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@ Introduction: Motivation and History

© Hecke—Clifford superalgebras and some special elements
9 The queer g-Schur superalgebras and its standardisation
@ Standard multiplication formulas and their expansions
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representation (q = v?):

Ts. si=(ii+1 if siw > w;
T,' TW _ siw (i, i+ 1)), . !
(g—1)Ty+qTsw, ifsiw<w.
From this basic structure together with a sequence of constructions, it is
possible to construct a basis {A(j)}a; for U such that its regular

representation yU is given by explicit multiplication formulas for
En- AG), Fn-AG), Ki-A()

This question was first answered by Beilinson=Lusztig—MacPherson.
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BLM Theorem

Theorem (Beilinson—Lusztig—-MacPherson!!l '90)

The quantum linear group Uy (gl,), generated by K,, KJ1, Ep, Fp, has a
basis

{AG) | A= (aij) € Ma(N)*P%% j = (j;) € Z"}
that satisfies the following multiplication rules:
(1) Ka- A(j) = v A +e,),  A()) - Ko = vWA( + e,);
(2) Ep- AG) = o 5 ay g + 1J(A + Enper) ()
/Uf(h)_.ih_l . .
S —— ((A — Env1,n)U +an) — (A= Epy1n)( + 5/1))
+ Z ’Uf(k)[[ah,k + 1]](A + Eh,k — Eh+1,k)(j + Ozh)

k<h,api1,,k>1

L Z vf(k)m(A + Enk — Eny1.6)U);
k>h+1,ap41k>1

(3) Fre AG) =+

[1] A.A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GLp, Duke Math.J.761
J. Du (UNSW Sydney)
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The Schur(-Weyl) duality

We may view such a construction for a quantum group via its associated

Hecke algebra (3¢ ~» yU) as a new development in the theory of the
Schur-Weyl duality:
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The Schur(-Weyl) duality

We may view such a construction for a quantum group via its associated
Hecke algebra (3¢ ~» yU) as a new development in the theory of the
Schur—Weyl duality:
o For the natural repn V), of gl,, there are commuting actions
Ugl,) ~ V" A &,
@ This defines two algebra homomorphisms

U(gl,) -2 End(VE) <2 C6,.

@ The Schur-Weyl duality (Schur, 1920s, H. Weyl, 1930s) tells
o A double centraliser property: im(¢) = Endcg, (V,2") = S(n, r), the
Schur algebra, and im(¢) = Endy(g, )(V®r);
o A category equivalence: S(n,r)-mod — C&,-mod (n >
the Schur functors;
e A structural connection: 4¢H ~» ygU

Another struct. conn.: presenting g-Schur algebras (Doty—Glaqumto).
Since BLM's construction is geometric, one does not see directly how the

constructions are originated from those in JH.

[2] J. Du, H. Gu and Z. Zhou, Multiplication formulas and semisimplicity for q-Schur superalgebras, Nagoya Math.J. 237 (2020),
98-126.
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100 years of the Schur—Weyl duality

Schur duality!?%”

Sch ur—WeyI duality

quantlzatlon

Schur-Weyl-Brauer duahty 37 Schur—WeyI —Jimbo duality 80

BN
.'\

supeiation Quantum SWE}':duaIi '87 gffnization
Schur—WeyI—Se;geev duality 8 Affine SWJ duality
,’II Super SV\';J duality
Schur—WeyI—OIsIP;anski duali‘cy/92 Schur—Weyl-Hecke uality/18

SWH duality of affine type C'2°
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Schur duality!?%”

Sch un.'—WeyI duality

S quantlzatlon

Schur-Weyl-Brauer duahty 37 Schur—WeyI —Jimbo duality 80

B
.'\

supeiation Quantum SWE}':duaIi '87 gffnization
Schur—WeyI—Se;geev duality 8 Affine SWJ duality
,’II Super SV\';J duality
Schur—WeyI—OIsIP;anski duali‘cy/92 Schur—Weyl-Hecke uality/18

SWH duality of affine type C'2°

The monster is in Western Australia which is 6.3 times large than California!
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Aim of the project

Construct the quantum queer supergroup U, (q,) using Hecke—Clifford
superalgebras JH{. Thus, H¢ plays the role as the Weyl group for a group
with a BN-pair.
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Aim of the project
Construct the quantum queer supergroup U, (q,) using Hecke—Clifford
superalgebras JH{. Thus, H¢ plays the role as the Weyl group for a group
with a BN-pair.
Justification of the project

@ Olshanski (1992) proved that there exist epi-morphisms

Uo(dn) — Endgee C(v)(V(n]n)@)’) for every r > 0.
o D.-Wanl*l proved Endgce C(v)(V(n\n)@) ~ 9, (n, r; C(v)) defined by
queer permutation modules.

Almost 10 year efforts

@ The project started in 2014 during Gu's visit. Since the odd case is
too complicated, we doubted the existence of such a theory.

@ Testing the v = 1 case first.

@ Seeking a new approach to the regular module—the differential
operator approach.

v

This convinced us that there must be a way to solve the problem.
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2. Hecke—Clifford superalgebras and some special elements

@ Let R be a commutative ring of characteristic not equal to 2.

o Let G, denote the Clifford superalgebra over R generated by odd
elements cy, ..., ¢, subject to the relations

c? =1, cic=—cc, 1<i#j<r ().

1
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2. Hecke—Clifford superalgebras and some special elements

@ Let R be a commutative ring of characteristic not equal to 2.

o Let G, denote the Clifford superalgebra over R generated by odd
elements cy, ..., ¢, subject to the relations
?=-1, ccg=—cc, 1<i#j<r ().

1

o Let g € R. The Hecke-Clifford superalgebra iH‘;R is the associative
R-superalgebra with the even generators T1,..., T,—1 and the odd
generators ci, ..., ¢, subject to (*) and the following additional
relations:

(Ti—q)(Ti+1)=0, T;Ty=TsT;, TiTipaTi= TiyaTiTit1,

Tici=¢Ti, Tici=ciq1Ti, Ticip1=¢Ti—(g—1)(ci — ciy1).
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2. Hecke—Clifford superalgebras and some special elements

@ Let R be a commutative ring of characteristic not equal to 2.

o Let G, denote the Clifford superalgebra over R generated by odd
elements cy, ..., ¢, subject to the relations
?=-1, ccg=—cc, 1<i#j<r ().

1

o Let g € R. The Hecke-Clifford superalgebra iH‘;R is the associative
R-superalgebra with the even generators T1,..., T,—1 and the odd
generators ci, ..., ¢, subject to (*) and the following additional
relations:

(Ti—q)(Ti+1)=0, T;Ty=TsT;, TiTipaTi= TiyaTiTit1,
T,'CJ' = Cj T,'./ T,'C,' = Ci+1 T,'./ T,'C,'+1 = Cj T,' — (q — 1)(C,' — C,'+1).

o Natural basis: {c?T,, | w € &,,a € N3} form bases for HS . Here

c?=cit e ’
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2. Hecke—Clifford superalgebras and some special elements

@ Let R be a commutative ring of characteristic not equal to 2.

o Let G, denote the Clifford superalgebra over R generated by odd
elements cy, ..., ¢, subject to the relations

?=-1, ccg=—cc, 1<i#j<r ().

1

o Let g € R. The Hecke-Clifford superalgebra iH‘;R is the associative
R-superalgebra with the even generators T1,..., T,—1 and the odd
generators ci, ..., ¢, subject to (*) and the following additional

relations:
(Ti—q)(Ti+1)=0, T;Ty=TyTi, T;TiyaTi= Tiz1T;Tit1,

Tici=¢Ti, Tici=ciq1Ti, Ticip1=¢Ti—(g—1)(ci — ciy1).

o Natural basis: {c?T,, | w € &,,a € N3} form bases for HS . Here
c?=cit e

@ Structure constants of generators relative to the natural basis:
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Basic structure constants

—1)F-1c?tei T, if a; =0;

(—1)3Hlca—siT,  if g = 1.

C"’—/_,-T,,l,7 if aj = 07 dj+1 = 0;

e T, T,, if a; =1,a;,1 =0;
T"(CaTW) = ata; a a+a; ; o

T Ty, + (g —1)(c? — @) Ty, if a; =0,a;11 =1,

—c?TiTy+(q—1)(c? —c@ =) T, ifa=1a41 =1
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Basic structure constants

—1)F-1c?tei T, if a; =0;

(—1)3Hlca—siT,  if g = 1.

C"’—/_,-T,,l,7 if aj = 07 dj+1 = 0;

e T, T,, if a; =1,a;,1 =0;
T"(CaTW) = ata; a a+a; ; o

T Ty, + (g —1)(c? — @) Ty, if a; =0,a;11 =1,

—c?TiTy+(q—1)(c? —c@ =) T, ifa=1a41 =1

We may further break down into to 8 cases using

Tow (s=(.i+1), if ssw > w;
TiTW = .
(q—1)Tw +qTsw, ifsiw<w.

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 10 /31



Basic structure constants

—1)F-1c?tei T, if a; =0;

(—1)3Hlca—siT,  if g = 1.

C"’—/_,-T,,l,7 if aj = 07 dj+1 = 0;
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T Ty, + (g —1)(c? — @) Ty, if a; =0,a;11 =1,

—c?TiTy+(q—1)(c? —c@ =) T, ifa=1a41 =1

We may further break down into to 8 cases using

Tow (s=(.i+1), if ssw > w;
TiTW = .
(q—1)Tw +qTsw, ifsiw<w.

We now use this fundamental structure to build the structure of the
supergroups U, (q,), following the roadmap mentioned above:

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 10 /31



Basic structure constants

—1)3i-1catei Tw if a;, =0;
(Ty) = ( )N' Ty, ifa
(~1)F a5 = 1.
Ca7—,'TW7 if aj = 07 di+1 = 0;
e T, T, ifaj=1a41=0;
T/(Ca TW) = ata; a a+taj i -
T Ty + (g — 1)(c® — o) Ty, if 3 = 0,111 = 1;

—c?TiTy+(q—1)(c? —c@ =) T, ifa=1a41 =1

We may further break down into to 8 cases using

Tow (s=(.i+1), if ssw > w;
TiTW = .
(q—1)Tw +qTsw, ifsiw<w.

We now use this fundamental structure to build the structure of the
supergroups U, (q,), following the roadmap mentioned above:

© Define special elements in J7 g2 X, ya, Cq,ijr €31 €A Tar,

@ Some commutation relations (CR1), (CR2), and (CR3);

Q ..
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Some special elements in F 5

The elements xy, y»

Denote by A(n, r) C N” the set of compositions of r with n parts.
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Some special elements in F 5
The elements xy, y»

Denote by A(n, r) C N” the set of compositions of r with n parts. Given

A€ N(n,r), elements ) =3 cq, Tw, Vo= ZWEG)\(_q_l)E(W) Tw,
where ¢(w) is the length of w, to define queer permutation modules.
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Some special elements in F 5
The elements xy, y»

Denote by A(n, r) C N” the set of compositions of r with n parts. Given

A€ N(n,r), elements ) =3 cq, Tw, Vo= ZWEG)\(_q_l)E(W) Tw,
where ¢(w) is the length of w, to define queer permutation modules.

a
The elements ¢, ; j, ¢}

Forr>1and 1 <i<j<r, weset

cqij=¢ 'c+d et +agotg, Cij = Citqcit1+-- +d ¢

For A=(A1,...,An) € A(n,r) and @ € N, let A = A1 + - + A and
assume a; < Ag, for 1 < k< n.

v
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Some special elements in F 5
The elements xy, y»

Denote by A(n, r) C N” the set of compositions of r with n parts. Given

A€ N(n,r), elements ) =3 cq, Tw, Vo= ZWEG)\(_q_l)E(W) Tw,
where ¢(w) is the length of w, to define queer permutation modules.

a
The elements ¢, ; j, ¢}

Forr>1and 1 <i<j<r, weset

cqij=¢ 'c+d et +agotg, Cij = Citqcit1+-- +d ¢

For A=(A1,...,An) € A(n,r) and @ € N, let A = A1 + - + A and
assume a, < Ak, for 1 < k < n. Define the following elements in C,:

Ci = (Cq117X1)al(Cq7X1+1,X2)32 o (CCI,XN—1+17Xn)an’
ay/ .__ / a / a .. / _ _)a
(cX) = (Cq,l,xl) I(C%XlJrl,Xz) ’ (Cq7/\/v71+1,>\n) ’
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Some special elements in F 5

The elements xy, y»

Denote by A(n, r) C N” the set of compositions of r with n parts. Given

A€ N(n,r), elements ) =3 cq, Tw, Vo= ZWEG)\(_q_l)E(W) Tw,
where ¢(w) is the length of w, to define queer permutation modules.

a
The elements ¢, ; j, ¢}

Forr>1and 1< /<j<r,weset
Coij = 'c+d et Hagoita, ¢ = ctaciat g

For A=(A1,...,An) € A(n,r) and @ € N, let A = A1 + - + A and
assume a, < Ak, for 1 < k < n. Define the following elements in C,:

Ci = (CCI,I,X1)31(Cq7X1+1,X2)a2 o (CCIaXN—l'i'l:Xn)an’

ay/ ._ ay( -/ 2. (- ~)?
(CA) T (Cq,]-,Xl) l(cq7X1+1,X2) ’ (Cq7/\/v71+1,>\n) .

Commutation relations: x) c3 = (c3)"xy

[4] J. Du and J. Wan, The queer q-Schur superalgebra, J. AustMS, 105 (2018), 316-346.
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Elements defined by matrices
Let

Ma(N|Ny) := {A = (AY A1) | A® € M,(N), Al € Mn(N2)}
and let M,(N|N,), be the subset consisting of (A°|AT) with |A® + Al| = r.
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Elements defined by matrices
Let

Mp(N|Ny) 1= {A = (A% AL) | AY € M\(N), Al € Mo(N2)}
and let M,(N|Ny), be the subset consisting of (A°|A!) with |A® + Al| = r.

@ Given A" = (A6|Ai) € M,(N|Nz),, define the base of A* to be
A=A+ AL
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Elements defined by matrices
Let

Mp(N|Ny) 1= {A = (A% AL) | AY € M\(N), Al € Mo(N2)}
and let M,(N|Ny), be the subset consisting of (A°|A!) with |A® + Al| = r.

@ Given A" = (A6|Ai) € M,(N|Nz),, define the base of A* to be
A=A+ AL

@ For A, define “double coset” (ro(A), da,co(A)), where
da € S,5(4)daSo(a) has minimal length.
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Elements defined by matrices
Let

Mp(N|Ny) 1= {A = (A% AL) | AY € M\(N), Al € Mo(N2)}
and let M,(N|Ny), be the subset consisting of (A°|A!) with |A® + Al| = r.

@ Given A" = (A6|Ai) € M,(N|Nz),, define the base of A* to be
A=A+ AL

@ For A, define “double coset” (ro(A), da,co(A)), where
da € S,5(4)daSo(a) has minimal length.

© Associated with A and Ai, let

2
P n
v=va:=(a11,---,an1,312,--,an2,---,3Ln,---,3nn) €N
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Elements defined by matrices
Let

Mp(N|Ny) 1= {A = (A% AL) | AY € M\(N), Al € Mo(N2)}
and let M,(N|Ny), be the subset consisting of (A°|A!) with |A® + Al| = r.

@ Given A" = (A6|Ai) € M,(N|Nz),, define the base of A* to be
A=A+ AL

@ For A, define “double coset” (ro(A), da,co(A)), where
da € S,5(4)daSo(a) has minimal length.

© Associated with A and Ai, let

2
P n
v=uva:=(a11,.--,an1,312,---,an2,---,alns--->ann) €N

T 1 T T 2
QO =Va10 = (311s s 3n1se s 1py -y ann) € (N2)7.
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Elements defined by matrices
Let

Mp(N|Ny) 1= {A = (A% AL) | AY € M\(N), Al € Mo(N2)}
and let M,(N|Ny), be the subset consisting of (A°|A!) with |A® + Al| = r.

@ Given A" = (A6|Ai) € M,(N|Nz),, define the base of A* to be
A=A+ AL

@ For A, define “double coset” (ro(A), da,co(A)), where
da € S,5(4)daSo(a) has minimal length.

© Associated with A and Ai, let

2
P n
v=uva:=(a11,.--,an1,312,---,an2,---,alns--->ann) €N

T 1 T T 2
QO =Va10 = (311s s 3n1se s 1py -y ann) € (N2)7.

=1

Since aj; < ajj (i,e., a <), cp = ¢ € C, is well-defined.
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Elements defined by matrices
Let

Ma(N|Ny) := {A = (AY A1) | A® € M,(N), Al € Mn(N2)}
and let M,(N|N,), be the subset consisting of (A°|AT) with |A® + Al| = r.

O Given A = (AO|A1 ) € My(N|N3),, define the base of A* to be
A=A 4 AL

@ For A, define “double coset” (ro(A), da,co(A)), where
da € S,5(4)daSo(a) has minimal length.

© Associated with A and Ai, let

2
P n
v=uva:=(a11,.--,an1,312,---,an2,---,alns--->ann) €N
| 1 1 I n?
Oz—l/Al —(all,...,anl,...7aln,...,ann) G (N2)
Since a}’J <ajj(ie, a<v), ca = ¢} € C, is well-defined. Define

TA* = X)\ TdACA* g Ta’ = X\ TdACA*ZA'
(TE'DIIAQGH
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Key commutation relations in 3} p: (CR1),(CR2)&(CR3)
For A= (ajj) € Mp(N), 1<h<n—-1land1<k<n,let

A;:k ‘=A+ Epi — Ent1k, if apy1,6 > 0 (move 1 up a row);

A =A—Epk+ Enp1k, if apk > 0 (move 1 down a row);
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Key commutation relations in 3} p: (CR1),(CR2)&(CR3)
For A= (ajj) € Mp(N), 1<h<n—-1land1<k<n,let

A;:k ‘=A+ Epi — Ent1k, if apy1,6 > 0 (move 1 up a row);

A =A—Epk+ Enp1k, if apk > 0 (move 1 down a row);

(1) If apt1, > 0, then (CRI)

ket
" h1— 1

T~ =TT - T~ g .
Z St Tz TR Toa = T3, 75,0 T3, 7hn TdA;_k TGkt Lanictanau—1
Jj= v h+1
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Key commutation relations in 3} p: (CR1),(CR2)&(CR3)
For A= (ajj) € Mp(N), 1<h<n—-1land1<k<n,let

A;:k ‘=A+ Epi — Ent1k, if apy1,6 > 0 (move 1 up a row);

A =A—Epk+ Enp1k, if apk > 0 (move 1 down a row);

(1) If apt1, > 0, then (CRI)

ket
" h1— 1

o Te —T- T .- T 9
Z Mkt a2 Ty Toa = 75, 75,21 TAF?:HTdA;_k TGkt Lanictanau—1

Jj= v h+1

(CR2) T,

— >
(ah k+1,3h k+ans1,k— 1)2’4 - T(Eh,kysh,k_ah,k"l‘l)zA;k’
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Key commutation relations in 3} p: (CR1),(CR2)&(CR3)
For A= (ajj) € Mp(N), 1<h<n—-1land1<k<n,let

A;:k ‘=A+ Epi — Ent1k, if apy1,6 > 0 (move 1 up a row);

A =A—Epk+ Enp1k, if apk > 0 (move 1 down a row);

(1) If apt1, > 0, then (CRI)

ket
" h1— 1

o Te —T- T .- T 9
Z Mkt a2 Ty Toa = 75, 75,21 TAF?:HTdA;_k TGkt Lanictanau—1

Jj= v h+1

— >
(CR2) (ah k+1,3n k+ant1,k— l)zA - T(Eh,kygh,k—ah,k‘i‘l)zA;.k’

where T(fj):1+T+T'ﬂ+1+ A+ TiTigr - Ty T(?J):1+Tj+TjTj_1+--~+TjTj_lu-T,-,forigj.
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Key commutation relations in 3} p: (CR1),(CR2)&(CR3)
For A= (ajj) € Mp(N), 1<h<n—-1land1<k<n,let

A;:k ‘=A+ Epi — Ent1k, if apy1,6 > 0 (move 1 up a row);

A =A—Epk+ Enp1k, if apk > 0 (move 1 down a row);

(1) If apt1, > 0, then (CRI)

ket
" h1— 1

T —T- T .- T 9
Z et Tz TRy Toa = T3, 75,1 TAF?:HTdA;_k TGkt Lanictanau—1

Jj= v h+1

— 7>
(CR2) (ah k+1,3h k+ans1,k— l)zA - T(Eh,kygh,k—ah,k‘i‘l)zA;.k’
Where 7, = 14 it TiTin oo Tilin o T TG = 1+ T TTja b+ [Ty Ty for i <
(2) Let A= (a,-,j) S M,,(N) If apk > 0 and
(CR3) ¢z, y+pTda = TaaCsz_,,+p  (inF7R)
for each p € [1, a5 k], then A is said to satisfy the semi-direct product (SDP)
condition at (h, k).
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The SDP commutation condition: (CR3)
Definition
Let A= (a,-,j) S Mn(N) If ank > 0 and
C5;77k71+p TdA = TdAC52,17k+P (|n j_CI(E,R)
for each p € [1,ap 4], then A is said to satisfy the semi-direct product
(SDP) condition at (h, k).
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The SDP commutation condition: (CR3)
Definition
Let A= (a,-,j) S Mn(N) If ank > 0 and
g 1tp Ty = TdAC5Z,1,k+p (in j{f,R)

for each p € [1,ap 4], then A is said to satisfy the semi-direct product
(SDP) condition at (h, k).

If A satisfies the SDP condition at (h, k) for every k € [, n] (resp.,
h € [1, n]) with ap x > 0, then A is said to satisfy the SDP condition on
the hth row (resp., kth column).
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The SDP commutation condition: (CR3)
Definition
Let A= (a,-,j) S Mn(N) If ank > 0 and
g 1tp Tdy = TdAC5Z,1,k+p (in j{f,R)

for each p € [1,ap 4], then A is said to satisfy the semi-direct product
(SDP) condition at (h, k).

If A satisfies the SDP condition at (h, k) for every k € [, n] (resp.,
h € [1, n]) with ap x > 0, then A is said to satisfy the SDP condition on
the hth row (resp., kth column).

Theorem
Let A€ M,(N) and h, k € [1,n]. Then A satisfies the SDP condition at

(h, k) if and only if ap > 0 and a;j =0, for i > h and j < k (i.e.,
apk > 0 and the lower left corner matrix ALK at (b, k) is 0).
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The SDP commutation condition: (CR3)
Definition
Let A= (a,-,j) S Mn(N) If ank > 0 and
g 1tp Tdy = TdAC5Z,1,k+p (in j{f,R)

for each p € [1,ap 4], then A is said to satisfy the semi-direct product
(SDP) condition at (h, k).

If A satisfies the SDP condition at (h, k) for every k € [, n] (resp.,
h € [1, n]) with ap x > 0, then A is said to satisfy the SDP condition on
the hth row (resp., kth column).

Theorem
Let A€ M,(N) and h, k € [1,n]. Then A satisfies the SDP condition at

(h, k) if and only if ap > 0 and a;j =0, for i > h and j < k (i.e.,
apk > 0 and the lower left corner matrix ALK at (b, k) is 0).

Corollary

Every A = (a; j) € Mx(N) satisfies the SDP condition on the Ist column or
nth row.

v
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3. The queer g-Schur superalgebra (i) and its
standardisation
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3. The queer g-Schur superalgebra (i) and its
standardisation

As a super analog of the g-Schur algebra or a quantum analog of the
Schur superalgebra of type Q, define the queer g-Schur superalgebra:

Qq(n,r;R) := Endg{iR( @ X2\Hs R)
AeN(n,r)

gEndS{iR( &y )/Ajfi,R)

AeN(n,r)
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3. The queer g-Schur superalgebra (i) and its
standardisation

As a super analog of the g-Schur algebra or a quantum analog of the

Schur superalgebra of type Q, define the queer g-Schur superalgebra:

Qq(n,r;R) := El’ldg{fﬁ( @ X2\Hs R)

AeN(n,r)
~Ends, (D niin).
AeN(n,r)
In particular, for indeterminate q = v2, we write

Qq(n, r) :=Qq(n, r; Z[q]) and Qy(n,r) := Qq(n, r; Z).
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3. The queer g-Schur superalgebra (i) and its
standardisation

As a super analog of the g-Schur algebra or a quantum analog of the

Schur superalgebra of type Q, define the queer g-Schur superalgebra:

Qq(n,r;R) := El’ldg{fﬁ( @ X2\Hs R)

AeN(n,r)
~Ends, (D niin).
AeN(n,r)
In particular, for indeterminate q = v2, we write

Qq(n, r) :=Qq(n, r; Z[q]) and Qy(n,r) := Qq(n, r; Z).

Aim: Construct the natural basis for Qq(n, r; R).

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21

15 /31



Bases for x,H[ r N H; px, and Qy(n, r; R)
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Bases for x\J(5 p N Hs px, and Qq(n, r; R)
Proposition

Suppose A, i € N(n, r). Then the intersection x, 3} g N H gx,, is a free
R-module with basis

{TA* ’ A e Mn(N’NQ))\“u}.
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Bases for x,H[ r N H; px, and Qy(n, r; R)

Proposition

Suppose A, i € N(n, r). Then the intersection x, 3} g N H gx,, is a free
R-module with basis

{TA* ’ A e Mn(N’NQ))\“u}.

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q = Qq(n, r; R) is a free R-module with a basis given by the set

{oa | A" € Mn(NN2),},

where ¢ (x,h) = ueo(A) Tarh.
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Bases for x,H[ r N H; px, and Qy(n, r; R)

Proposition

Suppose A, i € N(n, r). Then the intersection x, 3} g N H gx,, is a free
R-module with basis

{TA* ’ A e Mn(N’NQ))\“u}.

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q = Qq(n, r; R) is a free R-module with a basis given by the set

{oa | A" € Mn(NN2),},

where ¢ a-(xuh) = 0, co(a) Ta-h. In particular, if R is an Z[q]-algebra via
q — q, then Qq(n, r; R) = Qq(n, r)r := Qq(n, r) ®4 R (base change p'ty).
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Bases for x,H[ r N H; px, and Qy(n, r; R)

Proposition

Suppose A, i € N(n, r). Then the intersection x, 3} g N H gx,, is a free
R-module with basis

{TA* ’ A e Mn(N’NQ))\“u}.

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q = Qq(n, r; R) is a free R-module with a basis given by the set

{oa | A" € Mn(NN2),},

where ¢ a-(xuh) = 0, co(a) Ta-h. In particular, if R is an Z[q]-algebra via
q — q, then Qq(n, r; R) = Qq(n, r)r := Qq(n, r) ®4 R (base change p'ty).

The basis is called the natural basis for Qq(n, r; R).
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Bases for x,H[ r N H; px, and Qy(n, r; R)

Proposition
Suppose A, i € N(n, r). Then the intersection x, 3} g N H gx,, is a free
R-module with basis

{TA* ’ A e Mn(N’NQ))\“u}.

Theorem (D.-Wan, 2018 JAustMS)

Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q = Qq(n, r; R) is a free R-module with a basis given by the set

{oa | A" € Mn(NN2),},

where ¢ a-(xuh) = 0, co(a) Ta-h. In particular, if R is an Z[q]-algebra via
q — q, then Qq(n, r; R) = Qq(n, r)r := Qq(n, r) ®4 R (base change p'ty).

The basis is called the natural basis for Qq(n, r; R). To study the regular
module ¢Q, it is natural to compute ¢ @4 for some “generators’ ¢pg-.
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Key ingredients for deriving multiplication formulas ¢g-@ 4
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|N2),, let Xa =) T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA-

0€Dy,NG,
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Ny),, let X4 = ZUEQVAHGM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

B P (Xeo(A)) = Xco(B) Tds €828 TdsCar T
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Ny),, let X4 = ZUEQVAHGM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

B Pa (Xeo(A)) = Xeo(B) TdgCB 2B TdsCartn = Z 'YBM**,A* T
M+ € Mo (N|Ny),
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Ny),, let X4 = ZUE'D,/AmGM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

%l
B Pa (Xeo(A)) = Xeo(B) TdgCB 2B TdsCartn = Z Vo T
M+-eM,(N|N2),
In general, this computation is too complicated.

© We take B* to be simple enough (e.g., ~ simple roots) such that
dg =1 and B* is related to the generators the queer quantum
supergroup.
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Np),, let X4 = ZUE'DVAHGM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

%l
B P a (Xeo(A)) = Xeo(B) TdgCB 2B TdsCan = Z Vo T
M+-eM,(N|N2),
In general, this computation is too complicated.

© We take B* to be simple enough (e.g., ~ simple roots) such that
dg =1 and B* is related to the generators the queer quantum
supergroup.
@ We then require some commutation relations in J7 p:
(CR1) Commuting the tail term X with T4, (so M = A,fk occurs);
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Ny),, let X4 = ZUE'DI/AQSM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

B P a (Xeo(A)) = Xeo(B) TdgCB 2B TdsCan = Z 'YBM**,A* T
M+ € Mo (N|Ny),

In general, this computation is too complicated.

© We take B* to be simple enough (e.g., ~ simple roots) such that
dg =1 and B* is related to the generators the queer quantum
supergroup.

@ We then require some commutation relations in J7 p:

(CR1) Commuting the tail term X with T4, (so M = A,fk occurs);
(CR2) Reorganising the tail term X4 to ;
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Np),, let X4 = ZUE'DVAHGM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

B P a (Xeo(A)) = Xeo(B) TdgCB 2B TdsCan = Z 'YBM**,A* T
M+ € Mo (N|Ny),

In general, this computation is too complicated.
© We take B* to be simple enough (e.g., ~ simple roots) such that
dg =1 and B* is related to the generators the queer quantum
supergroup.
@ We then require some commutation relations in J7 p:
CR1) Commuting the tail term Xg with Ty, (so M = A,fk occurs);

(
(CR2) Reorganising the tail term X4 to ;
(CR3) Commuting cg- (in the odd case) with Td;\t—the SDP condition.
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Key ingredients for deriving multiplication formulas ¢g-@ 4
For A, B* € Mp(N|Ny),, let X4 = ZUE'DI/AQSM T, be the “tail term” in
the elements: Txp = co(A) TdACA*ZA- Then

%l
B P a (Xeo(A)) = Xeo(B) TdgCB 2B TdsCan = Z Vo T
M+-eM,(N|N2),
In general, this computation is too complicated.

© We take B* to be simple enough (e.g., ~ simple roots) such that
dg =1 and B* is related to the generators the queer quantum
supergroup.

@ We then require some commutation relations in J7 p:

(CR1) Commuting the tail term X with T4, (so M = A,fk occurs);
(CR2) Reorganising the tail term X4 to ;
(CR3) Commuting cg- (in the odd case) with Td;\t—the SDP condition.

For the above goals, we need the following:
@ The permutation dy;
@ A reduced expression of dj.
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The quantum queer supergroup and selections of B*
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The quantum queer supergroup and selections of B*

The queer quantum supergroup U, (q,) is a Hopf superalgebra over Q(v)
whose unital associative superalgebra is generated by

even generators: K,-i17Ej,F-; odd generators: K, EJT, Ff,

for 1 <i<n 1< < n—1, subject to some ~40 relations.
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The quantum queer supergroup and selections of B*
The queer quantum supergroup U, (q,) is a Hopf superalgebra over Q(v)
whose unital associative superalgebra is generated by

even generators: K,-i17Ej,Fj; odd generators: K, EJT, Ff,

for1 <i<n1l<j < n—1, subject to some ~40 relations.
These generators correspond to the generators:

(Ejj10), (Enns110), (Eny1,n10);  (OIlEj ), (OlEnnt1), (O|Ensa,n)-

for the queer Lie superalgebra

Gn = {A* = (A%)AL) = <A6 Ai) | A, B e M,,((C)}

Al A0
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The quantum queer supergroup and selections of B*
The queer quantum supergroup U, (q,) is a Hopf superalgebra over Q(v)
whose unital associative superalgebra is generated by

even generators: K,-il,Ej,Fj; odd generators: K, EJT, Ff,

for1 <i<n1l<j < n—1, subject to some ~40 relations.
These generators correspond to the generators:
(Ej41O), (Enn+1]0), (En1,n|O); (OIEjj), (OlEhpt1), (OlEp1,n)-
for the queer Lie superalgebra
. _ - Af) Ai
qn = {A = (A%AY) = <A1 A5> | A,B € M,,((C)}
Thus, we compute ¢g-pa with A arbitrary and B* being one of the

following matrices:

The even cases: (E;j|O), (Ennt+1]|0), (Ent1,n|O);

The odd cases: (O|E; ), (O|Enn+1), (O|Ept1,n)-
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fMFs—the even case (almost done in 2014)
Let
D} = (u[0), Ej\ := (A= Epy1,n1+ Enpi1]O), Fpy = (A — Enn + Ent1,n|O).
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fMFs—the even case (almost done in 2014)

Let

D} = (u[0), Ej\ := (A= Epy1,n1+ Enpi1]O), Fpy = (A — Enn + Ent1,n|O).
Theorem o o

Let he 1, n— 1] and A = (A%|A") = (a0)]a; ;) € Ma(N|Ny),. Assume
A=A+ Al and T)ﬁ = _r>ﬁ(A) Then, for X\, i € N(n,r) and & = 6, 1o(4),
the following multiplication formulas hold in Qq(n, r; R):
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fMFs—the even case (almost done in 2014)

Let
D} = (u[0), Ej\ := (A= Epy1,n1+ Enpi1]O), Fpy = (A — Enn + Ent1,n|O).

Theorem o o

Let he 1, n— 1] and A = (A%|A") = (a0)]a; ;) € Ma(N|Ny),. Assume
A=A+ Al and T)ﬁ = _r>ﬁ(A) Then, for X\, i € N(n,r) and & = 6, 1o(4),
the following multiplication formulas hold in Qq(n, r; R):

(1) ¢D;¢A* = 5u,ro(A)¢A*7 ¢A*¢D; = 5M,CO(A)¢A* (D; = (M|O))

v

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 19/31



fMFs—the even case (almost done in 2014)

Let
D} = (u[0), Ej\ := (A= Epy1,n1+ Enpi1]O), Fpy = (A — Enn + Ent1,n|O).

Theorem o o
Let h e [1,n— 1] and A = (A°|AY) = (a,|a} ;) € My(N|N2),. Assume

A=A+ Al and T)ﬁ = _r>ﬁ(A) Then, for X\, i € N(n,r) and & = 6, 1o(4),

the following multiplication formulas hold in Qq(n, r; R):

(1) ¢D;¢A* = 5u,ro(A)¢A*7 ¢A*¢D; = ,u,co(A)(éA* (D; = (M|O))

n
-k 1 =
+ 0
(2) ¢Eﬁ,A¢A* =€ Z {q T [[ahvk + 1]]q¢(A6+Eh,k_Eh+1,k|Ai)
k=1

7
+q ¢(A6|Ai+Eh,k—Eh+1,k)

vk
rp—1 _ -
T4 [an.x + 1]]q7q2¢(A0+2Eh,k‘Al*Eh,k*Ethl,k)}'

v
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fMFs—the even case (almost done in 2014)

Let
D} = (u[0), Ej\ := (A= Epy1,n1+ Enpi1]O), Fpy = (A — Enn + Ent1,n|O).

Theorem o o
Let h e [1,n— 1] and A = (A°|AY) = (a,|a} ;) € My(N|N2),. Assume

A=A+ Al and T)ﬁ = _r>ﬁ(A) Then, for X\, i € N(n,r) and & = 6, 1o(4),

the following multiplication formulas hold in Qq(n, r; R):

(1) ¢pzda = 6pro(a)Par Padps = O co(ayPa (D) := (1]0)).

n
-k 1 =
+ 0
(2) ¢Eﬁ,A¢A* =€ Z {q T [[ahvk + 1]]q¢(A6+Eh,k_Eh+1,k|Ai)
k=1

7
+q ¢(A6|Ai+Eh,k—Eh+1,k)

vk
rp—1 _ -
T4 [an.x + 1]]q7q2¢(A0+2Eh,k‘Al*Eh,k*Ethl,k)}'

n
—k =
(3) ¢F; da =¢ > {q e CR 1 Pa0_E, y+Eper ATy T }
k=1

v
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fMFs—the odd case

Theorem (The Cartan case)
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fMFs—the odd case

Theorem (The Cartan case)

For h & [1,n] and A = (A|AL) = (20]al ;) € Mn(N|Ny),, le

A=A+ AL, \ =10(A), and V) = T i(A). Let D = (A — E,,,h|E,,,,,).
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fMFs—the odd case

Theorem (The Cartan case)
For h & [1,n] and A = (Af’\Ai) (20]a};) € Ma(N|Np),, le
A=A+ AL, \ =10(A), and V) = T i(A). Let D = (A — E,,yhth,,,).

@ Assume that A satisfies the SDP condition on the h-th row if h < n.
Then we have in Qq(n, r; R)

n

bz pa = > (—1)52*“(7

k=1

{é(AG*Eh,klAiJrEh,k)

- |[ah’k]]q2¢(A6+Eh,k‘AifEh,k)} = SDPHR‘
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fMFs—the odd case

Theorem (The Cartan case)
For h & [1,n] and A = (Af’\Ai) (20]a};) € Ma(N|Np),, le
A=A+ AL, \ =10(A), and V) = T i(A). Let D = (A — E,,yhth,,,).

@ Assume that A satisfies the SDP condition on the h-th row if h < n.
Then we have in Qq(n, r; R)

n

bz pa = > (—1)52*“(7

k=1

{é(AG*Eh,HALrEh,k)

- |[ah’k]]q2¢(A6+Eh,k‘AifEh,k)} = SDPHR‘

@ In general, we have

_ D* A* D* A
Sp:da = soplK+ Y fp"" g (fz" €R).
B*€M,(N|Ng),
|B]<A

.

™ = = = et
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The odd positive simple root case
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The odd positive simple root case
Theorem

A =r0(A), and =7}

Let he [1,n—1] and A = (A°|Al) = (20,]al;) € Mn(N|Ny), with base A,

(A= Ens1,h41] 1)
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The odd positive simple root case
Theorem

Let he[1,n— 1] andA* = (A%|AL) = (a2;]al ;) € My(N|N2), with base A,
A =10(A), and ¥y = T (A). Let E2 = (A — Eny1nr1lEnps1)

@ Suppose that, for every k € [1, n] such that apy1 x > 0, A satisfies the

SDP condition at (h, k) if apx > 0 and satisfies ARk — o if apk=0
Then we have in Qq(n, r; R)

n

k=1

£l _r>k+ai
¢Eﬁ*¢A* - Z {(_1) S Epy1,k|AT+Ep i)

1 1 —k =
+( 1)3;, 1kt ah’quhﬂ:a?‘]k+1]] ¢(A6+Ehk|Ai Eh+1k)
+( 1)3117 lquh 1+3h+1 kIIahk+1]]

A0+2Eh k—Ehi1,4|AT—E} k)}
= SDPHE‘
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The odd positive simple root case
Theorem

Let he [1,n—1] and A = (A°|Al) = (20,]al;) € Mn(N|Ny), with base A,
A= I'O( ) and _>h = %k(A) Let E* = ()\ —Enps h+1’Eh h+1)

@ Suppose that, for every k € [1, n] such that apy1 x > 0, A satisfies the

SDP condition at (h, k) if apx > 0 and satisfies ARk — o if apk=0
Then we have in Qq(n, r; R)

n

k=1

£l _r>k+ai
¢Eﬁ*¢A* - Z {(_1) S Epy1,k|AT+Ep i)

3 o R P _ ,
+ (—1)%h-1k mkq " hfap . +1] ¢(A0+E,,k|A1 Eni1x)
3t v 1+a
+ (—1)%-1xq h— h+1k|[ahk+1]] A0+2Ehk Eps1 i Al Ehk)}
= SDPHE‘ Er
© In general, we have ¢g: pp = qpHE + Z for " dp.

B €M, (N|Ny),
Ik, |B*] <A;k
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The odd positive simple root case
Theorem o o

Let h € [1,n—1] and A = (A°|AL) = (aQ.|a1-) € M,(N|Nz), with base A,
A =r0(A), and _>h = _>k(A) Let EF

(A — Eny1,ht1] Enpra)-
@ Suppose that, for every k € [1, n] such that apy1 x > 0, A satisfies the

SDP condition at (h, k) if apx > 0 and satisfies ARk — o if apk=0
Then we have in Qq(n, r; R)

n

k=1

£l _r>k+ai
¢Eﬁ*¢A* - Z {(_1) S Epy1,k|AT+Ep i)

1 —k _ =
+( 1)3;, 1kt ah,kql’hﬂagk+1]] ¢(A6+Ehk|Ai
3k v 1+a
+( ]_) h— 1kq h h+1k|Iahk+1]] A0+2Ehk Eh+1k|A1 Ehk)}
= SDPHE‘ -
© In general, we have ¢g:pa = s HE + Z for ™ g

B €M, (N|Ny),
Ik, |B*] <A;k

—Ehy1,k)

The odd negative simple root case is a bit more complicated
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Standardisation of everything over k = Q(v)

@ Replacing the endo-algebra Q,,(n, r) = Endgc(Tik(n, r)) by the
superendo-algebra Q,,(n, r), consisting of f : Ty(n,r) — Tg(n, r) s.t.
f(mh) = (=1)°eM £ (m)h:
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Standardisation of everything over k = Q(v)

@ Replacing the endo-algebra Q,,(n, r) = Endgc(Tik(n, r)) by the
superendo-algebra Q,,(n, r), consisting of f : Ty(n,r) — Tg(n, r) s.t.
f(mh) = (=1)°eM £ (m)h:

@ The natural basis ¢4 is replaced by the natural basis of superhom.

Gp : xuhr (1)) Ta b
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Standardisation of everything over k = Q(v)

@ Replacing the endo-algebra Q,,(n, r) = Endgc(Tik(n, r)) by the
superendo-algebra Q,,(n, r), consisting of f : Ty(n,r) — Tg(n, r) s.t.
f(mh) = (=1)°eM £ (m)h:

@ The natural basis ¢4 is replaced by the natural basis of superhom.

Gp : xuhr (1)) Ta b

@ Standardise the elements ¢ ;; and ¢/ ; ; (q = v?):

Cq,ij = UZ(J_l)C,' + ’U2(J_’_1)C,'+1 +---+ ’U2Cj_1 + G = ’U]_’Ov’,"j
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Standardisation of everything over k = Q(v)

@ Replacing the endo-algebra Q,,(n, r) = Endgc(Tik(n, r)) by the
superendo-algebra Q,,(n, r), consisting of f : Ty(n,r) — Tg(n, r) s.t.
f(mh) = (=1)°eM £ (m)h:

@ The natural basis ¢4 is replaced by the natural basis of superhom.

Gp : xuhr (1)) Ta b

@ Standardise the elements ¢ ;; and ¢/ ; ; (q = v?):

Cq,ij = UZ(J_l)C,' + ’U2(J_’_1)C,'+1 +---+ ’U2Cj_1 + G = ’U]_’Ov’,"j

; i _ ,ALAL 0.1 _ 0.1
@ Define of similarly. Then ca = v ox (A”-A =37 a3 )
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Standardisation of everything over k = Q(v)

o

Replacing the endo-algebra Q,,(n, r) = Endgce(Ti(n, r)) by the

superendo-algebra Q,,(n, r), consisting of f : Ty(n,r) — Tg(n, r) s.t.

f(mh) = (=1)°eM £ (m)h:

The natural basis ¢4 is replaced by the natural basis of superhom.
Gp : xuhr (1)) Ta b

Standardise the elements ¢4 ;j and cq ij(a= v2):

Cq,ij = 'UZ(J ')C,' + ’U2(J i- 1)C,'_~_1 +---+ ’U2Cj_1 +¢ = 'U]_’Ov,i.j

Define of similarly. Then ca = VA o (AD - AL = Zu P;a )
Standardise the natural basis ® 4 to the standard (or normallsed)
basis

[A] = v 2F )0,
where 9(A*) = ((d) — £(wp cof ))+A0~A1.
Note that E(d ) e(WO,CO(A)) =dimOy4 = Zi}k,j<l aj jak,I-
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4. Standard multiplication formulas and their expansions

Recall
D; = (,LL‘O), E;;,)\ = ()\ - Eh+1,h+1 + Eh,h+1|O), F;,)\ = (/\ — Eh,h + Eh+1,h|o)-
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4. Standard multiplication formulas and their expansions
Recall
D = (u[0), Ef = (A — Ent1,p+1 + Ennt1]0), Fy := (A — Enn + Ent1,4]O0).

Theorem (The even case)

Let h € 1, n— 1] and A = (A°|A') = (a?,]a} ;) € Ma(N|N2),. Assume
A= A%+ Al and 7: = ?z(A) Then, for A\, € N(n, r) and & = 6, ;o(a),
the following multiplication formulas hold in Q4(n, r; R):

N
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4. Standard multiplication formulas and their expansions

Recall

D} = (u]0), Ejy\ = (A — Ent1,p+1 + Enpt1]0), Fy = (A — Eppn + Eny1,n|O).
Theorem (The even case)

Let he [1,n—1] and A" = (A°|A!) = (&, a7 ;) € Mp(N|N2),. Assume
A=Ad+ Al and 7: = 7z(A) Then, for A\, € N(n, r) and & = 6, ;o(a),

the following multiplication formulas hold in Q4(n, r; R):
(1) [DAAT = bproa) AT, [ANIDE] = 0puco(a) (AT
A GESS A0 ool + 1][(A + Bk — EnerlAD)
k=1
%—'tf""?”rl’k[(A(_)IAi + Epk — Ent1.4)]

apk+1 5 7
mk ] [(A° + 2Ep « | A" — Epy — Eh+1,k)]}-

(1 — oo Bk
(v—v v 5

n
" 5 5 T
(3) [FAlIAT =) v ’“{v " [ahs 1k + 1I(A° = Ense + Ens1k|AY)]
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Standard multiplication formulas—the odd case
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Standard multiplication formulas—the odd case

We now want the multiplication formulas ¢x«pa-, where, for A = ro(A),

X* is one of the matrices

*
D A

J. Du (UNSW Sydney)

= (A — Enn|Enn),
Ef s = (A= Enahial Enpra),
FI_::A = ()\ — Eh,h’Eh+1,h)-
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Standard multiplication formulas—the odd case

We now want the multiplication formulas ¢x«pa-, where, for A = ro(A),
X* is one of the matrices

D;‘T’)\ = ()\ — Eh,h’Eh,h)a
Ef s = (A= Enahial Enpra),
FI_::A = ()\ — Eh,h’Eh+1,h)-
It is still impossible to find a complete multiplication formula for

[X*][A*] for each X* above. However, we are able to determine the "head
part”! In other word, we have

[X*][A] = sppHd + an undetermined big tail.
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Standard multiplication formulas—the odd case

We now want the multiplication formulas ¢x«pa-, where, for A = ro(A),
X* is one of the matrices

D;‘T’)\ = ()\ — Eh,h’Eh,h);

Ef s = (A= Enahial Enpra),

FI_::A = ()\ — Eh,h’Eh+1,h)-

It is still impossible to find a complete multiplication formula for
[X*][A*] for each X* above. However, we are able to determine the "head
part”! In other word, we have

[X*][A] = sppHd + an undetermined big tail.

Perhaps, Al can do it in the near future!
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Theorem (The odd case for positive simple roots)
Let h e [1,n— 1] and A = (A°|AY) = (a,|a} ;) € My(N|N2), with base
A=A+ Al and Vi = T3(A). Let Ef = (x0(A) — Epiapi1|Enpst)-
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Theorem (The odd case for positive simple roots)

Let h € [1,n—1] and A" = (A% Al) = (a2 |al;) € M,(N|N2), with base
A=A+ Al and Vi = T3(A). Let Ef = (x0(A) — Epiapi1|Enpst)-
@ Suppose that, for every k € [1, n] such that apy1 4 > 0, A satisfies the
SDP condition at (h, k) if apx > 0 and satisfies Aﬁl’k =0 ifapk =0.

(OK, if h=n.)

J. Du (UNSW Sydney) The queer quantum supergroup

ICRA21

25 /31



Theorem (The odd case for positive simple roots)
Let h i 1, ni— 1] ‘If A*:k(A6|AT) = (a0}]a};) € Mn(N|N2), with base
A=A+ A" and r p=1r h(A) Let Eii; = (I‘O(A) — Eh+1,h+1|Eh,h+1)-
@ Suppose that, for every k € [1, n] such that apy1 4 > 0, A satisfies the
SDP condition at (h, k) if apx > 0 and satisfies Aﬁl’k =0 ifapk =0.
(OK, if h = n.) Then we have in Q3 (n, r)

[E71IAT = (~1)2) S osl A (1)hsuhad A0 — By AT + End
k=1
+ (— 1) g @) |+ (A0 4 Ep k| AL — Epya ]

ank+1

+ (_1)3;17_1*1]3,1,“1,((1) . Uﬁl) [ )

] [A® 4+ 2B — Epy1 x| AT — Eni]

= gppHE
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Theorem (The odd case for positive simple roots)
Let h i 1, ni— 1] ‘If A*:k(A6|AT) = (a0}]a};) € Mn(N|N2), with base
A=A+ A" and r p=1r h(A) Let Eii; = (I‘O(A) — Eh+1,h+1|Eh,h+1)-
@ Suppose that, for every k € [1, n] such that apy1 4 > 0, A satisfies the
SDP condition at (h, k) if apx > 0 and satisfies Aﬁl’k =0 ifapk =0.
(OK, if h = n.) Then we have in Q3 (n, r)

[EFIAT = (1P 30 o O (1) rimhoas A — By 4 AT + By i)
k=1

+ (— 1) g @) |+ (A0 4 Ep k| AL — Epya ]

ank+1

+ (_1)3;17_1*1]3,1,“1,((1) . Uﬁl) [ )

] [A® 4+ 2B — Epy1 x| AT — Eni]

= gppHE

@ In general, we have [Ef]IA] = o, i+ Y 57 (B]
B*eM,(N|N,),
Ik, B<A},
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Theorem (The odd case for positive simple roots)
Let h i [1, ni— 1] ‘If A*:k(A6|AT) = (a0}]a};) € Mn(N|N2), with base
A=A+ A" and r p=1r h(A) Let Eii; = (I‘O(A) — Eh+1,h+1|Eh,h+1)-
@ Suppose that, for every k € [1, n] such that apy1 4 > 0, A satisfies the
SDP condition at (h, k) if apx > 0 and satisfies Aﬁl’k =0 ifapk =0.
(OK, if h = n.) Then we have in Q3 (n, r)

[EFIAT = (1P 30 o O (1) rimhoas A — By 4 AT + By i)
k=1

+ (— 1) g @) |+ (A0 4 Ep k| AL — Epya ]

ank+1

+ (—l)g’i“l“vahlvk(v — ’Ufl) [ 5

] [A° + 2E;  — Eps1.| Al — Ep ]

= gppHE

@ In general, we have [Ef]IA] = o, i+ Y 57 (B]
B € M,(N|N2),
Ik, B<A},

For the negative case, [FZ][A] = ¢ppHF + (v — v HHHF + lower terms,
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Expansions to long elements in Q; (n, r)
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Expansions to long elements in Q; (n, r)

For A* = (AY|A) € M, (N|Np)¥, j € Z", we define the following elements
in Q% (n, r):

ST oM L NALL if A<
A(J,r) = < AeN(n,r—|A])

(4.0.1)
07

otherwise.
where X-j =371 \iji.
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Expansions to long elements in Q; (n, r)
For A~ = (AY|Al) € M,(N|N,)¥, j € Z", we define the following elements
in Q% (n, r):
ST oM L NALL if A<
A, r) = reA(nr—|Al) (4.0.1)
0, otherwise.
where X-j =371 \iji.
We now lift the short MFs to some long multiplication formulas

(LMFs). For example, the formula for [E} | |][A"] has three summations
which result in three even bigger summations.
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Expansions to long elements in Q; (n, r)
For A~ = (AY|Al) € M,(N|N,)¥, j € Z", we define the following elements
in Q% (n, r):
ST oM L NALL if A<
A, r) = reA(nr—|Al) (4.0.1)
0, otherwise.
where X-j =371 \iji.

We now lift the short MFs to some long multiplication formulas
(LMFs). For example, the formula for [Ej \][A"] has three summations
which result in three even bigger summations.

Proposition
Let h € [1,n— 1]. For any & € M,(N|N;)*, the following multiplication
formulas hold in Qg (n, r) for all r > |A]:

(Enp1]O)(0,r) - A(j, r) = (1) + (1) + (1IT),

where

v

— — = = >yt

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 26 /31



The long multiplication formulas (cont'd)

Z gh(A", k)+ah+1k[a +1](A —Eh+1k+Ehk|A )U + €n — €nt1,1)
k<h

1

v —U

4 Ugh(A*,h)+a}7+17h—jh {[A — Eh+1 h’A ]( + €p — €py1,r )

— [AO — Eh+1,h‘A1](j — €p — €Ep41, r)
+ ,Ugh(A*7h+1)+3}1+1,h+1+jh+1 [32,h+1 + 1](A6 + Eh7h+1|Ai)(j7 r)

x 1 0 0 1 H
+ Y o8 WOTRakE) | +1)(A° = Enpak + Enkl AT 1)
k>h+t1

1y =3 o8 X =-R k(WAL — By gy + En)(j + €h — €1, 1)
k<h

+ ,Ugh(A*vh)_angl,h(Aﬁ|Ai — Eh+1,h + Eh’h)(j — €ht1, r)
+ oD (A AL B 4 ) — €hirnr)

+ Z (A k)~ ah+1 k(AO|A1 Eh+17k + Eh,k)(j? r)
k>h+1
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The long multiplication formulas (cont'd)
(1) =

* 0 ank + 1 G 7 .
ngh(A k) + h+1,k |: ) :| (AO + 2Eh,k‘A1 _ Eh,k _ Eh+1,k)(.l +ep— €hit, I’)
k<h

Ugh(A*’h)+32+1,h*2jh -

0y A1 _ . _
+ (= ’U_l) { ] (A |A* — Enh — Ent1.0)(J + €n — €nt1, 1)

(AO\Al Ennh— Eny1,0)(J — €n — €ng1,7)

o
— (A" = Epp — Eny1n) — €nia,r)}

_1.\] @ +1 5 7 .
+ Ugh(A h+1( 1) [ h,h+1 ] (A0+2Eh,h+1|A1—Eh,h+1—Eh+1,h+1)(J+€h+17 r)

N 1\ | ank+1 5 i :
+ Y W R — v { h’k2 } (A% + 2Ep k| A" — Epic — Ensri) (. 1)
k>h+1

J. Du (UNSW Sydney) The queer quantum supergroup ICRA21 28 /31



The long multiplication formulas (cont'd)
(1) =

* 0 ank + 1 G 7 .
ngh(A k) + h+1,k |: ) :| (AO + 2Eh,k‘A1 _ Eh,k _ Eh+1,k)(.l +ep— €hit, I’)
k<h

,Ugh(A*’h)+32+1,h*2jh -

T s U_1) {5 B (AO|A1 Enh — Ent1,n)U + €n — €ns1, 1)
7 (AO\Al Enh — Ent1,n)U — €n — €ny1, 1)
— (AYAT — Epp — Enprn)( — €nrar)}
+ o8y — ) [ah e 1] (A"+2Ep 11 |AT = Epps1— Eninnia) +ens, 7

N 1\ | ank+1 5 i :
+ Y W R — v { h’k2 } (A% + 2Ep k| A" — Epic — Ensri) (. 1)
k>h+1

There are also explicit formulas for (Ep41,4/O)(0,r) - (A6|Ai)( j, r), and

for B*(0, r) - (AY|AL)(j, r), for B* € {(O|Eh.1), (O|Ens1.1)s (O1En h41)} under the SDP condition.
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The long multiplication formulas (cont'd)
(1) =

* 0 ank + 1 G 7 .
ngh(A k) + h+1,k |: ) :| (AO + 2Eh,k‘A1 _ Eh,k _ Eh+1,k)(.l +ep— €hit, r)
k<h

Ugh(A*vh)+32+1,h*2jh -

T s U_1) {5 B (AO|A1 Enh — Ent1,n)U + €n — €ns1, 1)
7 (AO\Al Enh — Ent1,n)U — €n — €ny1, 1)
— (AYAT — Epp — Enprn)( — €nrar)}
+ o8y — ) [ah e 1] (A"+2Ep 11 |AT = Epps1— Eninnia) +ens, 7

N 1\ | ank+1 5 i :
+ Y W R — v { h’k2 } (A% + 2Ep k| A" — Epic — Ensri) (. 1)
k>h+1

There are also explicit formulas for (Ep11,40)(0, r) - (A°|AY)(j, r), and
for B*(0, r) - (AY|AL)(j, r), for B* € {(O|Eh.1), (O|Ens1.1)s (O1En h41)} under the SDP condition.
All coefficients, depending on the entries of A° & j, are independent of r.
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5. The regular module for the quantum queer supergroup

Theorem (1)

For any r > 0, there is an epimorphism 7T(Qr) :Uy(qn) — Q5,(n, r) s.t.

Ki~ — (0[0)(+ej, r), Ej > (Ejj+1/0)(0,r), Fj— (Ej41,10)(0,r),
K7 — (O|Eii)(0,r), Ej— (O|Ejj+1)(0,r), Fj = (O|Ej41,4)(0, r).

withl1<i<nl<j<n—-1.
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5. The regular module for the quantum queer supergroup
Theorem (1)

For any r > 0, there is an epimorphism 7T(Qr) :Uy(qn) — Q5,(n, r) s.t.

Ki~ — (0[0)(+ej, r), Ej > (Ejj+1/0)(0,r), Fj— (Ej41,10)(0,r),
K;— (O|Eii)(0,r), Ej— (OlEjj1+1)(0,r), F7—= (O|Ej41,4)(0,r).

withl1<i<nl<j<n—-1.

For A € M,(N|Ny)*, j € Z", define infinite formal series

AG) = vMA+ )

AENn
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5. The regular module for the quantum queer supergroup
Theorem (1)

For any r > 0, there is an epimorphism 7T(Qr) :Uy(qn) — Q5,(n, r) s.t.

i = (0[0)(=ei, 1), Ej = (Ejj4+1/0)(0,r), Fj = (Ej1140)(0, 1),
Ky = (OlE:)(0,r), Ej= (O[Ejj+1)(0,r), F7= (O[Ej11)(0, r).

withl1<i<nl<j<n—-1.

For A € M,(N|Ny)*, j € Z", define infinite formal series
AG) = > vMA+ N | = (A6, ) o0 € [[Q0(n7)

AeNn r=0
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5. The regular module for the quantum queer supergroup
Theorem (1)

For any r > 0, there is an epimorphism 7T(Qr) :Uy(qn) — Q5,(n, r) s.t.

i = (0[0)(=ei, 1), Ej = (Ejj4+1/0)(0,r), Fj = (Ej1140)(0, 1),
Ky = (OlE:)(0,r), Ej= (O[Ejj+1)(0,r), F7= (O[Ej11)(0, r).

withl1<i<nl<j<n—-1.

For A € M,(N|Ny)*, j € Z", define infinite formal series
AG) = > vMA+ N | = (A6, ) o0 € [[Q0(n7)

AeNn r=0

Theorem (2)

These homomorphisms 7, induce a superalgebra monomorphism
70 Up(qn) — [[,2095(n,r)
whose image is spanned by { A (j) | A € M,(N|Np)*,j € Z"}
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5. The regular module for the quantum queer supergroup
Theorem (1)

For any r > 0, there is an epimorphism 7T(Qr) :Uy(qn) — Q5,(n, r) s.t.

i = (0[0)(=ei, 1), Ej = (Ejj4+1/0)(0,r), Fj = (Ej1140)(0, 1),
Ky = (OlE:)(0,r), Ej= (O[Ejj+1)(0,r), F7= (O[Ej11)(0, r).

withl1<i<nl<j<n—-1.

For A € M,(N|Ny)*, j € Z", define infinite formal series
AG) = > vMA+ N | = (A6, ) o0 € [[Q0(n7)

AeNn r=0

Theorem (2)

These homomorphisms 7, induce a superalgebra monomorphism

70+ Uy(an) — 1,025 (n.7)
whose image is spanned by {A(j) | A € M,(N|N2)*,j € Z"} with respect
to which we obtain the matrix representation of the regular module yU.
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Applications—work in progress
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.
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The new construction of the quantum queer supergroup can be used
to address the following problems.

© The integral Schur—Olshanski duality.
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

© The integral Schur—Olshanski duality.

@ Polynomial representations at roots of unity.
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

© The integral Schur—Olshanski duality.
@ Polynomial representations at roots of unity.

© The bar involution and canonical basis theory. This involves a lot!
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

© The integral Schur—Olshanski duality.
@ Polynomial representations at roots of unity.
© The bar involution and canonical basis theory. This involves a lot!

Here is a proposed bar involution o = w1, & =&, Fi=F;, K=K, &5 = K;.
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Applications—work in progress

The new construction of the quantum queer supergroup can be used

to address the following problems.
© The integral Schur—Olshanski duality.
@ Polynomial representations at roots of unity.

© The bar involution and canonical basis theory. This involves a lot!

Here is a proposed bar involution & =+, =€, F; =F;, R; =K1, Ry = K;.

@ The modified quantum queer supergroup and its canonical basis
theory.
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Applications—work in progress

The new construction of the quantum queer supergroup can be used
to address the following problems.

© The integral Schur—Olshanski duality.

@ Polynomial representations at roots of unity.

© The bar involution and canonical basis theory. This involves a lot!
Here is a proposed bar involution o = w1, & =&, Fi=F;, K=K, &5 = K;.

@ The modified quantum queer supergroup and its canonical basis
theory.

@ Semi-simplicity criterion (a la Doty-Nakano, Erdmann—Nakano).
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