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1. Introduction: Motivation and History

1 The structure of a group with a BN-pair is hidden in its Weyl group.
2 The representation theory of a semismiple complex Lie algebra is

hidden in its associated Hecke algebra (KL conjecture/theorem).
3 The structure of a quantum linear group U = U(glm) (or supergroup

U(glm|n)) is hidden in the Hecke algebras of symmetric groups.

More precisely, the Hecke algebra H = Hr = H(Sr ) is the algebra
over Q(υ) generated by T1, . . . ,Tr−1 subject to a certain relations. It has
basis {Tw | w ∈ Sr} and its regular module HH has the following matrix
representation (q = υ2):

TiTw =

{
Tsiw (si = (i, i + 1)), if siw > w ;

(q − 1)Tw + qTsiw , if siw < w .

From this basic structure together with a sequence of constructions, it is
possible to construct a basis {A(j)}A,j for U such that its regular
representation UU is given by explicit multiplication formulas for

Eh · A(j), Fh · A(j), Ki · A(j).
This question was first answered by Beilinson–Lusztig–MacPherson.
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BLM Theorem

Theorem (Beilinson–Lusztig–MacPherson[1] ’90)

The quantum linear group Uυ(gln), generated by Ka,K
−1
a ,Eh,Fh, has a

basis
{A(j) | A = (ai ,j) ∈ Mn(N)0diag, j = (ji ) ∈ Zn}

that satisfies the following multiplication rules:

(1) Ka · A(j) = υro(A)�eaA(j + ea), A(j ) · Ka = υco(A)�eaA(j + ea);

(2) Eh · A(j ) = υf (h+1)+jh+1 [[ah,h+1 + 1]](A + Eh,h+1)(j )

+
υf (h)−jh−1

1− υ−2

(
(A− Eh+1,h)(j + αh)− (A− Eh+1,h)(j + βh)

)
+

∑
k<h,ah+1,k>1

υf (k)[[ah,k + 1]](A + Eh,k − Eh+1,k)(j + αh)

+
∑

k>h+1,ah+1,k>1

υf (k)[[ah,k + 1]](A + Eh,k − Eh+1,k)(j );

(3) Fh · A(j ) = · · · .
[1] A.A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GLn , Duke Math.J. 61

(1990), 655-677.
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The Schur(–Weyl) duality
We may view such a construction for a quantum group via its associated
Hecke algebra (HH UU) as a new development in the theory of the
Schur–Weyl duality:

For the natural repn Vn of gln, there are commuting actions
U(gln) y V⊗rn x Sr .

This defines two algebra homomorphisms

U(gln)
φ−→ End(V⊗rn )

ψ←− CSr .

The Schur–Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
A double centraliser property: im(φ) = EndCSr (V

⊗r
n ) = S(n, r), the

Schur algebra, and im(ψ) = EndU(gln)(V
⊗r
n );

A category equivalence: S(n, r)-mod
∼−→ CSr -mod (n > r) given by

the Schur functors;
A structural connection: HH UU (compare W  BN-pair struct.).

Another struct. conn.: presenting q-Schur algebras (Doty–Giaquinto).

Since BLM’s construction is geometric, one does not see directly how the
constructions are originated from those in H.
[2] J. Du, H. Gu and Z. Zhou, Multiplication formulas and semisimplicity for q-Schur superalgebras, Nagoya Math.J. 237 (2020),

98-126.
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100 years of the Schur–Weyl duality

Schur duality1927

Schur-Weyl duality

quantization

Schur–Weyl–Brauer duality
′37 Schur–Weyl–Jimbo duality

′86

affinizationsuperization Quantum SWB duality
′87

Affine SWJ dualitySchur–Weyl–Sergeev duality
′85

Super SWJ duality

Schur–Weyl–Hecke duality
′18Schur–Weyl–Olshanski duality

′92

SWH duality of affine type C
′20

The monster is in Western Australia which is 6.3 times large than California!
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Aim of the project
Construct the quantum queer supergroup Uυ(qn) using Hecke–Clifford
superalgebras Hc

r . Thus, Hc
r plays the role as the Weyl group for a group

with a BN-pair.

Justification of the project

Olshanski (1992) proved that there exist epi-morphisms
Uυ(qn) −→ EndHc

υ,C(υ)
(V (n|n)⊗r ) for every r > 0.

D.–Wan[4] proved EndHc
υ,C(υ)

(V (n|n)⊗r ) ∼= Qυ(n, r ;C(υ)) defined by

queer permutation modules.

Almost 10 year efforts

The project started in 2014 during Gu’s visit. Since the odd case is
too complicated, we doubted the existence of such a theory.

Testing the υ = 1 case first.

Seeking a new approach to the regular module—the differential
operator approach.

This convinced us that there must be a way to solve the problem.
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2. Hecke–Clifford superalgebras and some special elements

Let R be a commutative ring of characteristic not equal to 2.

Let Cr denote the Clifford superalgebra over R generated by odd
elements c1, . . . , cr subject to the relations

c2
i = −1, cicj = −cjci , 1 6 i 6= j 6 r (∗).

Let q ∈ R. The Hecke-Clifford superalgebra Hc
r ,R is the associative

R-superalgebra with the even generators T1, . . . ,Tr−1 and the odd
generators c1, . . . , cr subject to (*) and the following additional
relations:

(Ti − q)(Ti + 1) = 0, TiTi ′ = Ti ′Ti , TiTi+1Ti = Ti+1TiTi+1,

Ticj = cjTi , Tici = ci+1Ti , Tici+1 = ciTi − (q − 1)(ci − ci+1).

Natural basis: {caTw | w ∈ Sr , a ∈ Nr
2} form bases for Hc

r ,R . Here
ca = ca1

1 · · · carr .

Structure constants of generators relative to the natural basis:
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Basic structure constants

ci (c
aTw ) =

{
(−1)ãi−1ca+εiTw , if ai = 0;

(−1)ãi−1+1ca−εiTw , if ai = 1.

Ti (c
aTw ) =


caTiTw , if ai = 0, ai+1 = 0;

ca+εi+1TiTw , if ai = 1, ai+1 = 0;

ca+αiTiTw + (q − 1)(ca − ca+αi )Tw , if ai = 0, ai+1 = 1;

−caTiTw + (q − 1)(ca − ca−εi−εi+1 )Tw , if ai = 1, ai+1 = 1;

We may further break down into to 8 cases using

TiTw =

{
Tsiw (si = (i, i + 1)), if siw > w ;

(q − 1)Tw + qTsiw , if siw < w .

We now use this fundamental structure to build the structure of the
supergroups Uυ(qn), following the roadmap mentioned above:

1 Define special elements in Hc
r ,R : xλ, yλ, cq,i ,j , c

a
λ , cA? , TA? ,

2 Some commutation relations (CR1), (CR2), and (CR3);
3 ....
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Some special elements in Hc
r ,R

The elements xλ, yλ

Denote by Λ(n, r) ⊂ Nn the set of compositions of r with n parts.

Given
λ ∈ Λ(n, r), elements xλ =

∑
w∈Sλ Tw , yλ =

∑
w∈Sλ(−q−1)`(w)Tw ,

where `(w) is the length of w , to define queer permutation modules.

The elements cq,i ,j , c
a
λ

For r > 1 and 1 6 i < j 6 r , we set

cq,i ,j = qj−ici +qj−i−1ci+1+· · ·+qcj−1+cj , c
′
q,i ,j = ci +qci+1+· · ·+qj−icj

For λ = (λ1, . . . , λn) ∈ Λ(n, r) and a ∈ Nn
2, let λ̃k = λ1 + · · ·+ λk and

assume ak 6 λk , for 1 6 k 6 n. Define the following elements in Cr :

ca
λ := (c

q,1,λ̃1
)a1(c

q,λ̃1+1,λ̃2
)a2 · · · (c

q,λ̃N−1+1,λ̃n
)an ,

(ca
λ)′ := (c ′

q,1,λ̃1
)a1(c ′

q,λ̃1+1,λ̃2
)a2 · · · (c ′

q,λ̃N−1+1,λ̃n
)an .

Commutation relations: xλc
a
λ = (ca

λ)′xλ

[4] J. Du and J. Wan, The queer q-Schur superalgebra, J. AustMS, 105 (2018), 316–346.
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Elements defined by matrices
Let

Mn(N|N2) := {A? = (A0̄|A1̄) | A0̄ ∈ Mn(N),A1̄ ∈ Mn(N2)}
and let Mn(N|N2)r be the subset consisting of (A0̄|A1̄) with |A0̄ + A1̄| = r .

1 Given A? = (A0̄|A1̄) ∈ Mn(N|N2)r , define the base of A? to be
A = A0̄ + A1̄.

2 For A, define “double coset” (ro(A), dA, co(A)), where
dA ∈ Sro(A)dASco(A) has minimal length.

3 Associated with A and A1̄, let

ν = νA := (a11, . . . , an1, a12, . . . , an2, . . . , a1n, . . . , ann) ∈ Nn2

α = νA1̄ = (a1̄
11, . . . , a

1̄
n1, . . . , a

1̄
1n, . . . , a

1̄
nn) ∈ (N2)n

2
.

Since a1̄
i ,j 6 ai ,j (i.e., α 6 ν), cA? := cαν ∈ Cr is well-defined. Define

TA? := xλTdAcA?
∑

σ∈DνA∩Sµ

Tσ = xλTdAcA?ΣA.
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Key commutation relations in Hc
r ,R : (CR1),(CR2)&(CR3)

For A = (ai ,j) ∈ Mn(N), 1 6 h 6 n − 1 and 1 6 k 6 n, let

A+
h,k := A + Eh,k − Eh+1,k , if ah+1,k > 0 (move 1 up a row);

A−h,k := A− Eh,k + Eh+1,k , if ah,k > 0 (move 1 down a row);

(1) If ah+1,k > 0, then (CR1)

←−r k+1
h+1−1∑

j=←−r k
h+1

Tλ̃h+1Tλ̃h+2 · · ·Tλ̃h+jTdA = Tλ̃h
Tλ̃h−1 · · ·Tλ̃h−−→r k

h+1Td
A+
h,k

TC
(ãh,k+1,ãh,k+ah+1,k−1).

(CR2) TC
(ãh,k+1,ãh,k+ah+1,k−1)ΣA = TB

(ãh,k ,ãh,k−ah,k+1)ΣA+
h,k
,

where TC
(i,j)

= 1 + Ti + TiTi+1 + · · · + TiTi+1 · · ·Tj , T
B
(j,i)

= 1 + Tj + TjTj−1 + · · · + TjTj−1 · · ·Ti , for i 6 j .

(2) Let A = (ai,j) ∈ Mn(N). If ah,k > 0 and

(CR3) cãrh,k−1+pTdA = TdAcãch−1,k+p (in Hc
r ,R)

for each p ∈ [1, ah,k ], then A is said to satisfy the semi-direct product (SDP)
condition at (h, k).
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r ,R)

for each p ∈ [1, ah,k ], then A is said to satisfy the semi-direct product (SDP)
condition at (h, k).

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 13 / 31



Key commutation relations in Hc
r ,R : (CR1),(CR2)&(CR3)

For A = (ai ,j) ∈ Mn(N), 1 6 h 6 n − 1 and 1 6 k 6 n, let

A+
h,k := A + Eh,k − Eh+1,k , if ah+1,k > 0 (move 1 up a row);

A−h,k := A− Eh,k + Eh+1,k , if ah,k > 0 (move 1 down a row);

(1) If ah+1,k > 0, then (CR1)

←−r k+1
h+1−1∑

j=←−r k
h+1

Tλ̃h+1Tλ̃h+2 · · ·Tλ̃h+jTdA = Tλ̃h
Tλ̃h−1 · · ·Tλ̃h−−→r k

h+1Td
A+
h,k

TC
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(ãh,k+1,ãh,k+ah+1,k−1).

(CR2) TC
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(ãh,k+1,ãh,k+ah+1,k−1)ΣA = TB
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The SDP commutation condition: (CR3)

Definition
Let A = (ai ,j) ∈ Mn(N). If ah,k > 0 and

cãrh,k−1+pTdA = TdAcãch−1,k+p (in Hc
r ,R)

for each p ∈ [1, ah,k ], then A is said to satisfy the semi-direct product
(SDP) condition at (h, k).

If A satisfies the SDP condition at (h, k) for every k ∈ [1, n] (resp.,
h ∈ [1, n]) with ah,k > 0, then A is said to satisfy the SDP condition on
the hth row (resp., kth column).

Theorem
Let A ∈ Mn(N) and h, k ∈ [1, n]. Then A satisfies the SDP condition at
(h, k) if and only if ah,k > 0 and ai ,j = 0, for i > h and j < k (i.e.,

ah,k > 0 and the lower left corner matrix Ah,k

q at (h, k) is 0).

Corollary

Every A = (ai ,j) ∈ Mn(N) satisfies the SDP condition on the 1st column or
nth row.
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3. The queer q-Schur superalgebra (using xλ, yλ) and its
standardisation

As a super analog of the q-Schur algebra or a quantum analog of the
Schur superalgebra of type Q, define the queer q-Schur superalgebra:

Qq(n, r ;R) := EndHc
r,R

( ⊕
λ∈Λ(n,r)

xλH
c
r ,R

)
∼= EndHc

r,R

( ⊕
λ∈Λ(n,r)

yλH
c
r ,R

)
.

In particular, for indeterminate q = υ2, we write
Qq(n, r) := Qq(n, r ;Z[q]) and Qυ(n, r) := Qq(n, r ;Z).

Aim: Construct the natural basis for Qq(n, r ;R).
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Bases for xλH
c
r ,R ∩Hc

r ,Rxµ and Qq(n, r ;R)

Proposition

Suppose λ, µ ∈ Λ(n, r). Then the intersection xλH
c
r ,R ∩Hc

r ,Rxµ is a free
R-module with basis

{TA? | A? ∈ Mn(N|N2)λ,µ}.

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q = Qq(n, r ;R) is a free R-module with a basis given by the set

{φA? | A? ∈ Mn(N|N2)r},

where φA?(xµh) = δµ,co(A)TA?h. In particular, if R is an Z[q]-algebra via
q 7→ q, then Qq(n, r ;R) ∼= Qq(n, r)R := Qq(n, r)⊗A R (base change p’ty).

The basis is called the natural basis for Qq(n, r ;R). To study the regular
module QQ, it is natural to compute φB?φA? for some “generators” φB? .
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Key ingredients for deriving multiplication formulas φB?φA?

For A?,B? ∈ Mn(N|N2)r , let ΣA =
∑

σ∈DνA∩Sµ
Tσ be the “tail term” in

the elements: TA? = xco(A)TdAcA?ΣA. Then

φB?φA?(xco(A)) = xco(B)TdB cB?ΣBTdAcA?ΣA =
∑

M?∈Mn(N|N2)r

γM
?

B?,A?TM? .

In general, this computation is too complicated.

1 We take B? to be simple enough (e.g., ∼ simple roots) such that
dB = 1 and B? is related to the generators the queer quantum
supergroup.

2 We then require some commutation relations in Hc
r ,R :

(CR1) Commuting the tail term ΣB with TdA (so M = A±h,k occurs);
(CR2) Reorganising the tail term ΣA to ΣM ;
(CR3) Commuting cB? (in the odd case) with Td±A

—the SDP condition.
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The quantum queer supergroup and selections of B?

The queer quantum supergroup Uυ(qn) is a Hopf superalgebra over Q(υ)
whose unital associative superalgebra is generated by

even generators: K±1
i ,Ej ,Fj ; odd generators: Kī ,Ej̄ ,Fj̄ ,

for 1 6 i 6 n, 1 6 j 6 n − 1, subject to some ∼40 relations.
These generators correspond to the generators:

(Ej ,j |O), (Eh,h+1|O), (Eh+1,h|O); (O|Ej ,j), (O|Eh,h+1), (O|Eh+1,h).

for the queer Lie superalgebra

qn =

{
A? = (A0̄|A1̄) :=

(
A0̄ A1̄

A1̄ A0̄

)
| A,B ∈ Mn(C)

}
Thus, we compute φB?φA? with A? arbitrary and B? being one of the

following matrices:

The even cases: (Ej ,j |O), (Eh,h+1|O), (Eh+1,h|O);

The odd cases: (O|Ej ,j), (O|Eh,h+1), (O|Eh+1,h).
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fMFs—the even case (almost done in 2014)
Let
D?
µ := (µ|O), E?h,λ := (λ− Eh+1,h+1 + Eh,h+1|O), F ?h,λ := (λ− Eh,h + Eh+1,h|O).

Theorem
Let h ∈ [1, n − 1] and A? = (A0̄|A1̄) = (a0̄

i ,j |a1̄
i ,j) ∈ Mn(N|N2)r . Assume

A = A0̄ + A1̄ and −→r k
h = −→r k

h(A). Then, for λ, µ ∈ Λ(n, r) and ε = δλ,ro(A),
the following multiplication formulas hold in Qq(n, r ;R):

(1) φD?µφA? = δµ,ro(A)φA? , φA?φD?µ = δµ,co(A)φA? (D?
µ := (µ|O)).

(2) φE?h,λφA? = ε
n∑

k=1

{
q
−→r k

h+a1̄
h+1,k [[a0̄

h,k + 1]]
q
φ(A0̄+Eh,k−Eh+1,k |A1̄)

+ q
−→r k

hφ(A0̄|A1̄+Eh,k−Eh+1,k )

+ q
−→r k

h−1[[ah,k + 1]]q,q2φ(A0̄+2Eh,k |A1̄−Eh,k−Eh+1,k )

}
.

(3) φF?h,λφA? = ε

n∑
k=1

{
q
←−r k

h+1 [[a0̄
h+1,k + 1]]

q
φ(A0̄−Eh,k+Eh+1,k |A1̄) + · · ·

}
.
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fMFs—the odd case

Theorem (The Cartan case)

For h ∈ [1, n] and A? = (A0̄|A1̄) = (a0̄
i ,j |a1̄

i ,j) ∈ Mn(N|N2)r , let

A = A0̄ + A1̄, λ = ro(A), and −→r k
h = −→r k

h(A). Let D?
h̄

= (λ− Eh,h|Eh,h).

1 Assume that A satisfies the SDP condition on the h-th row if h < n.
Then we have in Qq(n, r ;R)

φD?
h̄
φA? =

n∑
k=1

(−1)ã
1̄
h−1,kq

−→r k
h

{
φ(A0̄−Eh,k |A1̄+Eh,k )

− [[ah,k ]]q2φ(A0̄+Eh,k |A1̄−Eh,k )

}
=: sdpHk.

2 In general, we have

φD?
h̄
φA? = sdpHk +

∑
B?∈Mn(N|N2)r
bB?c≺A

f
D?

h̄
,A?

B? φB? (f
D?

h̄
,A?

B? ∈ R).
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The odd positive simple root case

Theorem
Let h ∈ [1, n− 1] and A? = (A0̄|A1̄) = (a0̄

i ,j |a1̄
i ,j) ∈ Mn(N|N2)r with base A,

λ = ro(A), and −→r k
h = −→r k

h(A). Let E ?
h̄

= (λ− Eh+1,h+1|Eh,h+1).

1 Suppose that, for every k ∈ [1, n] such that ah+1,k > 0, A satisfies the

SDP condition at (h, k) if ah,k > 0 and satisfies Ah,k

q = 0 if ah,k = 0.

Then we have in Qq(n, r ;R)

φE?
h̄
φA? =

n∑
k=1

{
(−1)ã

1̄
h−1,kq

−→r k
h+a1̄

h+1,kφ(A0̄−Eh+1,k |A1̄+Eh,k )

+ (−1)ã
1̄
h−1,k+1−a1̄

h,kq
−→r k

h [[a0̄
h,k + 1]]

q
φ(A0̄+Eh,k |A1̄−Eh+1,k )

+ (−1)ã
1̄
h−1,kq

−→r k
h−1+a1̄

h+1,k [[ah,k + 1]]q2,qφ(A0̄+2Eh,k−Eh+1,k |A1̄−Eh,k )

}
=: sdpHe.

2 In general, we have φE?
h̄
φA? = sdpHe +

∑
B?∈Mn(N|N2)r
∃k, bB?c≺A+

h.k

f
E?
h̄
,A?

B? φB? .

The odd negative simple root case is a bit more complicated.
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1̄
h−1,kq

−→r k
h+a1̄

h+1,kφ(A0̄−Eh+1,k |A1̄+Eh,k )

+ (−1)ã
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Standardisation of everything over k = Q(υ)

1 Replacing the endo-algebra Qυ(n, r) = EndHc
r
(Tk(n, r)) by the

superendo-algebra Qυ(n, r), consisting of f : Tk(n, r)→ Tk(n, r) s.t.
f (mh) = (−1)℘(f )℘(h)f (m)h:

2 The natural basis φA? is replaced by the natural basis of superhom.
ΦA? : xµh 7→ (−1)℘(A)·℘(h)δµ,co(A)TA · h.

3 Standardise the elements cq,i ,j and c ′q,i ,j (q = υ2):

cq,i ,j = υ2(j−i)ci + υ2(j−i−1)ci+1 + · · ·+ υ2cj−1 + cj = υj−ioυ,i ,j

4 Define oa
λ similarly. Then cA? = υA0̄·A1̄

oA? (A0̄ · A1̄ =
∑

i ,j a
0̄
i ,ja

1̄
i ,j).

5 Standardise the natural basis ΦA? to the standard (or normalised)
basis

[A?] := υ−∂(A?)ΦA?

where ∂(A?) = `(d+
A )− `(w0,co(A)) + A0̄ · A1̄.

Note that `(d+
A )− `(w0,co(A)) = dimOA =

∑
i>k,j<l ai ,jak,l .
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4. Standard multiplication formulas and their expansions
Recall
D?
µ := (µ|O), E?h,λ := (λ− Eh+1,h+1 + Eh,h+1|O), F ?h,λ := (λ− Eh,h + Eh+1,h|O).

Theorem (The even case)

Let h ∈ [1, n − 1] and A? = (A0̄|A1̄) = (a0̄
i ,j |a1̄

i ,j) ∈ Mn(N|N2)r . Assume

A = A0̄ + A1̄ and −→r k
h = −→r k

h(A). Then, for λ, µ ∈ Λ(n, r) and ε = δλ,ro(A),
the following multiplication formulas hold in Qq(n, r ;R):

(1) [D?
µ][A?] = δµ,ro(A)[A?], [A?][D?

µ] = δµ,co(A)[A?].

(2) [E ?h,λ][A?] = ε
n∑

k=1

υgh(A?,k)
{
υa1̄

h+1,k [a0̄
h,k + 1][(A0̄ + Eh,k − Eh+1,k |A1̄)]

+υ−a
0̄
h+1,k [(A0̄|A1̄ + Eh,k − Eh+1,k)]

−(υ − υ−1)υ−a
0̄
h+1,k

[
ah,k + 1

2

]
[(A0̄ + 2Eh,k |A1̄ − Eh,k − Eh+1,k)]

}
.

(3) [F ?h,λ][A?] = ε

n∑
k=1

υfh(A?,k)
{
υ−a

1̄
h,k [a0̄

h+1,k + 1][(A0̄ − Eh,k + Eh+1,k |A1̄)]

· · · · · ·
}

+ υa0̄
h,k [(A0̄|A1̄ − Eh,k + Eh+1,k)]

− (υ − υ−1)υa0̄
h,k

[
ah+1 + 1

2

]
[(A0̄ + 2Eh+1,k |A1̄ − Eh,k − Eh+1,k)]

}
.
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Standard multiplication formulas—the odd case

We now want the multiplication formulas φX?φA? , where, for λ = ro(A),
X? is one of the matrices

D?
h̄,λ

:= (λ− Eh,h|Eh,h),

E ?
h̄,λ

:= (λ− Eh+1,h+1|Eh,h+1),

F ?
h̄,λ

:= (λ− Eh,h|Eh+1,h).

It is still impossible to find a complete multiplication formula for
[X?][A?] for each X? above. However, we are able to determine the “head
part”! In other word, we have

[X?][A?] = sdpHd + an undetermined big tail.

Perhaps, AI can do it in the near future!
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Theorem (The odd case for positive simple roots)

Let h ∈ [1, n − 1] and A? = (A0̄|A1̄) = (a0̄
i ,j |a1̄

i ,j) ∈ Mn(N|N2)r with base

A = A0̄ + A1̄ and −→r k
h = −→r k

h(A). Let E ?
h̄

= (ro(A)− Eh+1,h+1|Eh,h+1).

1 Suppose that, for every k ∈ [1, n] such that ah+1,k > 0, A satisfies the

SDP condition at (h, k) if ah,k > 0 and satisfies Ah,k

q = 0 if ah,k = 0.

(OK, if h = n.) Then we have in Qs
υ(n, r)

[E?h̄ ][A?] = (−1)p(A?)
n∑

k=1

υgh(A?,k)
{

(−1)ã
1̄
h−1,kυa1̄

h+1,k [A0̄ − Eh+1,k |A1̄ + Eh,k ]

+ (−1)ã
1̄
h−1,k+1−a1̄

h,kυ−a
0̄
h+1,k [a0̄

h,k + 1][A0̄ + Eh,k |A1̄ − Eh+1,k ]

+ (−1)ã
1̄
h−1,kυa1̄

h+1,k (υ − υ−1)

[
ah,k + 1

2

]
[A0̄ + 2Eh,k − Eh+1,k |A1̄ − Eh,k ]

}
= : sdpHe

2 In general, we have [E?h̄ ][A?] = sdpHe +
∑

B?∈Mn(N|N2)r
∃k,B≺A+

h.k

f
E?
h̄
,A?

B? [B?].

For the negative case, [F ?
h̄

][A?] = sdpHf + (υ − υ−1)HHf + lower terms.
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Expansions to long elements in Qs
υ(n, r)

For A? = (A0̄|A1̄) ∈ Mn(N|N2)±, j ∈ Zn, we define the following elements
in Qs

υ(n, r):

A?(j , r) =


∑

λ∈Λ(n,r−|A|)

υλ·j [A0̄ + λ|A1̄], if |A| 6 r ;

0, otherwise.

(4.0.1)

where λ · j =
∑n

i=1 λi ji .
We now lift the short MFs to some long multiplication formulas

(LMFs). For example, the formula for [E ?h,λ][A?] has three summations
which result in three even bigger summations.

Proposition

Let h ∈ [1, n − 1]. For any A? ∈ Mn(N|N2)±, the following multiplication
formulas hold in Qs

υ(n, r) for all r > |A|:

(Eh,h+1|O)(0, r) · A?(j , r) = (I ) + (II ) + (III ),

where
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The long multiplication formulas (cont’d)
(I ) =

∑
k<h

υgh(A?,k)+a1̄
h+1,k [a0̄

h,k + 1](A0̄ − Eh+1,k + Eh,k |A1̄)(j + εh − εh+1, r)

+ υgh(A?,h)+a1̄
h+1,h−jh 1

υ − υ−1

{
[A0̄ − Eh+1,h|A1̄](j + εh − εh+1, r)

− [A0̄ − Eh+1,h|A1̄](j − εh − εh+1, r)
}

+ υgh(A?,h+1)+a1̄
h+1,h+1+jh+1 [a0̄

h,h+1 + 1](A0̄ + Eh,h+1|A1̄)(j , r)

+
∑

k>h+1

υgh(A?,k)+a1̄
h+1,k [a0̄

h,k + 1](A0̄ − Eh+1,k + Eh,k |A1̄)(j , r)

(II ) =
∑
k<h

υgh(A?,k)−a0̄
h+1,k (A0̄|A1̄ − Eh+1,k + Eh,k)(j + εh − εh+1, r)

+ υgh(A?,h)−a0̄
h+1,h(A0̄|A1̄ − Eh+1,h + Eh,h)(j − εh+1, r)

+ υgh(A?,h+1)(A0̄|A1̄ − Eh+1,h+1 + Eh,h+1)(j − εh+1, r)

+
∑

k>h+1

υgh(A?,k)−a0̄
h+1,k (A0̄|A1̄ − Eh+1,k + Eh,k)(j , r)
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The long multiplication formulas (cont’d)
(III ) =∑
k<h

υgh(A?,k)+a0̄
h+1,k

[
ah,k + 1

2

]
(A0̄ + 2Eh,k |A1̄ − Eh,k − Eh+1,k)(j + εh − εh+1, r)

+
υgh(A?,h)+a0̄

h+1,h−2jh

(υ − υ−1)

{υ−1

[2]
(A0̄|A1̄ − Eh,h − Eh+1,h)(j + εh − εh+1, r)

− υ

[2]
(A0̄|A1̄ − Eh,h − Eh+1,h)(j − εh − εh+1, r)

− (A0̄|A1̄ − Eh,h − Eh+1,h)(j − εh+1, r)
}

+ υgh(A?,h+1)(υ − υ−1)

[
ah,h+1 + 1

2

]
(A0̄ +2Eh,h+1|A1̄−Eh,h+1−Eh+1,h+1)(j +εh+1, r)

+
∑

k>h+1

υgh(A?,k)(υ − υ−1)

[
ah,k + 1

2

]
(A0̄ + 2Eh,k |A1̄ − Eh,k − Eh+1,k)(j , r)

There are also explicit formulas for (Eh+1,h|O)(0, r) · (A0̄|A1̄)(j , r), and
for B?(0, r) · (A0̄|A1̄)(j , r), for B? ∈ {(O|Eh,h), (O|Eh+1,h), (O|Eh,h+1)} under the SDP condition.

All coefficients, depending on the entries of A? & j , are independent of r .
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5. The regular module for the quantum queer supergroup

Theorem (1)

For any r > 0, there is an epimorphism π
(r)
Q : Uυ(qn)→ Qs

υ(n, r) s.t.

K±i 7→ (O|O)(±εi , r), Ej 7→ (Ej ,j+1|O)(0, r), Fj 7→ (Ej+1,j |O)(0, r),

Kī 7→ (O|Ei ,i )(0, r), Ej̄ 7→ (O|Ej ,j+1)(0, r), Fj̄ 7→ (O|Ej+1,j)(0, r).

with 1 6 i 6 n, 1 6 j 6 n − 1.

For A? ∈ Mn(N|N2)±, j ∈ Zn, define infinite formal series

A?(j ) =
∑
λ∈Nn

υλ·j [A + λ] =
(
A?(j , r)

)
r>0
∈
∏
r>0

Qs
υ(n, r).

Theorem (2)

These homomorphisms πr induce a superalgebra monomorphism
πQ : Uυ(qn) −→

∏
r>0 Q

s
υ(n, r)

whose image is spanned by {A?(j ) | A? ∈ Mn(N|N2)±, j ∈ Zn} with respect
to which we obtain the matrix representation of the regular module UU.
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

1 The integral Schur–Olshanski duality.

2 Polynomial representations at roots of unity.

3 The bar involution and canonical basis theory. This involves a lot!
Here is a proposed bar involution ῡ = υ−1, Ēi = Ei , F̄i = Fi , K̄j = K−1

j , K̄1̄ = K1̄.

4 The modified quantum queer supergroup and its canonical basis
theory.

5 Semi-simplicity criterion (à la Doty–Nakano, Erdmann–Nakano).
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5 Semi-simplicity criterion (à la Doty–Nakano, Erdmann–Nakano).

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 30 / 31



Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

1 The integral Schur–Olshanski duality.

2 Polynomial representations at roots of unity.

3 The bar involution and canonical basis theory. This involves a lot!
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