcal{H} \leadsto _{\mathbf{U}}\mathbf{U}$ (compare $W \leadsto \mathsf{BN}\text{-pair struct.}$).

Another struct. conn.: presenting q-Schur algebras (Doty-Giaquinto). Since BLM's construction is geometric, one does not see directly how the constructions are originated from those in \mathcal{H} .

[2] J. Du, H. Gu and Z. Zhou, Multiplication formulas and semisimplicity for q-Schur superalgebras, Nagoya Math.J. 237 (2020), 98-126.

100 years of the Schur-Weyl duality

100 years of the Schur–Weyl duality

100 years of the Schur–Weyl duality

The monster is in Western Australia which is 6.3 times large than California!

Construct the quantum queer supergroup $\mathbf{U}_{v}(\mathfrak{q}_{n})$ using Hecke–Clifford superalgebras \mathcal{H}_{r}^{c} . Thus, \mathcal{H}_{r}^{c} plays the role as the Weyl group for a group with a BN-pair.

Construct the quantum queer supergroup $\mathbf{U}_{v}(\mathfrak{q}_{n})$ using Hecke–Clifford superalgebras \mathfrak{H}_{r}^{c} . Thus, \mathfrak{H}_{r}^{c} plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

Construct the quantum queer supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ using Hecke–Clifford superalgebras \mathcal{H}_r^c . Thus, \mathcal{H}_r^c plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

• Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\mathfrak{q}, \Gamma(v)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$

Construct the quantum queer supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ using Hecke–Clifford superalgebras \mathfrak{H}_r^c . Thus, \mathfrak{H}_r^c plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \cong \Omega_{\upsilon}(n,r;\mathbb{C}(\upsilon))$ defined by queer permutation modules.

Construct the quantum queer supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ using Hecke–Clifford superalgebras \mathcal{H}_r^c . Thus, \mathcal{H}_r^c plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathfrak{V}^{\mathbf{c}}_{\boldsymbol{v},\mathbb{C}(\boldsymbol{v})}}(V(n|n)^{\otimes r}) \cong \mathbf{Q}_{\boldsymbol{v}}(n,r;\mathbb{C}(\boldsymbol{v}))$ defined by queer permutation modules.

Almost 10 year efforts

Construct the quantum queer supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ using Hecke–Clifford superalgebras \mathcal{H}_r^c . Thus, \mathcal{H}_r^c plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathfrak{V}_{\boldsymbol{v},\mathbb{C}(\boldsymbol{v})}^c}(V(n|n)^{\otimes r}) \cong \mathbf{Q}_{\boldsymbol{v}}(n,r;\mathbb{C}(\boldsymbol{v}))$ defined by queer permutation modules.

Almost 10 year efforts

• The project started in 2014 during Gu's visit.

Construct the quantum queer supergroup $\mathbf{U}_{v}(\mathfrak{q}_{n})$ using Hecke–Clifford superalgebras \mathcal{H}_{r}^{c} . Thus, \mathcal{H}_{r}^{c} plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathfrak{V}_{\boldsymbol{v}},\mathbb{C}(\boldsymbol{v})}(V(n|n)^{\otimes r}) \cong \mathbf{Q}_{\boldsymbol{v}}(n,r;\mathbb{C}(\boldsymbol{v}))$ defined by queer permutation modules.

Almost 10 year efforts

• The project started in 2014 during Gu's visit. Since the odd case is too complicated, we doubted the existence of such a theory.

Construct the quantum queer supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ using Hecke–Clifford superalgebras \mathcal{H}_r^c . Thus, \mathcal{H}_r^c plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}_{\upsilon,\mathbb{C}(\upsilon)}^c}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathcal{H}^{c}_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \cong \Omega_{\upsilon}(n,r;\mathbb{C}(\upsilon))$ defined by queer permutation modules.

Almost 10 year efforts

- The project started in 2014 during Gu's visit. Since the odd case is too complicated, we doubted the existence of such a theory.
- ullet Testing the $oldsymbol{v}=1$ case first.

Construct the quantum queer supergroup $\mathbf{U}_{v}(\mathfrak{q}_{n})$ using Hecke–Clifford superalgebras \mathfrak{H}_{r}^{c} . Thus, \mathfrak{H}_{r}^{c} plays the role as the Weyl group for a group with a BN-pair.

Justification of the project

- Olshanski (1992) proved that there exist epi-morphisms $\mathbf{U}_{\upsilon}(\mathfrak{q}_n) \longrightarrow \operatorname{End}_{\mathcal{H}^c_{\upsilon,\mathbb{C}(\upsilon)}}(V(n|n)^{\otimes r}) \text{ for every } r>0.$
- D.-Wan^[4] proved $\operatorname{End}_{\mathcal{H}^c_{\boldsymbol{v},\mathbb{C}(\boldsymbol{v})}}(V(n|n)^{\otimes r}) \cong \Omega_{\boldsymbol{v}}(n,r;\mathbb{C}(\boldsymbol{v}))$ defined by queer permutation modules.

Almost 10 year efforts

- The project started in 2014 during Gu's visit. Since the odd case is too complicated, we doubted the existence of such a theory.
- ullet Testing the $oldsymbol{v}=1$ case first.
- Seeking a new approach to the regular module—the differential operator approach.

References

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

References

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

A roadmap of the construction

References

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

A roadmap of the construction

① Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48–103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **3** Queer q-Schur superalgebras $Q_q(n,r)$ and its natural basis^[3,4].

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **3** Queer q-Schur superalgebras $Q_q(n, r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $\Omega_q(n,r)$.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48–103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **②** Queer q-Schur superalgebras $\Omega_q(n,r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $Q_q(n,r)$.
- **Standardisation of everything:** $Q_v^s(n,r)$, basis $[A^*]$, and new SMFs.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48–103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **3** Queer q-Schur superalgebras $Q_q(n,r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $Q_q(n,r)$.
- **Standardisation of everything:** $Q_v^s(n,r)$, basis $[A^*]$, and new SMFs.
- **1** Long multiplication formulas in $Q_v^s(n,r)$.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **②** Queer q-Schur superalgebras $\Omega_q(n,r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $Q_q(n,r)$.
- **Standardisation of everything:** $Q_v^s(n,r)$, basis $[A^*]$, and new SMFs.
- **1** Long multiplication formulas in $\mathfrak{Q}_{v}^{s}(n,r)$.
- **©** Embedding $\mathbf{U}_{v}(\mathfrak{q}_{n})$ into $\prod_{r\geqslant 0} \mathfrak{Q}_{v}^{s}(n,r)$ via an explicit basis and MFs.

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

A roadmap of the construction

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **3** Queer q-Schur superalgebras $\Omega_q(n,r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $Q_q(n,r)$.
- **3** Standardisation of everything: $Q_v^s(n,r)$, basis $[A^*]$, and new SMFs.
- **1** Long multiplication formulas in $Q_v^s(n,r)$.
- **©** Embedding $\mathbf{U}_{v}(\mathfrak{q}_{n})$ into $\prod_{r\geqslant 0} \mathfrak{Q}_{v}^{s}(n,r)$ via an explicit basis and MFs.

Applications: Integral Schur duality, root of 1 theory, bar involution,

- [3] J. Du and J. Wan, Presenting queer Schur superalgebras, Int. Math. Res. Notices, no. 8 (2015) 2210-2272.
- [4] J. Du and J. Wan, The queer q-Schur superalgebras, J. Aust. Math. Soc., 105 (2018) 316-346.
- [5] H. Gu, Z. Li, Y. Lin. The integral Schur-Weyl-Sergeev duality. J. Pure Appl. Algebra 226 (2022), 107044.
- [6] J. Du and Z. Zhou, The regular representation of $U_{\upsilon}(\mathfrak{gl}_{m|n})$, Proc. Amer. Math. Soc., 148 (2020) 111-124.
- [7] J. Du, Y. Lin and Z. Zhou, Quantum queer supergroups via differential operators, J. Algebra 599 (2022), 48-103.

A roadmap of the construction

- **①** Some special elements in the Hecke–Clifford superalgebra $\mathcal{H}_{r,R}^{c}$.
- ② Some commutation formulas in $\mathcal{H}_{r,R}^{c}$.
- **③** Queer q-Schur superalgebras $\Omega_q(n,r)$ and its natural basis^[3,4].
- Fundamental multiplication formulas^[8] in $\Omega_q(n,r)$.
- **Standardisation of everything:** $Q_v^s(n,r)$, basis $[A^*]$, and new SMFs.
- **1** Long multiplication formulas in $\mathfrak{Q}_{\boldsymbol{v}}^{\boldsymbol{s}}(n,r)$.
- **©** Embedding $\mathbf{U}_{v}(\mathfrak{q}_{n})$ into $\prod_{r\geqslant 0} \mathfrak{Q}_{v}^{s}(n,r)$ via an explicit basis and MFs.

Applications: Integral Schur duality, root of 1 theory, bar involution,

- [8] J. Du, H. Gu, Z. Li, and J. Wan, Some multiplication formulas in queer q-Schur superalgebras, Transf. Groups (to appear).
- [9] J. Du, H. Gu, Z. Li, and J. Wan, Constructing the quantum queer supergroup using Hecke-Clifford superalgebras, in preparation.

ICRA21

8/31

• Let R be a commutative ring of characteristic not equal to 2.

- Let R be a commutative ring of characteristic not equal to 2.
- Let C_r denote the **Clifford superalgebra** over R generated by odd elements c_1, \ldots, c_r subject to the relations

$$c_i^2 = -1, \quad c_i c_j = -c_j c_i, \quad 1 \leqslant i \neq j \leqslant r$$
 (*)

9/31

- Let R be a commutative ring of characteristic not equal to 2.
- Let \mathcal{C}_r denote the **Clifford superalgebra** over R generated by odd elements c_1, \ldots, c_r subject to the relations

$$c_i^2 = -1, \quad c_i c_j = -c_j c_i, \quad 1 \leqslant i \neq j \leqslant r \quad (*)$$

• Let $q \in R$. The **Hecke-Clifford superalgebra** $\mathcal{H}_{r,R}^c$ is the associative R-superalgebra with the even generators T_1, \ldots, T_{r-1} and the odd generators c_1, \ldots, c_r subject to (*) and the following additional relations:

$$(T_i - q)(T_i + 1) = 0,$$
 $T_i T_{i'} = T_{i'} T_i,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i c_j = c_j T_i,$ $T_i c_i = c_{i+1} T_i,$ $T_i c_{i+1} = c_i T_i - (q-1)(c_i - c_{i+1}).$

- Let R be a commutative ring of characteristic not equal to 2.
- Let \mathcal{C}_r denote the **Clifford superalgebra** over R generated by odd elements c_1, \ldots, c_r subject to the relations

$$c_i^2 = -1, \quad c_i c_j = -c_j c_i, \quad 1 \leqslant i \neq j \leqslant r \quad (*)$$

• Let $q \in R$. The **Hecke-Clifford superalgebra** $\mathcal{H}^c_{r,R}$ is the associative R-superalgebra with the even generators T_1, \ldots, T_{r-1} and the odd generators c_1, \ldots, c_r subject to (*) and the following additional relations:

$$(T_i - q)(T_i + 1) = 0,$$
 $T_i T_{i'} = T_{i'} T_i,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i c_j = c_j T_i,$ $T_i c_i = c_{i+1} T_i,$ $T_i c_{i+1} = c_i T_i - (q-1)(c_i - c_{i+1}).$

• Natural basis: $\{c^{\boldsymbol{a}}T_w\mid w\in\mathfrak{S}_r, \boldsymbol{a}\in\mathbb{N}_2^r\}$ form bases for $\mathcal{H}_{r,R}^c$. Here $c^{\boldsymbol{a}}=c_1^{a_1}\cdots c_r^{a_r}$.

- Let *R* be a commutative ring of characteristic not equal to 2.
- Let \mathcal{C}_r denote the **Clifford superalgebra** over R generated by odd elements c_1, \ldots, c_r subject to the relations

$$c_i^2 = -1, \quad c_i c_j = -c_j c_i, \quad 1 \leqslant i \neq j \leqslant r \quad (*)$$

• Let $q \in R$. The **Hecke-Clifford superalgebra** $\mathcal{H}^c_{r,R}$ is the associative R-superalgebra with the even generators T_1, \ldots, T_{r-1} and the odd generators c_1, \ldots, c_r subject to (*) and the following additional relations:

$$(T_i - q)(T_i + 1) = 0,$$
 $T_i T_{i'} = T_{i'} T_i,$ $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$ $T_i c_j = c_j T_i,$ $T_i c_i = c_{i+1} T_i,$ $T_i c_{i+1} = c_i T_i - (q-1)(c_i - c_{i+1}).$

- Natural basis: $\{c^{\boldsymbol{a}}T_w\mid w\in\mathfrak{S}_r, \boldsymbol{a}\in\mathbb{N}_2^r\}$ form bases for $\mathcal{H}_{r,R}^c$. Here $c^{\boldsymbol{a}}=c_1^{a_1}\cdots c_r^{a_r}$.
- Structure constants of generators relative to the natural basis:

$$c_{i}(c^{a}T_{w}) = \begin{cases} (-1)^{\widetilde{a}_{i-1}}c^{a+\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 0; \\ (-1)^{\widetilde{a}_{i-1}+1}c^{a-\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 1. \end{cases}$$

$$T_{i}(c^{a}T_{w}) = \begin{cases} c^{a}T_{i}T_{w}, & \text{if } a_{i} = 1. \\ c^{a+\varepsilon_{i+1}}T_{i}T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 0; \\ c^{a+\varepsilon_{i}}T_{i}T_{w} + (q-1)(c^{a}-c^{a+\varepsilon_{i}})T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 1; \\ -c^{a}T_{i}T_{w} + (q-1)(c^{a}-c^{a-\varepsilon_{i}-\varepsilon_{i+1}})T_{w}, & \text{if } a_{i} = 1, a_{i+1} = 1; \end{cases}$$

$$c_{i}(c^{a}T_{w}) = \begin{cases} (-1)^{\widetilde{a}_{i-1}}c^{a+\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 0; \\ (-1)^{\widetilde{a}_{i-1}+1}c^{a-\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 1. \end{cases}$$

$$T_{i}(c^{a}T_{w}) = \begin{cases} c^{a}T_{i}T_{w}, & \text{if } a_{i} = 1. \\ c^{a+\varepsilon_{i+1}}T_{i}T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 0; \\ c^{a+\varepsilon_{i}}T_{i}T_{w} + (q-1)(c^{a}-c^{a+\varepsilon_{i}})T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 1; \\ -c^{a}T_{i}T_{w} + (q-1)(c^{a}-c^{a-\varepsilon_{i}-\varepsilon_{i+1}})T_{w}, & \text{if } a_{i} = 1, a_{i+1} = 1; \end{cases}$$

We may further break down into to 8 cases using

$$T_i T_w = \begin{cases}
T_{s_i w} & (s_i = (i, i+1)), & \text{if } s_i w > w; \\
(q-1) T_w + q T_{s_i w}, & \text{if } s_i w < w.
\end{cases}$$

$$c_{i}(c^{a}T_{w}) = \begin{cases} (-1)^{\widetilde{a}_{i-1}}c^{a+\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 0; \\ (-1)^{\widetilde{a}_{i-1}+1}c^{a-\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 1. \end{cases}$$

$$T_{i}(c^{a}T_{w}) = \begin{cases} c^{a}T_{i}T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 0; \\ c^{a+\varepsilon_{i+1}}T_{i}T_{w}, & \text{if } a_{i} = 1, a_{i+1} = 0; \\ c^{a+\alpha_{i}}T_{i}T_{w} + (q-1)(c^{a}-c^{a+\alpha_{i}})T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 1; \\ -c^{a}T_{i}T_{w} + (q-1)(c^{a}-c^{a-\varepsilon_{i}-\varepsilon_{i+1}})T_{w}, & \text{if } a_{i} = 1, a_{i+1} = 1; \end{cases}$$

We may further break down into to 8 cases using

We now use this fundamental structure to build the structure of the supergroups $\mathbf{U}_{v}(\mathfrak{q}_{n})$, following the roadmap mentioned above:

$$c_{i}(c^{a}T_{w}) = \begin{cases} (-1)^{\widetilde{a}_{i-1}}c^{a+\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 0; \\ (-1)^{\widetilde{a}_{i-1}+1}c^{a-\varepsilon_{i}}T_{w}, & \text{if } a_{i} = 1. \end{cases}$$

$$T_{i}(c^{a}T_{w}) = \begin{cases} c^{a}T_{i}T_{w}, & \text{if } a_{i} = 1. \\ c^{a+\varepsilon_{i+1}}T_{i}T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 0; \\ c^{a+\varepsilon_{i}}T_{i}T_{w} + (q-1)(c^{a}-c^{a+\alpha_{i}})T_{w}, & \text{if } a_{i} = 0, a_{i+1} = 1; \\ -c^{a}T_{i}T_{w} + (q-1)(c^{a}-c^{a-\varepsilon_{i}-\varepsilon_{i+1}})T_{w}, & \text{if } a_{i} = 1, a_{i+1} = 1; \end{cases}$$

We may further break down into to 8 cases using

We now use this fundamental structure to build the structure of the supergroups $\mathbf{U}_{v}(\mathfrak{q}_{n})$, following the roadmap mentioned above:

- **1** Define special elements in $\mathcal{H}_{r,R}^c$: $x_{\lambda}, y_{\lambda}, c_{q,i,j}, c_{\lambda}^a, c_{A^*}, T_{A^*}$,
- Some commutation relations (CR1), (CR2), and (CR3);

ICRA21

Some special elements in $\mathcal{H}_{r,R}^{\mathsf{c}}$

The elements x_{λ} , y_{λ}

Denote by $\Lambda(n,r) \subset \mathbb{N}^n$ the set of compositions of r with n parts.

Some special elements in $\mathcal{H}^{c}_{r,R}$

The elements x_{λ}, y_{λ}

Denote by $\Lambda(n,r)\subset \mathbb{N}^n$ the set of compositions of r with n parts. Given $\lambda\in\Lambda(n,r)$, elements $\mathbf{x}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}T_w,\quad \mathbf{y}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}(-q^{-1})^{\ell(w)}T_w,$ where $\ell(w)$ is the length of w, to define **queer permutation modules**.

Some special elements in $\mathcal{H}_{r,R}^{c}$

The elements x_{λ} , v_{λ}

Denote by $\Lambda(n,r) \subset \mathbb{N}^n$ the set of compositions of r with n parts. Given $\lambda \in \Lambda(n,r)$, elements $\mathbf{x}_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} T_{w}$, $\mathbf{y}_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} (-q^{-1})^{\ell(w)} T_{w}$, where $\ell(w)$ is the length of w, to define **queer permutation modules**.

The elements $c_{q,i,j}, c_{\lambda}^{\mathbf{a}}$

For $r \ge 1$ and $1 \le i < j \le r$, we set

$$c_{q,i,j} = q^{j-i}c_i + q^{j-i-1}c_{i+1} + \dots + qc_{j-1} + c_j, \ c'_{q,i,j} = c_i + qc_{i+1} + \dots + q^{j-i}c_j$$

For $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda(n, r)$ and $\boldsymbol{a} \in \mathbb{N}_2^n$, let $\lambda_k = \lambda_1 + \dots + \lambda_k$ and assume $a_k \leq \lambda_k$, for $1 \leq k \leq n$.

11/31

Some special elements in $\mathcal{H}_{r,R}^{c}$

The elements x_{λ}, y_{λ}

Denote by $\Lambda(n,r)\subset \mathbb{N}^n$ the set of compositions of r with n parts. Given $\lambda\in \Lambda(n,r)$, elements $\mathbf{x}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}T_w,\quad \mathbf{y}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}(-q^{-1})^{\ell(w)}T_w,$ where $\ell(w)$ is the length of w, to define **queer permutation modules**.

The elements $c_{q,i,j}, c_{\lambda}^{\mathbf{a}}$

For $r \geqslant 1$ and $1 \leqslant i < j \leqslant r$, we set

$$c_{q,i,j} = q^{j-i}c_i + q^{j-i-1}c_{i+1} + \dots + qc_{j-1} + c_j, \ c'_{q,i,j} = c_i + qc_{i+1} + \dots + q^{j-i}c_j$$

For $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda(n, r)$ and $\mathbf{a} \in \mathbb{N}_2^n$, let $\lambda_k = \lambda_1 + \dots + \lambda_k$ and assume $a_k \leqslant \lambda_k$, for $1 \leqslant k \leqslant n$. Define the following elements in \mathcal{C}_r :

$$\begin{split} c_{\lambda}^{\mathbf{a}} &:= (c_{q,1,\widetilde{\lambda}_1})^{\mathbf{a}_1} (c_{q,\widetilde{\lambda}_1+1,\widetilde{\lambda}_2})^{\mathbf{a}_2} \cdots (c_{q,\widetilde{\lambda}_{N-1}+1,\widetilde{\lambda}_n})^{\mathbf{a}_n}, \\ (c_{\lambda}^{\mathbf{a}})' &:= (c'_{q,1,\widetilde{\lambda}_1})^{\mathbf{a}_1} (c'_{q,\widetilde{\lambda}_1+1,\widetilde{\lambda}_2})^{\mathbf{a}_2} \cdots (c'_{q,\widetilde{\lambda}_{N-1}+1,\widetilde{\lambda}_n})^{\mathbf{a}_n}. \end{split}$$

Some special elements in $\mathcal{H}_{r,R}^{c}$

The elements x_{λ} , y_{λ}

Denote by $\Lambda(n,r)\subset \mathbb{N}^n$ the set of compositions of r with n parts. Given $\lambda\in \Lambda(n,r)$, elements $\mathbf{x}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}T_w,\quad \mathbf{y}_\lambda=\sum_{w\in\mathfrak{S}_\lambda}(-q^{-1})^{\ell(w)}T_w,$ where $\ell(w)$ is the length of w, to define **queer permutation modules**.

The elements $c_{q,i,j}, c_{\lambda}^{a}$

For $r \geqslant 1$ and $1 \leqslant i < j \leqslant r$, we set

$$c_{q,i,j} = q^{j-i}c_i + q^{j-i-1}c_{i+1} + \dots + qc_{j-1} + c_j, \ c'_{q,i,j} = c_i + qc_{i+1} + \dots + q^{j-i}c_j$$

For $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda(n, r)$ and $\mathbf{a} \in \mathbb{N}_2^n$, let $\lambda_k = \lambda_1 + \dots + \lambda_k$ and assume $a_k \leqslant \lambda_k$, for $1 \leqslant k \leqslant n$. Define the following elements in \mathcal{C}_r :

$$c_{\lambda}^{\mathbf{a}} := (c_{q,1,\widetilde{\lambda}_1})^{\mathbf{a}_1} (c_{q,\widetilde{\lambda}_1+1,\widetilde{\lambda}_2})^{\mathbf{a}_2} \cdots (c_{q,\widetilde{\lambda}_{N-1}+1,\widetilde{\lambda}_n})^{\mathbf{a}_n},$$

$$(c_{\lambda}^{\mathbf{a}})' := (c'_{q,1,\widetilde{\lambda}_1})^{\mathbf{a}_1} (c'_{q,\widetilde{\lambda}_1+1,\widetilde{\lambda}_2})^{\mathbf{a}_2} \cdots (c'_{q,\widetilde{\lambda}_{N-1}+1,\widetilde{\lambda}_n})^{\mathbf{a}_n}.$$

Commutation relations: $x_{\lambda}c_{\lambda}^{a}=(c_{\lambda}^{a})'x_{\lambda}$

^[4] J. Du and J. Wan, The queer q-Schur superalgebra, J. AustMS, 105 (2018), 316-346

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{ar{0}}|A^{ar{1}})\mid A^{ar{0}}\in M_n(\mathbb{N}), A^{ar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{ar{0}}|A^{ar{1}})$ with $|A^{ar{0}}+A^{ar{1}}|=r$.

Let

$$M_n(\mathbb{N}|\mathbb{N}_2) := \{A^* = (A^{\bar{0}}|A^{\bar{1}}) \mid A^{\bar{0}} \in M_n(\mathbb{N}), A^{\bar{1}} \in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}} + A^{\bar{1}}| = r$.

• Given $A^* = (A^{\bar{0}}|A^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\bar{0}} + A^{\bar{1}}$.

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{\bar{0}}|A^{\bar{1}})\mid A^{\bar{0}}\in M_n(\mathbb{N}), A^{\bar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}}+A^{\bar{1}}|=r$.

- Given $A^* = (A^{\overline{0}}|A^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\overline{0}} + A^{\overline{1}}$.
- ② For A, define "double coset" $(ro(A), d_A, co(A))$, where $d_A \in \mathfrak{S}_{ro(A)} d_A \mathfrak{S}_{co(A)}$ has minimal length.

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{\bar{0}}|A^{\bar{1}})\mid A^{\bar{0}}\in M_n(\mathbb{N}), A^{\bar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}}+A^{\bar{1}}|=r$.

- Given $A^* = (A^{\overline{0}}|A^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\overline{0}} + A^{\overline{1}}$.
- ② For A, define "double coset" $(ro(A), d_A, co(A))$, where $d_A \in \mathfrak{S}_{ro(A)} d_A \mathfrak{S}_{co(A)}$ has minimal length.
- **3** Associated with A and $A^{\bar{1}}$, let

$$u = \nu_{\mathsf{A}} := (a_{11}, \dots, a_{n1}, a_{12}, \dots, a_{n2}, \dots, a_{1n}, \dots, a_{nn}) \in \mathbb{N}^{n^2}$$

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{\bar{0}}|A^{\bar{1}})\mid A^{\bar{0}}\in M_n(\mathbb{N}), A^{\bar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}}+A^{\bar{1}}|=r$.

- Given $A^* = (A^{\overline{0}}|A^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\overline{0}} + A^{\overline{1}}$.
- ② For A, define "double coset" $(ro(A), d_A, co(A))$, where $d_A \in \mathfrak{S}_{ro(A)} d_A \mathfrak{S}_{co(A)}$ has minimal length.
- **3** Associated with A and $A^{\overline{1}}$, let

$$\nu = \nu_{A} := (a_{11}, \dots, a_{n1}, a_{12}, \dots, a_{n2}, \dots, a_{1n}, \dots, a_{nn}) \in \mathbb{N}^{n^{2}}$$

$$\alpha = \nu_{A^{\bar{1}}} = (a_{11}^{\bar{1}}, \dots, a_{n1}^{\bar{1}}, \dots, a_{1n}^{\bar{1}}, \dots, a_{nn}^{\bar{1}}) \in (\mathbb{N}_{2})^{n^{2}}.$$

Let

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{\bar{0}}|A^{\bar{1}})\mid A^{\bar{0}}\in M_n(\mathbb{N}), A^{\bar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}}+A^{\bar{1}}|=r$.

- Given $A^* = (A^{\overline{0}}|A^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\overline{0}} + A^{\overline{1}}$.
- ② For A, define "double coset" $(ro(A), d_A, co(A))$, where $d_A \in \mathfrak{S}_{ro(A)} d_A \mathfrak{S}_{co(A)}$ has minimal length.
- 3 Associated with A and $A^{\bar{1}}$, let

$$\nu = \nu_{A} := (a_{11}, \dots, a_{n1}, a_{12}, \dots, a_{n2}, \dots, a_{1n}, \dots, a_{nn}) \in \mathbb{N}^{n^{2}}$$

$$\alpha = \nu_{A^{\bar{1}}} = (a_{11}^{\bar{1}}, \dots, a_{n1}^{\bar{1}}, \dots, a_{1n}^{\bar{1}}, \dots, a_{nn}^{\bar{1}}) \in (\mathbb{N}_{2})^{n^{2}}.$$

Since $a_{i,j}^1 \leqslant a_{i,j}$ (i.e., $\alpha \leqslant \nu$), $c_{A^*} := c_{\nu}^{\alpha} \in \mathcal{C}_r$ is well-defined.

Let

$$M_n(\mathbb{N}|\mathbb{N}_2):=\{A^\star=(A^{\bar{0}}|A^{\bar{1}})\mid A^{\bar{0}}\in M_n(\mathbb{N}), A^{\bar{1}}\in M_n(\mathbb{N}_2)\}$$
 and let $M_n(\mathbb{N}|\mathbb{N}_2)_r$ be the subset consisting of $(A^{\bar{0}}|A^{\bar{1}})$ with $|A^{\bar{0}}+A^{\bar{1}}|=r$.

- Given $A^* = (A^{\bar{0}}|A^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, define the base of A^* to be $A = A^{\bar{0}} + A^{\bar{1}}$.
- ② For A, define "double coset" $(ro(A), d_A, co(A))$, where $d_A \in \mathfrak{S}_{ro(A)} d_A \mathfrak{S}_{co(A)}$ has minimal length.
- **3** Associated with A and $A^{\bar{1}}$, let

$$\nu = \nu_{A} := (a_{11}, \dots, a_{n1}, a_{12}, \dots, a_{n2}, \dots, a_{1n}, \dots, a_{nn}) \in \mathbb{N}^{n^{2}}$$

$$\alpha = \nu_{A^{\bar{1}}} = (a_{11}^{\bar{1}}, \dots, a_{n1}^{\bar{1}}, \dots, a_{1n}^{\bar{1}}, \dots, a_{nn}^{\bar{1}}) \in (\mathbb{N}_{2})^{n^{2}}.$$

Since $a_{i,j}^{\bar{1}} \leqslant a_{i,j}$ (i.e., $\alpha \leqslant \nu$), $c_{A^*} := c_{\nu}^{\alpha} \in \mathcal{C}_r$ is well-defined. Define

$$T_{A^*} := x_{\lambda} T_{d_A} c_{A^*} \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma} = x_{\lambda} T_{d_A} c_{A^*} \Sigma_A.$$

For
$$A=(a_{i,j})\in M_n(\mathbb{N}),\ 1\leqslant h\leqslant n-1\ \text{and}\ 1\leqslant k\leqslant n,\ \mathsf{let}$$

$$A_{h,k}^+ := A + E_{h,k} - E_{h+1,k}$$
, if $a_{h+1,k} > 0$ (move 1 up a row);

$$A_{h,k}^- := A - E_{h,k} + E_{h+1,k}$$
, if $a_{h,k} > 0$ (move 1 down a row);

For
$$A = (a_{i,j}) \in M_n(\mathbb{N})$$
, $1 \le h \le n-1$ and $1 \le k \le n$, let $A_{h,k}^+ := A + E_{h,k} - E_{h+1,k}$, if $a_{h+1,k} > 0$ (move 1 up a row); $A_{h,k}^- := A - E_{h,k} + E_{h+1,k}$, if $a_{h,k} > 0$ (move 1 down a row);

(1) If
$$a_{h+1,k} > 0$$
, then (CR1)

$$\sum_{j=\stackrel{\leftarrow}{T}_{h+1}^k}^{k+1} T_{\widetilde{\lambda}_h+1} T_{\widetilde{\lambda}_h+2} \cdots T_{\widetilde{\lambda}_h+j} \mathsf{T}_{\mathsf{d_A}} = T_{\widetilde{\lambda}_h} T_{\widetilde{\lambda}_h-1} \cdots T_{\widetilde{\lambda}_h-\stackrel{\rightarrow}{T}_{h+1}^k} \mathsf{T}_{\mathsf{d_{A_{h,k}}^+}}^{\lhd} T_{(\widetilde{a}_{h,k}+1,\widetilde{a}_{h,k}+a_{h+1,k}-1)}^{\lhd}$$

For $A = (a_{i,j}) \in M_n(\mathbb{N})$, $1 \leqslant h \leqslant n-1$ and $1 \leqslant k \leqslant n$, let $A_{h,k}^+ := A + E_{h,k} - E_{h+1,k}$, if $a_{h+1,k} > 0$ (move 1 up a row); $A_{h,k}^- := A - E_{h,k} + E_{h+1,k}$, if $a_{h,k} > 0$ (move 1 down a row);

(1) If
$$a_{h+1,k} > 0$$
, then (CR1)

$$\sum_{j=\overleftarrow{\boldsymbol{\tau}}_{h+1}^{k}}^{\underbrace{\boldsymbol{\tau}}_{h+1}^{k+1}-1} T_{\widetilde{\lambda}_{h}+1} T_{\widetilde{\lambda}_{h}+2} \cdots T_{\widetilde{\lambda}_{h}+j} \mathbf{T}_{\boldsymbol{d_{A}}} = T_{\widetilde{\lambda}_{h}} T_{\widetilde{\lambda}_{h}-1} \cdots T_{\widetilde{\lambda}_{h}-\overrightarrow{\boldsymbol{\tau}}_{h}^{k}+1} \mathbf{T}_{\boldsymbol{d_{A_{h,k}}^{+}}}^{\boldsymbol{d_{A_{h,k}}^{+}}} T_{(\widetilde{\boldsymbol{a}}_{h,k}+1,\widetilde{\boldsymbol{a}}_{h,k}+\boldsymbol{a}_{h+1,k}-1)}^{\boldsymbol{d_{A_{h,k}}^{+}}}$$

$$(CR2) \ T^{\triangleleft}_{(\widetilde{a}_{h,k}+1,\widetilde{a}_{h,k}+a_{h+1,k}-1)} \Sigma_{\mathbf{A}} = T^{\triangleright}_{(\widetilde{a}_{h,k},\widetilde{a}_{h,k}-a_{h,k}+1)} \Sigma_{A^{+}_{h,k}},$$

For
$$A = (a_{i,j}) \in M_n(\mathbb{N})$$
, $1 \leqslant h \leqslant n-1$ and $1 \leqslant k \leqslant n$, let
$$A_{h,k}^+ := A + E_{h,k} - E_{h+1,k}, \text{ if } a_{h+1,k} > 0 \text{ (move 1 up a row)};$$

$$A_{h,k}^- := A - E_{h,k} + E_{h+1,k}, \text{ if } a_{h,k} > 0 \text{ (move 1 down a row)};$$

(1) If
$$a_{h+1,k} > 0$$
, then (CR1)

$$(\text{CR2}) \ T^{\lhd}_{(\widetilde{a}_{h,k}+1,\widetilde{a}_{h,k}+a_{h+1,k}-1)} \Sigma_{\textbf{A}} = T^{\rhd}_{(\widetilde{a}_{h,k},\widetilde{a}_{h,k}-a_{h,k}+1)} \Sigma_{\textbf{A}^{+}_{h,k}},$$
 where $\tau^{\lhd}_{(i,j)} = 1 + \tau_{i} + \tau_{i}\tau_{i+1} + \dots + \tau_{i}\tau_{i+1} \dots \tau_{j}, \ T^{\rhd}_{(i,j)} = 1 + \tau_{j} + \tau_{j}\tau_{j-1} + \dots + \tau_{j}\tau_{j-1} \dots \tau_{i}, \text{ for } i \leqslant j.$

For
$$A=(a_{i,j})\in M_n(\mathbb{N})$$
, $1\leqslant h\leqslant n-1$ and $1\leqslant k\leqslant n$, let

$$A_{h,k}^+ := A + E_{h,k} - E_{h+1,k}$$
, if $a_{h+1,k} > 0$ (move 1 up a row);

$$A_{h,k}^- := A - E_{h,k} + E_{h+1,k}$$
, if $a_{h,k} > 0$ (move 1 down a row);

(1) If
$$a_{h+1,k} > 0$$
, then (CR1)

$$\sum_{j=\overleftarrow{\boldsymbol{\tau}}_{h+1}^{k}}^{+1} T_{\widetilde{\lambda}_{h}+1} T_{\widetilde{\lambda}_{h}+2} \cdots T_{\widetilde{\lambda}_{h}+j} \frac{\boldsymbol{\tau}_{d_{\boldsymbol{A}}}}{\boldsymbol{\tau}_{d_{\boldsymbol{A}}}} = T_{\widetilde{\lambda}_{h}} T_{\widetilde{\lambda}_{h}-1} \cdots T_{\widetilde{\lambda}_{h}-\overrightarrow{\boldsymbol{\tau}}_{h}^{k}+1} \frac{\boldsymbol{\tau}_{d_{\boldsymbol{A}_{h,k}}^{+}}}{\boldsymbol{\tau}_{(\widetilde{a}_{h,k}+1,\widetilde{a}_{h,k}+a_{h+1,k}-1)}^{d_{\boldsymbol{A}_{h,k}}}}$$

$$(CR2) \ T^{\triangleleft}_{(\widetilde{a}_{h,k}+1,\widetilde{a}_{h,k}+a_{h+1,k}-1)} \Sigma_{\mathcal{A}} = T^{\triangleright}_{(\widetilde{a}_{h,k},\widetilde{a}_{h,k}-a_{h,k}+1)} \Sigma_{A^{+}_{h,k}},$$

$$\text{where} \ \tau^{\triangleleft}_{(i,j)} = 1 + T_{i} + T_{i}T_{i+1} + \dots + T_{i}T_{i+1} \cdots T_{j}, \ T^{\triangleright}_{(j,i)} = 1 + T_{j} + T_{j}T_{j-1} + \dots + T_{j}T_{j-1} \cdots T_{i}, \ \text{for} \ i \leqslant j.$$

(2) Let
$$A = (a_{i,j}) \in M_n(\mathbb{N})$$
. If $a_{h,k} > 0$ and $(CR3) \ c_{\widetilde{a}_{h,k-1}^r + p} T_{d_A} = T_{d_A} c_{\widetilde{a}_{h-1,k}^c + p}$ (in $\mathcal{H}_{r,R}^c$)

for each $p \in [1, a_{h,k}]$, then A is said to satisfy the **semi-direct product** (SDP) *condition* at (h, k).

The SDP commutation condition: (CR3)

Definition

Let
$$A=(a_{i,j})\in M_n(\mathbb{N})$$
. If $a_{h,k}>0$ and $c_{\widetilde{a}_{h-1}^c+p}T_{d_A}=T_{d_A}c_{\widetilde{a}_{h-1}^c+p}$ (in $\mathfrak{H}_{r,R}^c$)

for each $p \in [1, a_{h,k}]$, then A is said to satisfy the **semi-direct product** (SDP) *condition* at (h, k).

The SDP commutation condition: (CR3)

Definition

Let
$$A=(a_{i,j})\in M_n(\mathbb{N})$$
. If $a_{h,k}>0$ and
$$c_{\widetilde{a}_{h,k-1}^r+p}T_{d_A}=T_{d_A}c_{\widetilde{a}_{h-1,k}^c+p}\qquad (\text{in } \mathfrak{H}_{r,R}^c)$$

for each $p \in [1, a_{h,k}]$, then A is said to satisfy the **semi-direct product** (SDP) *condition* at (h, k).

If A satisfies the SDP condition at (h, k) for every $k \in [1, n]$ (resp., $h \in [1, n]$) with $a_{h,k} > 0$, then A is said to satisfy the SDP condition on the hth row (resp., kth column).

The SDP commutation condition: (CR3)

Definition

Let $A=(a_{i,j})\in M_n(\mathbb{N})$. If $a_{h,k}>0$ and $c_{\widetilde{a}_{h,k-1}^r+p}T_{d_A}=T_{d_A}c_{\widetilde{a}_{h-1,k}^c+p}\qquad (\text{in } \mathfrak{H}_{r,R}^c)$

for each $p \in [1, a_{h,k}]$, then A is said to satisfy the **semi-direct product** (SDP) *condition* at (h, k).

If A satisfies the SDP condition at (h, k) for every $k \in [1, n]$ (resp., $h \in [1, n]$) with $a_{h,k} > 0$, then A is said to satisfy the SDP condition on the hth row (resp., kth column).

Theorem

Let $A \in M_n(\mathbb{N})$ and $h, k \in [1, n]$. Then A satisfies the SDP condition at (h, k) if and only if $a_{h,k} > 0$ and $a_{i,j} = 0$, for i > h and j < k (i.e., $a_{h,k} > 0$ and the lower left corner matrix $A_{\neg}^{h,k}$ at (h, k) is 0).

The SDP commutation condition: (CR3)

Definition

Let
$$A=(a_{i,j})\in M_n(\mathbb{N})$$
. If $a_{h,k}>0$ and
$$c_{\widetilde{a}_{h,k-1}^r+p}T_{d_A}=T_{d_A}c_{\widetilde{a}_{h-1,k}^c+p}\qquad (\text{in } \mathfrak{H}_{r,R}^c)$$

for each $p \in [1, a_{h,k}]$, then A is said to satisfy the **semi-direct product** (SDP) *condition* at (h, k).

If A satisfies the SDP condition at (h, k) for every $k \in [1, n]$ (resp., $h \in [1, n]$) with $a_{h,k} > 0$, then A is said to satisfy the SDP condition on the hth row (resp., kth column).

Theorem

Let $A \in M_n(\mathbb{N})$ and $h, k \in [1, n]$. Then A satisfies the SDP condition at (h, k) if and only if $a_{h,k} > 0$ and $a_{i,j} = 0$, for i > h and j < k (i.e., $a_{h,k} > 0$ and the lower left corner matrix $A_{\neg}^{h,k}$ at (h, k) is 0).

Corollary

Every $A = (a_{i,j}) \in M_n(\mathbb{N})$ satisfies the SDP condition on the 1st column or nth row.

3. The queer *q*-Schur superalgebra $(using x_{\lambda}, y_{\lambda})$ and its standardisation

3. The queer *q*-Schur superalgebra $(using \times_{\lambda}, y_{\lambda})$ and its standardisation

As a super analog of the q-Schur algebra or a quantum analog of the Schur superalgebra of type \mathbb{Q} , define the **queer q-Schur superalgebra**:

$$Q_{q}(n, r; R) := \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} \mathcal{H}_{r,R}^{c} \Big)$$
$$\cong \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} y_{\lambda} \mathcal{H}_{r,R}^{c} \Big).$$

3. The queer *q*-Schur superalgebra $(using \times_{\lambda}, y_{\lambda})$ and its standardisation

As a super analog of the q-Schur algebra or a quantum analog of the Schur superalgebra of type \mathbb{Q} , define the **queer q-Schur superalgebra**:

$$Q_{q}(n, r; R) := \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} \mathcal{H}_{r,R}^{c} \Big)$$
$$\cong \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} y_{\lambda} \mathcal{H}_{r,R}^{c} \Big).$$

In particular, for indeterminate $q = v^2$, we write $Q_{\mathbf{q}}(n,r) := Q_{\mathbf{q}}(n,r; \mathbb{Z}[\mathbf{q}])$ and $Q_{\mathbf{v}}(n,r) := Q_{\mathbf{q}}(n,r; \mathbb{Z})$.

3. The queer *q*-Schur superalgebra $(using \times_{\lambda}, y_{\lambda})$ and its standardisation

As a super analog of the q-Schur algebra or a quantum analog of the Schur superalgebra of type \mathbb{Q} , define the **queer q-Schur superalgebra**:

$$Q_{q}(n, r; R) := \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} \mathcal{H}_{r,R}^{c} \Big)$$
$$\cong \operatorname{End}_{\mathcal{H}_{r,R}^{c}} \Big(\bigoplus_{\lambda \in \Lambda(n,r)} y_{\lambda} \mathcal{H}_{r,R}^{c} \Big).$$

In particular, for indeterminate $\mathbf{q} = \mathbf{v}^2$, we write $\Omega_{\mathbf{q}}(n,r) := \Omega_{\mathbf{q}}(n,r; \mathbb{Z}[\mathbf{q}])$ and $\Omega_{\mathbf{v}}(n,r) := \Omega_{\mathbf{q}}(n,r; \mathbb{Z})$.

Aim: Construct the natural basis for $Q_q(n, r; R)$.

Proposition

Suppose $\lambda, \mu \in \Lambda(n, r)$. Then the intersection $x_{\lambda} \mathcal{H}_{r,R}^{c} \cap \mathcal{H}_{r,R}^{c} x_{\mu}$ is a free R-module with basis

$$\{T_{\mathcal{A}^{\star}}\mid \mathcal{A}^{\star}\in M_n(\mathbb{N}|\mathbb{N}_2)_{\lambda,\mu}\}.$$

Bases for $x_{\lambda}\mathcal{H}_{r,R}^{c}\cap\mathcal{H}_{r,R}^{c}x_{\mu}$ and $Q_{q}(n,r;R)$

Proposition

Suppose $\lambda, \mu \in \Lambda(n, r)$. Then the intersection $x_{\lambda} \mathcal{H}^{c}_{r,R} \cap \mathcal{H}^{c}_{r,R} x_{\mu}$ is a free R-module with basis

$$\{T_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_{\lambda,\mu}\}.$$

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the algebra $Q = Q_q(n, r; R)$ is a free R-module with a basis given by the set

$$\{\phi_{\mathcal{A}^{\star}}\mid \mathcal{A}^{\star}\in M_n(\mathbb{N}|\mathbb{N}_2)_r\},\$$

where
$$\phi_{A^*}(x_\mu h) = \delta_{\mu,co(A)} T_{A^*} h$$
.

Proposition

Suppose $\lambda, \mu \in \Lambda(n,r)$. Then the intersection $x_{\lambda}\mathcal{H}_{r,R}^{c} \cap \mathcal{H}_{r,R}^{c} x_{\mu}$ is a free R-module with basis

$$\{T_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_{\lambda,\mu}\}.$$

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the algebra $Q = Q_q(n, r; R)$ is a free R-module with a basis given by the set

$$\{\phi_{A^{\star}}\mid A^{\star}\in M_n(\mathbb{N}|\mathbb{N}_2)_r\},\$$

where $\phi_{A^*}(x_{\mu}h) = \delta_{\mu,co(A)} \overline{I_{A^*}}h$. In particular, if R is an $\mathbb{Z}[q]$ -algebra via $q \mapsto q$, then $Q_q(n,r;R) \cong Q_q(n,r)_R := Q_q(n,r) \otimes_A R$ (base change p'ty).

Proposition

Suppose $\lambda, \mu \in \Lambda(n,r)$. Then the intersection $x_{\lambda}\mathcal{H}_{r,R}^{c} \cap \mathcal{H}_{r,R}^{c} x_{\mu}$ is a free R-module with basis

$$\{T_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_{\lambda,\mu}\}.$$

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the algebra $Q = Q_q(n, r; R)$ is a free R-module with a basis given by the set

$$\{\phi_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r\},\$$

where $\phi_{\mathcal{A}^*}(x_{\mu}h) = \delta_{\mu,co(\mathcal{A})} \underline{\mathsf{T}_{\mathcal{A}^*}} h$. In particular, if R is an $\mathbb{Z}[q]$ -algebra via $q \mapsto q$, then $\mathfrak{Q}_q(n,r;R) \cong \mathfrak{Q}_q(n,r)_R := \mathfrak{Q}_q(n,r) \otimes_{\mathcal{A}} R$ (base change p'ty).

The basis is called the **natural basis** for $Q_q(n, r; R)$.

Proposition

Suppose $\lambda, \mu \in \Lambda(n, r)$. Then the intersection $x_{\lambda} \mathcal{H}_{r,R}^{c} \cap \mathcal{H}_{r,R}^{c} x_{\mu}$ is a free R-module with basis

$$\{T_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_{\lambda,\mu}\}.$$

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the algebra $Q = Q_q(n, r; R)$ is a free R-module with a basis given by the set

$$\{\phi_{A^*} \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r\},\$$

where $\phi_{\mathcal{A}^*}(x_{\mu}h) = \delta_{\mu,co(\mathcal{A})} \underline{\mathsf{T}_{\mathcal{A}^*}} h$. In particular, if R is an $\mathbb{Z}[q]$ -algebra via $q \mapsto q$, then $\mathfrak{Q}_q(n,r;R) \cong \mathfrak{Q}_q(n,r)_R := \mathfrak{Q}_q(n,r) \otimes_{\mathcal{A}} R$ (base change p'ty).

The basis is called the **natural basis** for $\Omega_q(n,r;R)$. To study the regular module Ω_q , it is natural to compute $\phi_{B^*}\phi_{A^*}$ for some "generators" ϕ_{B^*} .

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$.

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{co(A)}) = x_{co(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A$$

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

In general, this computation is too complicated.

• We take B^* to be simple enough (e.g., \sim simple roots) such that $d_B=1$ and B^* is related to the generators the queer quantum supergroup.

Key ingredients for deriving multiplication formulas $\phi_{\textit{B*}}\phi_{\textit{A*}}$

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

In general, this computation is too complicated.

- We take B^* to be simple enough (e.g., \sim simple roots) such that $d_B=1$ and B^* is related to the generators the queer quantum supergroup.
- ② We then require some commutation relations in $\mathcal{H}_{r,R}^{c}$: (CR1) Commuting the tail term Σ_{B} with $T_{d_{A}}$ (so $M=A_{h,k}^{\pm}$ occurs);

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

In general, this computation is too complicated.

- We take B^* to be simple enough (e.g., \sim simple roots) such that $d_B=1$ and B^* is related to the generators the queer quantum supergroup.
- ② We then require some commutation relations in $\mathcal{H}_{r,R}^{c}$:
 - (CR1) Commuting the tail term Σ_B with T_{d_A} (so $M = A_{h,k}^{\pm}$ occurs);
 - (CR2) Reorganising the tail term Σ_A to Σ_M ;

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

In general, this computation is too complicated.

- We take B^* to be simple enough (e.g., \sim simple roots) such that $d_B=1$ and B^* is related to the generators the queer quantum supergroup.
- ② We then require some commutation relations in $\mathcal{H}_{r,R}^{c}$:
 - (CR1) Commuting the tail term Σ_B with T_{d_A} (so $M = A_{h k}^{\pm}$ occurs);
 - (CR2) Reorganising the tail term Σ_A to Σ_M ;
 - (CR3) Commuting c_{B^*} (in the odd case) with $T_{d_A^{\pm}}$ —the SDP condition.

For A^* , $B^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $\Sigma_A = \sum_{\sigma \in \mathcal{D}_{\nu_A} \cap \mathfrak{S}_{\mu}} T_{\sigma}$ be the "tail term" in the elements: $T_{A^*} = x_{\text{co}(A)} T_{d_A} c_{A^*} \Sigma_A$. Then

$$\phi_{B^*}\phi_{A^*}(x_{\operatorname{co}(A)}) = x_{\operatorname{co}(B)}T_{d_B}c_{B^*}\sum_B T_{d_A}c_{A^*}\sum_A = \sum_{M^* \in M_n(\mathbb{N}|\mathbb{N}_2)_r} \gamma_{B^*,A^*}^{M^*}T_{M^*}.$$

In general, this computation is too complicated.

- We take B^* to be simple enough (e.g., \sim simple roots) such that $d_B=1$ and B^* is related to the generators the queer quantum supergroup.
- ② We then require some commutation relations in $\mathcal{H}_{r,R}^{c}$:
 - (CR1) Commuting the tail term Σ_B with T_{d_A} (so $M = A_{h,k}^{\pm}$ occurs);
 - (CR2) Reorganising the tail term Σ_A to Σ_M ;
 - (CR3) Commuting c_{B^*} (in the odd case) with $T_{d^{\pm}}$ —the SDP condition.

For the above goals, we need the following:

- The permutation d_A ;
- A reduced expression of d_A .

The queer quantum supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ is a Hopf superalgebra over $\mathbb{Q}(v)$ whose unital associative superalgebra is generated by

even generators:
$$K_i^{\pm 1}, E_j, F_j$$
; odd generators: $K_{\bar{i}}, E_{\bar{j}}, F_{\bar{j}}$,

for $1 \le i \le n, 1 \le j \le n-1$, subject to some \sim 40 relations.

The queer quantum supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ is a Hopf superalgebra over $\mathbb{Q}(v)$ whose unital associative superalgebra is generated by

even generators:
$$K_i^{\pm 1}, E_j, F_j$$
; odd generators: $K_{\bar{i}}, E_{\bar{j}}, F_{\bar{j}}$,

for $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$, subject to some \sim 40 relations.

These generators correspond to the generators:

$$(E_{j,j}|O), (E_{h,h+1}|O), (E_{h+1,h}|O); (O|E_{j,j}), (O|E_{h,h+1}), (O|E_{h+1,h}).$$

for the queer Lie superalgebra

$$\mathfrak{q}_n = \left\{ A^* = (A^{\bar{0}}|A^{\bar{1}}) := \begin{pmatrix} A^0 & A^1 \\ A^{\bar{1}} & A^{\bar{0}} \end{pmatrix} \mid A, B \in M_n(\mathbb{C}) \right\}$$

The queer quantum supergroup $\mathbf{U}_v(\mathfrak{q}_n)$ is a Hopf superalgebra over $\mathbb{Q}(v)$ whose unital associative superalgebra is generated by

even generators:
$$K_i^{\pm 1}, E_j, F_j$$
; odd generators: $K_{\bar{i}}, E_{\bar{j}}, F_{\bar{j}}$,

for $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$, subject to some \sim 40 relations.

These generators correspond to the generators:

$$(E_{j,j}|O), (E_{h,h+1}|O), (E_{h+1,h}|O); (O|E_{j,j}), (O|E_{h,h+1}), (O|E_{h+1,h}).$$

for the queer Lie superalgebra

$$\mathfrak{q}_n = \left\{ A^* = (A^{\overline{0}}|A^{\overline{1}}) := \begin{pmatrix} A^{\overline{0}} & A^{\overline{1}} \\ A^{\overline{1}} & A^{\overline{0}} \end{pmatrix} \mid A, B \in M_n(\mathbb{C}) \right\}$$

Thus, we compute $\phi_{B^*}\phi_{A^*}$ with A^* arbitrary and B^* being one of the following matrices:

The even cases:
$$(E_{i,j}|O), (E_{h,h+1}|O), (E_{h+1,h}|O);$$

The odd cases:
$$(O|E_{i,i}), (O|E_{h,h+1}), (O|E_{h+1,h}).$$

Let

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Let

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, ro(A)}$, the following multiplication formulas hold in $\Omega_q(n,r;R)$:

Let

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem

Let $h \in [1, n-1]$ and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, ro(A)}$, the following multiplication formulas hold in $\Omega_q(n,r;R)$:

(1)
$$\phi_{D_{\mu}^{\star}}\phi_{A^{\star}} = \delta_{\mu, ro(A)}\phi_{A^{\star}}, \qquad \phi_{A^{\star}}\phi_{D_{\mu}^{\star}} = \delta_{\mu, co(A)}\phi_{A^{\star}} \quad (D_{\mu}^{\star} := (\mu|O)).$$

Let

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem

Let $h \in [1, n-1]$ and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, ro(A)}$, the following multiplication formulas hold in $Q_q(n,r;R)$:

(1)
$$\phi_{D_{\mu}^{\star}}\phi_{A^{\star}} = \delta_{\mu, \text{ro}(A)}\phi_{A^{\star}}, \qquad \phi_{A^{\star}}\phi_{D_{\mu}^{\star}} = \delta_{\mu, \text{co}(A)}\phi_{A^{\star}} \quad (D_{\mu}^{\star} := (\mu|O)).$$

$$(2) \phi_{E_{h,\lambda}^{\star}} \phi_{A^{\star}} = \varepsilon \sum_{k=1}^{n} \left\{ q^{\overrightarrow{r}_{h}^{k} + a_{h+1,k}^{\bar{1}}} \llbracket a_{h,k}^{\bar{0}} + 1 \rrbracket_{q} \phi_{(A^{\bar{0}} + E_{h,k} - E_{h+1,k} | A^{\bar{1}})} \right. \\ + q^{\overrightarrow{r}_{h}^{k}} \phi_{(A^{\bar{0}} | A^{\bar{1}} + E_{h,k} - E_{h+1,k})} \\ + q^{\overrightarrow{r}_{h}^{k} - 1} \llbracket a_{h,k} + 1 \rrbracket_{q,q^{2}} \phi_{(A^{\bar{0}} + 2E_{h,k} | A^{\bar{1}} - E_{h,k} - E_{h+1,k})} \right\}.$$

Let

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem

Let $h \in [1, n-1]$ and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a^{\bar{0}}_{i,j}|a^{\bar{1}}_{i,j}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, \operatorname{ro}(A)}$, the following multiplication formulas hold in $Q_q(n,r;R)$:

$$(1) \ \phi_{D_{\mu}^{\star}}\phi_{A^{\star}} = \delta_{\mu, \text{ro}(A)}\phi_{A^{\star}}, \qquad \phi_{A^{\star}}\phi_{D_{\mu}^{\star}} = \delta_{\mu, \text{co}(A)}\phi_{A^{\star}} \quad (D_{\mu}^{\star} := (\mu|O)).$$

$$(2) \phi_{E_{h,\lambda}^{\star}} \phi_{A^{\star}} = \varepsilon \sum_{k=1}^{n} \left\{ q^{\overrightarrow{r}_{h}^{k} + a_{h+1,k}^{\bar{1}}} \llbracket a_{h,k}^{\bar{0}} + 1 \rrbracket_{q} \phi_{(A^{\bar{0}} + E_{h,k} - E_{h+1,k} | A^{\bar{1}})} \right. \\ \left. + q^{\overrightarrow{r}_{h}^{k}} \phi_{(A^{\bar{0}} | A^{\bar{1}} + E_{h,k} - E_{h+1,k})} \right. \\ \left. + q^{\overrightarrow{r}_{h}^{k} - 1} \llbracket a_{h,k} + 1 \rrbracket_{q,q^{2}} \phi_{(A^{\bar{0}} + 2E_{h,k} | A^{\bar{1}} - E_{h,k} - E_{h+1,k})} \right\}.$$

(3)
$$\phi_{F_{h,\lambda}^*}\phi_{A^*} = \varepsilon \sum_{k=1}^n \left\{ q^{\overleftarrow{\mathbf{r}}_{h+1}^k} \llbracket a_{h+1,k}^{\bar{0}} + 1 \rrbracket_q \phi_{(A^{\bar{0}} - E_{h,k} + E_{h+1,k}|A^{\bar{1}})} + \cdots \right\}.$$

Theorem (The Cartan case)

Theorem (The Cartan case)

For
$$h \in [1, n]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $A = A^{\bar{0}} + A^{\bar{1}}$, $\lambda = \operatorname{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $D_{\bar{h}}^* = (\lambda - E_{h,h}|E_{h,h})$.

Theorem (The Cartan case)

For
$$h \in [1, n]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $A = A^{\bar{0}} + A^{\bar{1}}$, $\lambda = \text{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $D_{\bar{h}}^* = (\lambda - E_{h,h}|E_{h,h})$.

• Assume that A satisfies the SDP condition on the h-th row if h < n. Then we have in $Q_q(n, r; R)$

$$\phi_{D_{\bar{h}}^{\star}}\phi_{A^{\star}} = \sum_{k=1}^{n} (-1)^{\tilde{a}_{h-1,k}^{\bar{1}}} q^{\vec{r}_{h}^{k}} \Big\{ \phi_{(A^{\bar{0}} - E_{h,k} | A^{\bar{1}} + E_{h,k})} \\ - [\![a_{h,k}]\!]_{q^{2}} \phi_{(A^{\bar{0}} + E_{h,k} | A^{\bar{1}} - E_{h,k})} \Big\} =: {}_{\text{SDP}} H\overline{K}.$$

Theorem (The Cartan case)

For
$$h \in [1, n]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$, let $A = A^{\bar{0}} + A^{\bar{1}}$, $\lambda = \text{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $D_{\bar{h}}^* = (\lambda - E_{h,h}|E_{h,h})$.

• Assume that A satisfies the SDP condition on the h-th row if h < n. Then we have in $Q_q(n, r; R)$

$$\phi_{D_{\bar{h}}^{\star}}\phi_{A^{\star}} = \sum_{k=1}^{n} (-1)^{\tilde{a}_{h-1,k}^{\bar{1}}} q^{\vec{r}_{h}^{\star}} \Big\{ \phi_{(A^{\bar{0}} - E_{h,k}|A^{\bar{1}} + E_{h,k})} \\ - [\![a_{h,k}]\!]_{q^{2}} \phi_{(A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h,k})} \Big\} =: {}_{\text{SDP}} \overline{\text{HK}}.$$

In general, we have

$$\phi_{D_{\overline{h}}^{\star}}\phi_{A^{\star}} = \underset{\text{SDP}}{\operatorname{HK}} + \sum_{\substack{B^{\star} \in \mathcal{M}_{n}(\mathbb{N}|\mathbb{N}_{2})_{r} \\ |B^{\star}| \prec A}} f_{B^{\star}}^{D_{\overline{h}}^{\star},A^{\star}}\phi_{B^{\star}} \ (f_{B^{\star}}^{D_{\overline{h}}^{\star},A^{\star}} \in R).$$

The odd positive simple root case

The odd positive simple root case

Theorem

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base A , $\lambda = \operatorname{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{b}}^* = (\lambda - E_{h+1,h+1}|E_{h,h+1})$.

The odd positive simple root case Theorem

Let $h \in [1, n-1]$ and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base A, $\lambda = \operatorname{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{h}}^* = (\lambda - E_{h+1,h+1}|E_{h,h+1})$.

3 Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. Then we have in $\Omega_q(n, r; R)$

$$\begin{split} \phi_{E_{h}^{\star}}\phi_{A^{\star}} &= \sum_{k=1}^{n} \left\{ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} + a_{h+1,k}^{\bar{1}}} \phi_{(A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k})} \right. \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}} + 1 - a_{h,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k}} \llbracket a_{h,k}^{\bar{0}} + 1 \rrbracket_{q} \phi_{(A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k})} \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} - 1 + a_{h+1,k}^{\bar{1}}} \llbracket a_{h,k} + 1 \rrbracket_{q^{2},q} \phi_{(A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k})} \right\} \\ &=: {}_{\text{SDP}} H\overline{E}. \end{split}$$

The odd positive simple root case

Let $h \in [1, n-1]$ and $A^* = (A^{\overline{0}}|A^{\overline{1}}) = (a_{i,j}^{\overline{0}}|a_{i,j}^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base A, $\lambda = \operatorname{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_h^* = (\lambda - E_{h+1,h+1}|E_{h,h+1})$.

• Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. Then we have in $\Omega_q(n, r; R)$

$$\begin{split} \phi_{E_{\bar{h}}^{\star}}\phi_{A^{\star}} &= \sum_{k=1}^{n} \left\{ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} + a_{h+1,k}^{\bar{1}}} \phi_{(A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k})} \right. \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}} + 1 - a_{h,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k}} \llbracket a_{h,k}^{\bar{0}} + 1 \rrbracket_{q} \phi_{(A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k})} \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} - 1 + a_{h+1,k}^{\bar{1}}} \llbracket a_{h,k} + 1 \rrbracket_{q^{2},q} \phi_{(A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k})} \right] \\ &=: {}_{\text{SDP}} H\overline{E}. \end{split}$$

In general, we have $\phi_{E_{h}^{\star}}\phi_{A^{\star}} = \sup_{\text{SDP}} \text{HE} + \sum_{\substack{B^{\star} \in M_{n}(\mathbb{N} \mid \mathbb{N}_{2})_{r} \\ \exists k, \mid B^{\star} \mid \prec A_{h, k}^{+}}} f_{B^{\star}}^{E_{h}^{\star}, A^{\star}}\phi_{B^{\star}}.$

The odd positive simple root case

Theorem

Let $h \in [1, n-1]$ and $A^* = (A^{\overline{0}}|A^{\overline{1}}) = (a_{i,j}^{\overline{0}}|a_{i,j}^{\overline{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base A, $\lambda = \operatorname{ro}(A)$, and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\overline{h}}^* = (\lambda - E_{h+1,h+1}|E_{h,h+1})$.

1 Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. Then we have in $\Omega_q(n, r; R)$

$$\begin{split} \phi_{E_{\bar{h}}^{\star}}\phi_{A^{\star}} &= \sum_{k=1}^{n} \left\{ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} + a_{h+1,k}^{\bar{1}}} \phi_{(A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k})} \right. \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}} + 1 - a_{h,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k}} \llbracket a_{h,k}^{\bar{0}} + 1 \rrbracket_{q} \phi_{(A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k})} \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} q^{\overrightarrow{r}_{h}^{k} - 1 + a_{h+1,k}^{\bar{1}}} \llbracket a_{h,k} + 1 \rrbracket_{q^{2},q} \phi_{(A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k})} \right] \\ &=: {}_{\mathrm{SDP}} \overline{\mathrm{HE}}. \end{split}$$

② In general, we have $\phi_{E_{\tilde{h}}^{\star}}\phi_{A^{\star}} = \sup_{\substack{\text{SDP}\\\exists k, \lfloor B^{\star} \rfloor \prec A_{h,k}^{\dagger}}} f_{B^{\star}}^{E_{\tilde{h}}^{\star}, A^{\star}}\phi_{B^{\star}}.$

ICRA21

Q Replacing the endo-algebra $\Omega_{\upsilon}(n,r)=\operatorname{End}_{\mathcal{H}_r^c}(T_{\Bbbk}(n,r))$ by the superendo-algebra $\Omega_{\upsilon}(n,r)$, consisting of $f:T_{\Bbbk}(n,r)\to T_{\Bbbk}(n,r)$ s.t. $f(mh)=(-1)^{\wp(f)\wp(h)}f(m)h$:

- **1** Replacing the endo-algebra $\Omega_{\upsilon}(n,r)=\operatorname{End}_{\mathcal{H}^c_r}(T_{\Bbbk}(n,r))$ by the superendo-algebra $\Omega_{\upsilon}(n,r)$, consisting of $f:T_{\Bbbk}(n,r)\to T_{\Bbbk}(n,r)$ s.t. $f(mh)=(-1)^{\wp(f)\wp(h)}f(m)h$:
- ② The natural basis ϕ_{A^*} is replaced by the natural basis of superhom. $\Phi_{A^*}: x_\mu h \mapsto (-1)^{\wp(A) \cdot \wp(h)} \delta_{\mu, \operatorname{co}(A)} T_A \cdot h$.

- **1** Replacing the endo-algebra $\Omega_{\upsilon}(n,r)=\operatorname{End}_{\mathcal{H}^c_r}(T_{\Bbbk}(n,r))$ by the superendo-algebra $\Omega_{\upsilon}(n,r)$, consisting of $f:T_{\Bbbk}(n,r)\to T_{\Bbbk}(n,r)$ s.t. $f(mh)=(-1)^{\wp(f)\wp(h)}f(m)h$:
- ② The natural basis ϕ_{A^*} is replaced by the natural basis of superhom. $\Phi_{A^*}: \varkappa_{\mu}h \mapsto (-1)^{\wp(A)\cdot\wp(h)}\delta_{\mu,co(A)}T_A\cdot h$.
- **3** Standardise the elements $c_{q,i,j}$ and $c'_{q,i,j}$ $(q = v^2)$: $c_{q,i,j} = v^{2(j-i)}c_i + v^{2(j-i-1)}c_{i+1} + \dots + v^2c_{j-1} + c_j = v^{j-i}o_{v,i,j}$

- **1** Replacing the endo-algebra $\Omega_{\upsilon}(n,r)=\operatorname{End}_{\mathcal{H}^c_r}(T_{\Bbbk}(n,r))$ by the superendo-algebra $\Omega_{\upsilon}(n,r)$, consisting of $f:T_{\Bbbk}(n,r)\to T_{\Bbbk}(n,r)$ s.t. $f(mh)=(-1)^{\wp(f)\wp(h)}f(m)h$:
- ② The natural basis ϕ_{A^*} is replaced by the natural basis of superhom. $\Phi_{A^*}: \varkappa_{\mu}h \mapsto (-1)^{\wp(A)\cdot\wp(h)}\delta_{\mu,co(A)}T_A\cdot h$.
- **3** Standardise the elements $c_{q,i,j}$ and $c'_{q,i,j}$ $(q = v^2)$: $c_{q,i,j} = v^{2(j-i)}c_i + v^{2(j-i-1)}c_{i+1} + \dots + v^2c_{j-1} + c_j = v^{j-i}o_{v,i,j}$
- **1** Define o_{λ}^{a} similarly. Then $c_{A^{*}} = v^{A^{\bar{0}} \cdot A^{\bar{1}}} o_{A^{*}} (A^{\bar{0}} \cdot A^{\bar{1}} = \sum_{i,j} a_{i,j}^{\bar{0}} a_{i,j}^{\bar{1}})$.

- **1** Replacing the endo-algebra $\Omega_{\upsilon}(n,r)=\operatorname{End}_{\mathcal{H}^c_r}(T_{\Bbbk}(n,r))$ by the superendo-algebra $\Omega_{\upsilon}(n,r)$, consisting of $f:T_{\Bbbk}(n,r)\to T_{\Bbbk}(n,r)$ s.t. $f(mh)=(-1)^{\wp(f)\wp(h)}f(m)h$:
- ② The natural basis ϕ_{A^*} is replaced by the natural basis of superhom. $\Phi_{A^*}: \varkappa_{\mu}h \mapsto (-1)^{\wp(A)\cdot\wp(h)}\delta_{\mu,co(A)}T_A\cdot h$.
- **3** Standardise the elements $c_{q,i,j}$ and $c'_{q,i,j}$ $(q = v^2)$: $c_{q,i,j} = v^{2(j-i)}c_i + v^{2(j-i-1)}c_{i+1} + \dots + v^2c_{j-1} + c_j = v^{j-i}o_{v,i,j}$
- ① Define o^a_λ similarly. Then $c_{A^*}=v^{A^{ar{0}}\cdot A^{ar{1}}}o_{A^*}$ $(A^{ar{0}}\cdot A^{ar{1}}=\sum_{i,j}a^{ar{0}}_{i,j}a^{ar{1}}_{i,j}).$
- **Standardise** the natural basis Φ_{A^*} to the standard (or normalised) basis

$$[A^{\star}] := v^{-\partial(A^{\star})} \Phi_{A^{\star}}$$

where
$$\partial(A^*) = \ell(d_A^+) - \ell(w_{0,\cos(A)}) + A^{\bar{0}} \cdot A^{\bar{1}}$$
.
Note that $\ell(d_A^+) - \ell(w_{0,\cos(A)}) = \dim \mathcal{O}_A = \sum_{i \geqslant k, j \leqslant l} a_{i,j} a_{k,l}$.

4. Standard multiplication formulas and their expansions

Recall

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

4. Standard multiplication formulas and their expansions

Recall

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem (The even case)

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a^{\bar{0}}_{i,j}|a^{\bar{1}}_{i,j}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, ro(A)}$, the following multiplication formulas hold in $\Omega_q(n,r;R)$:

4. Standard multiplication formulas and their expansions

Recall

$$D_{\mu}^{\star} := (\mu|O), \ E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1} + E_{h,h+1}|O), \ F_{h,\lambda}^{\star} := (\lambda - E_{h,h} + E_{h+1,h}|O).$$

Theorem (The even case)

Let $h \in [1, n-1]$ and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$. Assume $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Then, for $\lambda, \mu \in \Lambda(n,r)$ and $\varepsilon = \delta_{\lambda, ro(A)}$, the following multiplication formulas hold in $\Omega_q(n,r;R)$:

(1)
$$[D_{\mu}^{\star}][A^{\star}] = \delta_{\mu, ro(A)}[A^{\star}], \qquad [A^{\star}][D_{\mu}^{\star}] = \delta_{\mu, ro(A)}[A^{\star}].$$

$$(2) [E_{h,\lambda}^{\star}][A^{\star}] = \varepsilon \sum_{k=1}^{n} v^{g_{h}(A^{\star},k)} \left\{ v^{a_{h+1,k}^{\bar{1}}} [a_{h,k}^{\bar{0}} + 1][(A^{\bar{0}} + E_{h,k} - E_{h+1,k}|A^{\bar{1}})] \right. \\ \left. + v^{-a_{h+1,k}^{\bar{0}}} [(A^{\bar{0}}|A^{\bar{1}} + E_{h,k} - E_{h+1,k})] \right. \\ \left. - (v - v^{-1})v^{-a_{h+1,k}^{\bar{0}}} \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} [(A^{\bar{0}} + 2E_{h,k}|A^{\bar{1}} - E_{h,k} - E_{h+1,k})] \right\}.$$

(3)
$$[F_{h,\lambda}^{\star}][A^{\star}] = \varepsilon \sum_{n=1}^{n} v^{f_h(A^{\star},k)} \left\{ v^{-a_{h,k}^{\bar{1}}} [a_{h+1,k}^{\bar{0}} + 1][(A^{\bar{0}} - E_{h,k} + E_{h+1,k}|A^{\bar{1}})] \right\}$$

We now want the multiplication formulas $\phi_{X^*}\phi_{A^*}$, where, for $\lambda=\operatorname{ro}(A)$, X^* is one of the matrices

$$\begin{aligned} & D_{h,\lambda}^{\star} := (\lambda - E_{h,h}|E_{h,h}), \\ & E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1}|E_{h,h+1}), \\ & F_{h,\lambda}^{\star} := (\lambda - E_{h,h}|E_{h+1,h}). \end{aligned}$$

We now want the multiplication formulas $\phi_{X^*}\phi_{A^*}$, where, for $\lambda=\operatorname{ro}(A)$, X^* is one of the matrices

$$D_{h,\lambda}^{\star} := (\lambda - E_{h,h}|E_{h,h}),$$

$$E_{h,\lambda}^{\star} := (\lambda - E_{h+1,h+1}|E_{h,h+1}),$$

$$F_{h,\lambda}^{\star} := (\lambda - E_{h,h}|E_{h+1,h}).$$

It is still impossible to find a complete multiplication formula for $[X^*][A^*]$ for each X^* above. However, we are able to determine the "head part"! In other word, we have

 $[X^*][A^*] = {}_{SDP}Hd + an undetermined big tail.$

We now want the multiplication formulas $\phi_{X^*}\phi_{A^*}$, where, for $\lambda=\operatorname{ro}(A)$, X^* is one of the matrices

$$\begin{split} D_{h,\lambda}^{\star} &:= (\lambda - E_{h,h} | E_{h,h}), \\ E_{h,\lambda}^{\star} &:= (\lambda - E_{h+1,h+1} | E_{h,h+1}), \\ F_{h,\lambda}^{\star} &:= (\lambda - E_{h,h} | E_{h+1,h}). \end{split}$$

It is still impossible to find a complete multiplication formula for $[X^*][A^*]$ for each X^* above. However, we are able to determine the "head part"! In other word, we have

$$[X^*][A^*] = {}_{SDP}Hd + an undetermined big tail.$$

Perhaps, AI can do it in the near future!

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{\mathbf{r}}_h^k = \overrightarrow{\mathbf{r}}_h^k(A)$. Let $E_{\bar{h}}^* = (\operatorname{ro}(A) - E_{h+1,h+1}|E_{h,h+1})$.

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{h}}^* = (\text{ro}(A) - E_{h+1,h+1}|E_{h,h+1})$.

• Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. (OK, if h = n.)

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{h}}^* = (\text{ro}(A) - E_{h+1,h+1}|E_{h,h+1})$.

1 Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. (OK, if h = n.) Then we have in $Q_{v}^{s}(n, r)$ $[E_{h}^{*}][A^{*}] = (-1)^{p(A^{*})} \sum_{k=1}^{n} v^{g_{h}(A^{*},k)} \left\{ (-1)^{\bar{a}_{h-1,k}^{\bar{1}}} v^{\bar{a}_{h+1,k}^{\bar{1}}} [A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k}] + (-1)^{\bar{a}_{h-1,k}^{\bar{1}} + 1 - \bar{a}_{h,k}^{\bar{1}}} v^{-\bar{a}_{h+1,k}^{\bar{0}}} [a_{h,k}^{\bar{0}} + 1][A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k}] + (-1)^{\bar{a}_{h-1,k}^{\bar{1}}} v^{\bar{a}_{h+1,k}^{\bar{1}}} (v - v^{-1}) \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} [A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k}] \right\}$

 $=:{}_{\mathrm{SDP}}\mathrm{H}\overline{\mathrm{E}}$

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{h}}^* = (\text{ro}(A) - E_{h+1,h+1}|E_{h,h+1})$.

1 Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. (OK, if h = n.) Then we have in $\mathfrak{Q}_{\mathfrak{D}}^{\mathfrak{s}}(n, r)$

$$\begin{split} [E_{\bar{h}}^{\star}][A^{\star}] &= (-1)^{p(A^{\star})} \sum_{k=1}^{n} \boldsymbol{v}^{g_{h}(A^{\star},k)} \Big\{ (-1)^{\widetilde{a}_{h-1,k}^{\bar{l}}} \boldsymbol{v}^{\underline{a}_{h+1,k}^{\bar{l}}} [A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k}] \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{l}} + 1 - a_{h,k}^{\bar{l}}} \boldsymbol{v}^{-a_{h+1,k}^{\bar{l}}} [a_{h,k}^{\bar{0}} + 1] [A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k}] \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{l}}} \boldsymbol{v}^{a_{h+1,k}^{\bar{l}}} (\boldsymbol{v} - \boldsymbol{v}^{-1}) \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} [A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k}] \Big\} \\ &= :_{\text{SDP}} \text{HE} \end{split}$$

② In general, we have $[E_{\bar{h}}^{\star}][A^{\star}] = \underset{B^{\star} \in M_{n}(\mathbb{N}|\mathbb{N}_{2})_{r}}{\operatorname{HE}} + \sum_{\substack{B^{\star} \in M_{n}(\mathbb{N}|\mathbb{N}_{2})_{r} \\ \exists k, B \prec A_{k, h}^{+}}} f_{B^{\star}}^{E_{\bar{h}}^{\star}, A^{\star}}[B^{\star}].$

Let
$$h \in [1, n-1]$$
 and $A^* = (A^{\bar{0}}|A^{\bar{1}}) = (a_{i,j}^{\bar{0}}|a_{i,j}^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)_r$ with base $A = A^{\bar{0}} + A^{\bar{1}}$ and $\overrightarrow{r}_h^k = \overrightarrow{r}_h^k(A)$. Let $E_{\bar{h}}^* = (\text{ro}(A) - E_{h+1,h+1}|E_{h,h+1})$.

1 Suppose that, for every $k \in [1, n]$ such that $a_{h+1,k} > 0$, A satisfies the SDP condition at (h, k) if $a_{h,k} > 0$ and satisfies $A_{\neg}^{h,k} = 0$ if $a_{h,k} = 0$. (OK, if h = n.) Then we have in $\mathfrak{Q}_{v}^{s}(n, r)$

$$\begin{split} [E_{\bar{h}}^{\star}][A^{\star}] &= (-1)^{\rho(A^{\star})} \sum_{k=1}^{n} \upsilon^{g_{h}(A^{\star},k)} \Big\{ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} \upsilon^{a_{h+1,k}^{\bar{1}}} [A^{\bar{0}} - E_{h+1,k}|A^{\bar{1}} + E_{h,k}] \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}} + 1 - a_{h,k}^{\bar{1}}} \upsilon^{-a_{h+1,k}^{\bar{0}}} [a_{h,k}^{\bar{0}} + 1][A^{\bar{0}} + E_{h,k}|A^{\bar{1}} - E_{h+1,k}] \\ &+ (-1)^{\widetilde{a}_{h-1,k}^{\bar{1}}} \upsilon^{a_{h+1,k}^{\bar{1}}} (\upsilon - \upsilon^{-1}) \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} [A^{\bar{0}} + 2E_{h,k} - E_{h+1,k}|A^{\bar{1}} - E_{h,k}] \Big\} \\ &= : _{\text{SDP}} \text{HE} \end{split}$$

② In general, we have $[E_{\bar{h}}^{\star}][A^{\star}] = \underset{B^{\star} \in \mathcal{M}_{n}(\mathbb{N}|\mathbb{N}_{2})_{r}}{\operatorname{HE}} + \sum_{\substack{B^{\star} \in \mathcal{M}_{n}(\mathbb{N}|\mathbb{N}_{2})_{r} \\ \exists k, B \prec A_{h,k}^{+}}} f_{B^{\star}}^{E_{\bar{h}}^{\star}, A^{\star}}[B^{\star}].$

For the negative case, $[F_{\bar{b}}^{\star}][A^{\star}] = {}_{\text{SDP}}H\bar{F} + (v - v^{-1})HH\bar{F} + \text{lower terms}$

Expansions to long elements in $Q_{v}^{s}(n,r)$

Expansions to long elements in $\mathbf{Q}_{v}^{s}(n,r)$

For $A^*=(A^{\bar{0}}|A^{\bar{1}})\in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\boldsymbol{j}\in\mathbb{Z}^n$, we define the following elements in $\mathfrak{Q}_{\boldsymbol{v}}^s(n,r)$:

$$A^{\star}(\boldsymbol{j},r) = egin{cases} \sum_{\lambda \in \Lambda(n,r-|A|)} \boldsymbol{v}^{\lambda \cdot \boldsymbol{j}} [A^{ar{0}} + \lambda |A^{ar{1}}], & ext{if } |A| \leqslant r; \ 0, & ext{otherwise.} \end{cases}$$
 (4.0.1)

where $\lambda \cdot \boldsymbol{j} = \sum_{i=1}^{n} \lambda_{i} j_{i}$.

Expansions to long elements in $\mathbf{Q}_{v}^{s}(n,r)$

For $A^* = (A^{\bar{0}}|A^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, we define the following elements in $\mathfrak{Q}_v^s(n,r)$:

$$A^{\star}(\boldsymbol{j},r) = egin{cases} \sum_{\lambda \in \Lambda(n,r-|A|)} \boldsymbol{v}^{\lambda \cdot \boldsymbol{j}} [A^{ar{0}} + \lambda |A^{ar{1}}], & ext{if } |A| \leqslant r; \ 0, & ext{otherwise.} \end{cases}$$
 (4.0.1)

where $\lambda \cdot \boldsymbol{j} = \sum_{i=1}^{n} \lambda_{i} j_{i}$.

We now lift the short MFs to some long multiplication formulas (LMFs). For example, the formula for $[E^\star_{h,\lambda}][A^\star]$ has three summations which result in three even bigger summations.

Expansions to long elements in $Q_v^s(n,r)$

For $A^* = (A^{\bar{0}}|A^{\bar{1}}) \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, we define the following elements in $\mathfrak{Q}_{v}^{s}(n,r)$:

$$A^{\star}(\boldsymbol{j},r) = egin{cases} \sum_{\lambda \in \Lambda(n,r-|A|)} \boldsymbol{v}^{\lambda: \boldsymbol{j}} [A^{ar{0}} + \lambda | A^{ar{1}}], & ext{if } |A| \leqslant r; \ 0, & ext{otherwise.} \end{cases}$$
 (4.0.1)

where $\lambda \cdot \boldsymbol{j} = \sum_{i=1}^{n} \lambda_i j_i$.

We now lift the short MFs to some long multiplication formulas (LMFs). For example, the formula for $[E^\star_{h,\lambda}][A^\star]$ has three summations which result in three even bigger summations.

Proposition

Let $h \in [1, n-1]$. For any $A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, the following multiplication formulas hold in $\Omega_v^s(n, r)$ for all $r \geqslant |A|$:

$$(E_{h,h+1}|O)(\mathbf{0},r)\cdot A^{*}(\mathbf{j},r)=(I)+(II)+(III),$$

where

The long multiplication formulas (cont d)
$$(I) = \sum_{k < h} v^{g_h(A^*,k) + a_{h+1,k}^{\bar{1}}} [a_{h,k}^{\bar{0}} + 1] (A^{\bar{0}} - E_{h+1,k} + E_{h,k} | A^{\bar{1}}) (\boldsymbol{j} + \epsilon_h - \epsilon_{h+1}, r)$$

$$+ v^{g_h(A^*,h) + a_{h+1,h}^{\bar{1}} - j_h} \frac{1}{v - v^{-1}} \Big\{ [A^{\bar{0}} - E_{h+1,h} | A^{\bar{1}}] (\boldsymbol{j} + \epsilon_h - \epsilon_{h+1}, r)$$

$$- [A^{\bar{0}} - E_{h+1,h} | A^{\bar{1}}] (\boldsymbol{j} - \epsilon_h - \epsilon_{h+1}, r)$$

$$+ v^{g_h(A^*,h+1) + a_{h+1,h+1}^{\bar{1}} + j_{h+1}} [a_{h,h+1}^{\bar{0}} + 1] (A^{\bar{0}} + E_{h,h+1} | A^{\bar{1}}) (\boldsymbol{j}, r)$$

$$+ \sum_{k > h+1} v^{g_h(A^*,k) + a_{h+1,k}^{\bar{1}}} [a_{h,k}^{\bar{0}} + 1] (A^{\bar{0}} - E_{h+1,k} + E_{h,k} | A^{\bar{1}}) (\boldsymbol{j}, r)$$

$$(II) = \sum_{k < h} v^{g_h(A^*,k) - a_{h+1,k}^{\bar{0}}} (A^{\bar{0}} | A^{\bar{1}} - E_{h+1,k} + E_{h,k}) (\boldsymbol{j} + \epsilon_h - \epsilon_{h+1}, r)$$

$$+ v^{g_h(A^*,h) - a_{h+1,h}^{\bar{0}}} (A^{\bar{0}} | A^{\bar{1}} - E_{h+1,h} + E_{h,h}) (\boldsymbol{j} - \epsilon_{h+1}, r)$$

$$+ v^{g_h(A^*,h+1)} (A^{\bar{0}} | A^{\bar{1}} - E_{h+1,h+1} + E_{h,h+1}) (\boldsymbol{j} - \epsilon_{h+1}, r)$$

$$+ \sum_{k < h} v^{g_h(A^*,k) - a_{h+1,k}^{\bar{0}}} (A^{\bar{0}} | A^{\bar{1}} - E_{h+1,h} + E_{h,h}) (\boldsymbol{j}, r)$$

k>h+1

$$(III) =$$

$$\sum_{k < h} v^{g_{h}(A^{*},k) + a_{h+1,k}^{\bar{0}}} \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,k}|A^{\bar{1}} - E_{h,k} - E_{h+1,k}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$+ \frac{v^{g_{h}(A^{*},h) + a_{h+1,h}^{\bar{0}} - 2j_{h}}}{(v - v^{-1})} \{ \frac{v^{-1}}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$- \frac{v}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} - \epsilon_{h} - \epsilon_{h+1}, r)$$

$$- (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} - \epsilon_{h+1}, r) \}$$

$$+ v^{g_{h}(A^{*},h+1)} (v - v^{-1}) \begin{bmatrix} a_{h,h+1} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,h+1}|A^{\bar{1}} - E_{h,h+1} - E_{h+1,h+1}) (\boldsymbol{j} + \epsilon_{h+1}, r)$$

$$+ \sum_{k > h+1} v^{g_{h}(A^{*},k)} (v - v^{-1}) \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,k}|A^{\bar{1}} - E_{h,k} - E_{h+1,k}) (\boldsymbol{j}, r)$$

$$(III) = \sum_{k < h} v^{g_{h}(A^{*},k) + a_{h+1,k}^{\bar{0}}} \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,k}|A^{\bar{1}} - E_{h,k} - E_{h+1,k}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$+ \frac{v^{g_{h}(A^{*},h) + a_{h+1,h}^{\bar{0}} - 2j_{h}}}{(v - v^{-1})} \{ \frac{v^{-1}}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$- \frac{v}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} - \epsilon_{h} - \epsilon_{h+1}, r)$$

$$- (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} - \epsilon_{h+1}, r) \}$$

$$+ v^{g_{h}(A^{*},h+1)} (v - v^{-1}) \begin{bmatrix} a_{h,h+1} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,h+1}|A^{\bar{1}} - E_{h,h+1} - E_{h+1,h+1}) (\boldsymbol{j} + \epsilon_{h+1}, r)$$

$$+\sum_{k>h+1} v^{g_h(A^*,k)}(v-v^{-1}) \begin{bmatrix} a_{h,k}+1\\2 \end{bmatrix} (A^{\bar{0}}+2E_{h,k}|A^{\bar{1}}-E_{h,k}-E_{h+1,k})(\boldsymbol{j},r)$$

There are also explicit formulas for $(E_{h+1,h}|\mathrm{O})(\mathbf{0},r)\cdot(A^{\bar{0}}|A^{\bar{1}})(j,r)$, and for $B^*(0,r)\cdot(A^{\bar{0}}|A^{\bar{1}})(j,r)$, for $B^*\in\{(O|E_{h,h}),(O|E_{h+1,h}),(O|E_{h,h+1})\}$ under the SDP condition.

◆□▶◆□▶◆□▶◆□▶ □ 900

$$(III) = \sum_{k < h} v^{g_{h}(A^{*},k) + a_{h+1,k}^{\bar{0}}} \begin{bmatrix} a_{h,k} + 1 \\ 2 \end{bmatrix} (A^{\bar{0}} + 2E_{h,k}|A^{\bar{1}} - E_{h,k} - E_{h+1,k}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$+ \frac{v^{g_{h}(A^{*},h) + a_{h+1,h}^{\bar{0}} - 2j_{h}}}{(v - v^{-1})} \{ \frac{v^{-1}}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} + \epsilon_{h} - \epsilon_{h+1}, r)$$

$$- \frac{v}{[2]} (A^{\bar{0}}|A^{\bar{1}} - E_{h,h} - E_{h+1,h}) (\boldsymbol{j} - \epsilon_{h} - \epsilon_{h+1}, r)$$

$$-\left(A^{\bar{0}}|A^{\bar{1}}-E_{h,h}-E_{h+1,h}\right)(\boldsymbol{j}-\epsilon_{h+1},r)\right\} \\ +\upsilon^{g_{h}(A^{*},h+1)}(\upsilon-\upsilon^{-1})\begin{bmatrix} a_{h,h+1}+1\\2 \end{bmatrix}(A^{\bar{0}}+2E_{h,h+1}|A^{\bar{1}}-E_{h,h+1}-E_{h+1,h+1})(\boldsymbol{j}+\epsilon_{h+1},r)$$

$$+\sum_{k>h+1} v^{g_h(A^*,k)}(v-v^{-1}) \begin{bmatrix} a_{h,k}+1\\2 \end{bmatrix} (A^{\bar{0}}+2E_{h,k}|A^{\bar{1}}-E_{h,k}-E_{h+1,k})(j,r)$$

There are also explicit formulas for $(E_{h+1,h}|\mathcal{O})(\mathbf{0},r)\cdot(\mathcal{A}^{\bar{0}}|\mathcal{A}^{\bar{1}})(\boldsymbol{j},r)$, and for $\mathcal{B}^{\star}(\mathbf{0},r)\cdot(\mathcal{A}^{\bar{0}}|\mathcal{A}^{\bar{1}})(\boldsymbol{j},r)$, for $\mathcal{B}^{\star}\in\{(\mathcal{O}|E_{h,h}),(\mathcal{O}|E_{h+1,h}),(\mathcal{O}|E_{h,h+1})\}$ under the SDP condition.

All coefficients, depending on the entries of A^* & j, are independent of r.

Theorem (1)

For any r>0, there is an epimorphism $\pi_{\mathbb{Q}}^{(r)}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \to \mathbf{Q}_{\boldsymbol{v}}^{\boldsymbol{s}}(n,r)$ s.t.

$$\mathsf{K}_{i}^{\pm} \mapsto (\mathsf{O}|\mathsf{O})(\pm\varepsilon_{i},r), \; \mathsf{E}_{j} \mapsto (E_{j,j+1}|\mathsf{O})(\mathbf{0},r), \; \mathsf{F}_{j} \mapsto (E_{j+1,j}|\mathsf{O})(\mathbf{0},r),$$

$$\mathsf{K}_{\overline{i}} \mapsto (\mathsf{O}|E_{i,j})(\mathbf{0},r), \; \; \mathsf{E}_{\overline{i}} \mapsto (\mathsf{O}|E_{j,j+1})(\mathbf{0},r), \; \mathsf{F}_{\overline{i}} \mapsto (\mathsf{O}|E_{j+1,j})(\mathbf{0},r).$$

with $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$.

Theorem (1)

For any r>0, there is an epimorphism $\pi_{\mathbb{Q}}^{(r)}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \to \mathbf{Q}_{\boldsymbol{v}}^{\boldsymbol{s}}(n,r)$ s.t.

$$\mathsf{K}_{i}^{\pm} \mapsto (\mathsf{O}|\mathsf{O})(\pm\varepsilon_{i},r), \; \mathsf{E}_{j} \mapsto (E_{j,j+1}|\mathsf{O})(\mathbf{0},r), \; \mathsf{F}_{j} \mapsto (E_{j+1,j}|\mathsf{O})(\mathbf{0},r),$$

$$\mathsf{K}_{\bar{i}} \mapsto (\mathsf{O}|E_{i,i})(\mathbf{0},r), \; \; \mathsf{E}_{\bar{i}} \mapsto (\mathsf{O}|E_{j,j+1})(\mathbf{0},r), \; \mathsf{F}_{\bar{i}} \mapsto (\mathsf{O}|E_{j+1,j})(\mathbf{0},r).$$

with $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$.

For $A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, define infinite formal series

$$oxed{A^{\star}(oldsymbol{j}) = \sum_{\lambda \in \mathbb{N}^n} oldsymbol{v}^{\lambda \cdot oldsymbol{j}} [A + \lambda]}$$

Theorem (1)

For any r>0, there is an epimorphism $\pi_{\mathbb{Q}}^{(r)}: \mathbf{U}_{v}(\mathfrak{q}_{n}) \to \mathbf{Q}_{v}^{s}(n,r)$ s.t.

$$\mathsf{K}_{i}^{\pm} \mapsto (\mathsf{O}|\mathsf{O})(\pm\varepsilon_{i},r), \; \mathsf{E}_{j} \mapsto (E_{j,j+1}|\mathsf{O})(\mathbf{0},r), \; \mathsf{F}_{j} \mapsto (E_{j+1,j}|\mathsf{O})(\mathbf{0},r), \\ \mathsf{K}_{\overline{i}} \mapsto (\mathsf{O}|E_{i,j})(\mathbf{0},r), \; \; \mathsf{E}_{\overline{i}} \mapsto (\mathsf{O}|E_{j,j+1})(\mathbf{0},r), \; \mathsf{F}_{\overline{i}} \mapsto (\mathsf{O}|E_{j+1,j})(\mathbf{0},r).$$

with $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$.

For $A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, define infinite formal series

$$\left| A^{\star}(\boldsymbol{j}) = \sum_{\lambda \in \mathbb{N}^n} v^{\lambda \cdot \boldsymbol{j}} [A + \lambda] \right| = \left(A^{\star}(\boldsymbol{j}, r) \right)_{r \geqslant 0} \in \prod_{r \geqslant 0} \Omega^{s}_{\boldsymbol{v}}(n, r).$$

Theorem (1)

For any r>0, there is an epimorphism $\pi_{\mathbb{Q}}^{(r)}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \to \mathbf{Q}_{\boldsymbol{v}}^{\boldsymbol{s}}(n,r)$ s.t.

$$\mathsf{K}_{i}^{\pm} \mapsto (\mathsf{O}|\mathsf{O})(\pm\varepsilon_{i},r), \; \mathsf{E}_{j} \mapsto (E_{j,j+1}|\mathsf{O})(\mathbf{0},r), \; \mathsf{F}_{j} \mapsto (E_{j+1,j}|\mathsf{O})(\mathbf{0},r), \\ \mathsf{K}_{\overline{i}} \mapsto (\mathsf{O}|E_{i,j})(\mathbf{0},r), \; \; \mathsf{E}_{\overline{i}} \mapsto (\mathsf{O}|E_{j,j+1})(\mathbf{0},r), \; \mathsf{F}_{\overline{i}} \mapsto (\mathsf{O}|E_{j+1,j})(\mathbf{0},r).$$

with $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$.

For $A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, define infinite formal series

$$\left| A^{\star}(\boldsymbol{j}) = \sum_{\lambda \in \mathbb{N}^n} v^{\lambda \cdot \boldsymbol{j}} [A + \lambda] \right| = \left(A^{\star}(\boldsymbol{j}, r) \right)_{r \geqslant 0} \in \prod_{r \geqslant 0} \Omega^{s}_{\boldsymbol{v}}(n, r).$$

Theorem (2)

These homomorphisms π_r induce a superalgebra monomorphism

$$\pi_{\mathbb{Q}}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \longrightarrow \prod_{r>0} \mathbf{Q}_{\boldsymbol{v}}^s(n,r)$$

whose image is spanned by $\{A^*(j) \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}, j \in \mathbb{Z}^n\}$

Theorem (1)

For any r>0, there is an epimorphism $\pi_{\mathbb{Q}}^{(r)}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \to \mathbf{Q}_{\boldsymbol{v}}^{\boldsymbol{s}}(n,r)$ s.t.

$$\mathsf{K}_{i}^{\pm} \mapsto (\mathrm{O}|\mathrm{O})(\pm\varepsilon_{i},r), \; \mathsf{E}_{j} \mapsto (E_{j,j+1}|\mathrm{O})(\mathbf{0},r), \; \mathsf{F}_{j} \mapsto (E_{j+1,j}|\mathrm{O})(\mathbf{0},r),$$
$$\mathsf{K}_{\bar{i}} \mapsto (\mathrm{O}|E_{i,i})(\mathbf{0},r), \; \; \mathsf{E}_{\bar{j}} \mapsto (\mathrm{O}|E_{j,j+1})(\mathbf{0},r), \; \mathsf{F}_{\bar{j}} \mapsto (\mathrm{O}|E_{j+1,j})(\mathbf{0},r).$$

with $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1$.

For $A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}$, $\mathbf{j} \in \mathbb{Z}^n$, define infinite formal series

$$\boxed{ A^{\star}(\boldsymbol{j}) = \sum_{\lambda \in \mathbb{N}^n} \boldsymbol{v}^{\lambda \cdot \boldsymbol{j}} [A + \lambda] } = \big(A^{\star}(\boldsymbol{j}, r) \big)_{r \geqslant 0} \in \prod_{r \geqslant 0} \Omega^{s}_{\boldsymbol{v}}(n, r).$$

Theorem (2)

These homomorphisms π_r induce a superalgebra monomorphism

$$\pi_{\mathbb{Q}}: \mathbf{U}_{\boldsymbol{v}}(\mathfrak{q}_n) \longrightarrow \prod_{r>0} \mathbf{Q}_{\boldsymbol{v}}^s(n,r)$$

whose image is spanned by $\{A^*(j) \mid A^* \in M_n(\mathbb{N}|\mathbb{N}_2)^{\pm}, j \in \mathbb{Z}^n\}$ with respect to which we obtain the matrix representation of the regular module ΠU .

The new construction of the quantum queer supergroup can be used to address the following problems.

The integral Schur-Olshanski duality.

- The integral Schur-Olshanski duality.
- Polynomial representations at roots of unity.

- The integral Schur-Olshanski duality.
- Polynomial representations at roots of unity.
- The bar involution and canonical basis theory. This involves a lot!

- The integral Schur-Olshanski duality.
- 2 Polynomial representations at roots of unity.
- **3** The bar involution and canonical basis theory. This involves a lot! Here is a proposed bar involution $\bar{\boldsymbol{v}} = \boldsymbol{v}^{-1}$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\kappa}_j = \kappa_i^{-1}$, $\bar{\kappa}_{\bar{1}} = \kappa_{\bar{1}}$.

- The integral Schur-Olshanski duality.
- Polynomial representations at roots of unity.
- **3** The bar involution and canonical basis theory. This involves a lot! Here is a proposed bar involution $\bar{\boldsymbol{v}} = \boldsymbol{v}^{-1}$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\boldsymbol{\kappa}}_j = \boldsymbol{\kappa}_i^{-1}$, $\bar{\boldsymbol{\kappa}}_{\bar{1}} = \boldsymbol{\kappa}_{\bar{1}}$.
- The modified quantum queer supergroup and its canonical basis theory.

- 1 The integral Schur-Olshanski duality.
- Polynomial representations at roots of unity.
- **3** The bar involution and canonical basis theory. This involves a lot! Here is a proposed bar involution $\bar{\boldsymbol{v}} = \boldsymbol{v}^{-1}$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\boldsymbol{\epsilon}}_i = \boldsymbol{\epsilon}_i$, $\bar{\boldsymbol{\kappa}}_j = \boldsymbol{\kappa}_i^{-1}$, $\bar{\boldsymbol{\kappa}}_{\bar{1}} = \boldsymbol{\kappa}_{\bar{1}}$.
- The modified quantum queer supergroup and its canonical basis theory.
- Semi-simplicity criterion (à la Doty-Nakano, Erdmann-Nakano).

THANK YOU!

