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1. Background



Background–Geometric models for categories

Geometric models for categories have attracted a lot of interest in re-
cent years. Such as the geometric interpretation of module categories,
derived categories, cluster categories and tube categories have been
widely studied and obtained rich results.

Through these geometric realizations, many algebraic properties (e.g.
the extension dimension, Auslander-Reiten sequences, Auslander-Reiten
triangles, tilting objects) of these categories can be studied in geomet-
ric terms.

The topological structure and combinatorial properties of geometric
models play an important role in describing and solving the represen-
tation theory problems related to categories.
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Weighted projective lines and their coherent sheaves categories were
introduced in [Geigle-Lenzing’1987] to give a geometric realization of
canonical algebras in the sense of [Ringel’1984].

The study of weighted projective lines has been closely related to many
branches of mathematics, such as Lie theory, singularity theory and
homological mirror symmetry.
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Background–Weighted projective lines

In [C-R-Zhang’2023]( arXiv:2310.04695, 2023), we presented a ge-
ometric model for the category of coherent sheaves over a weighted
projective line of type (p, q) using a marked annulus.

This model provides a combinatorial description of

the automorphism group of coherent sheaf category,

Auslander-Reiten translation,

the dimension of the space Ext1,

the tilting bundles,

and then gives a proof of the connectness of the tilting graph.
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Goal

Provide a geometric model for weighted projective line of type (2, 2, n)
and present some applications.

There are two ways with different applications:

Via group action: Ext1, Auslander-Reiten translation, Auslander-
Reiten sequences, tilting objects, the connectedness of tilting graph,
· · · In preparation

Construct a new geometric model: the slope of vector bundles, the
Picard group actions, vector bundles duality, projective covers,
injective hulls, · · ·

Jianmin Chen, Shiquan Ruan, Jinfeng Zhang, Geometric model for vec-
tor bundles via infinite marked strips, arXiv: 2405.07793v2
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Weighted projective line of type (2, 2, n)



Notations

• k: algebraically closed field.

• n: an integer equal to or greater than 2.

• X := X(2, 2, n) : the weighted projective line of type (2, 2, n).

• L := ⟨x⃗1, x⃗2, x⃗3 | 2x⃗1 = 2x⃗2 = nx⃗3⟩ : the Picard group on X.

• R := k [x1, x2, x3] /
(
x21 + x22 + xn3

)
L-graded algebra by setting

deg xi := x⃗i(i = 1, 2, 3).
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The category coh-X of coherent sheaves over X

By [Geigle-Lenzing] , there has an equivalence

modL-R
modL0 -R

∼−→ coh-X.

Let O be the image of R ∈ modL-R in modL-R/modL0 -R. Then
O serves as the structure sheaf of coh-X, and the Picard group L
acts on coh-X by degree shift.

[Geigle-Lenzing] W. GEIGLE, AND H. LENZING. A class of weighted projective curves arising in representation theory

of finite dimensional algebras, in: Singularities, Representations of Algebras and Vector Bundles, Lecture Notes in Math. 1273,

265–297, Springer, 1987.
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Properties of coh-X

• The category coh-X is:

connected

hereditary

abelian

Hom-finite

k-linear

noetherian

It satisfies Serre duality in the form

DExt1(X,Y ) ∼= Hom(Y,X(ω⃗)),

where D = Homk(−, k) and ω⃗ = x⃗1 − x⃗2 + x⃗3.
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Decomposition of coh-X

• Serre duality implies the existence of almost split sequences for coh-
X with the Auslander-Reiten translation τ given by the shift with ω⃗.

• The category coh-X can be expressed as:

coh-X = vect-X ∨ coh0-X,

where:

vect-X: full subcategory of coh-X consists of vector bundles.

coh0-X: full subcategory of coh-X consists of coherent sheaves
of finite length.

There are no non-zero morphisms from coh0-X to vect-X.
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The AR quiver Γ(vect-X) has the form ZD̃n+2 and the AR quiver
Γ(coh0-X) consists of tubes.



vect-X

Definition (Kussin-Lenzing-Meltzer)

A sequence 0 → X ′ u→ X
v→ X ′′ → 0 in vect-X is called distin-

guished exact if for each line bundle L the induced sequence

0→ Hom
(
L,X ′)→ Hom(L,X)→ Hom

(
L,X ′′)→ 0

is exact.

Proposition (Kussin-Lenzing-Meltzer)
The distinguished exact sequences define an exact structure on vect-X
which is Frobenius, such that the indecomposable projectives (resp.
injectives) are exactly the line bundles. Moreover, vect-X is equivalent
to CML-R as Frobenius category.

[Kussin-Lenzing-Meltzer] D. KUSSIN, H. LENZING, AND H. MELTZER. Triangle singularities, ADE-chains, and

weighted projective lines, Adv. Math., 237, 194–251, 2013.



Vector Bundles

• Line bundles are vector bundle of the form O(x⃗), where x⃗ ∈ L.

• Each vector bundle E has a filtration by line bundles

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = E

with factors Li = Ei/Ei−1 which are line bundles.

• The number r is called the rank of E, denote by rkE = r.
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Vector bundles

• The degree function

deg : K0(X)→ Z

is uniquely determined by setting degO(x⃗) = δ(x⃗), where

δ(x⃗1) = δ(x⃗2) =
l.c.m(2,n)

2
and δ(x⃗3) =

l.c.m(2,n)

n
.

• For each none zero vector bundle E, define the slope

µ(E) =
degE

rkE
∈ Q.
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Extension bundles

Define δ⃗ := (n − 2)x⃗3 as the dominant element of L.

For any line

bundle L and x⃗ ∈ L with 0 ≤ x⃗ ≤ δ⃗:

Ext1(L(x⃗), L(ω⃗)) ∼= DHom(L,L(x⃗)) ∼= k.

Definition (Kussin-Lenzing-Meltzer)
The indecomposable middle term E in the non-split exact sequence:

0 L(ω⃗) E L(x⃗) 0

is uniquely determined up to isomorphism. Denote E by EL⟨x⃗⟩ and
call it the extension bundle associated with L and x⃗.

[Kussin-Lenzing-Meltzer] D. KUSSIN, H. LENZING, AND H. MELTZER. Triangle singularities, ADE-chains, and

weighted projective lines, Adv. Math., 237, 194–251, 2013.
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Vector bundles

Remark:

Each indecomposable bundle in vect-X is either a line bundle or a
extension bundle.



An infinite marked strip under a specific group action



An infinite marked strip

• S̃ = {(x, y) ∈ R2 | 0 ≤ y ≤ 1} an infinite strip in the plane.

•M = {(i, 0), (j, 1) | i, j ∈ Z} the set of marked points on S̃.

• ∂ the upper boundary of S̃ .

• ∂′ the lower boundary of S̃.

• Two bijections on the strip S̃:

σn translates all points on S̃ along the positive x-axis by n units:

σn : S̃ → S̃ (x, y) 7→ (x+ n, y);

θ reflects all points on S̃ with respect to the point (0, 12):

θ : S̃ → S̃ (x, y) 7→ (−x, 1− y).
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An infinite marked strip

• [i, j] the line segment with endpoints (i, 0) and (j, 1).

• Seg(M) the collection of line segments {[i, j]|i, j ∈ Z}.

• The maps σn and θ naturally induce two bijections on Seg(M), also
denoted by σn and θ. Precisely,

σn : Seg(M)→ Seg(M) [i, j] 7→ [i+ n, j + n];

θ : Seg(M)→ Seg(M) [i, j] 7→ [−j,−i].

∂′

∂

· · ·· · ·

(0, 0)

(0, 1)

σ3

∂′

∂

· · ·· · ·

(0, 0)

(0, 1)

θ[−3,−1] [0, 2] [−3,−1] [1, 3]
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An infinite marked strip

• G the group generated by σn and θ.

•·�Seg(M) the set of G-orbits of segments in Seg(M).

• Following, we will give a categorical interpretation of ·�Seg(M) in
term of a full subcategory of vect-X.
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Generalized extension bundles

• F the degree shift automorphism by x⃗1 − x⃗2 on vect-X.

• For a vector bundle X , denote X(x⃗1 − x⃗2) by X∗.

• vectF -X the full subcategory of vect-X consisting of F -stable ob-
jects.

• σF be the automorphism of Γ(vect-X) induced by the automorphism
F on vect-X.

• From now on, we fix a line bundle L.
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Generalized extension bundle

For example, let n = 4. The Auslander-Reiten quiver Γ(vect-X) is
illustrated below:
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extension bundles EL⟨x⃗⟩, where 0 ≤ x⃗ ≤ δ⃗.
• L(jx⃗3) ◦ L∗(jx⃗3)
▲ L(x⃗1 + jx⃗3) △ L∗(x⃗1 + jx⃗3), where j ∈ Z.



Generalized extension bundle

σF exchanges the ▲ and △ on the same vertical lines, as well as the ◦
and •, while fixing all other vertices.
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The first one to one correspondence

• We call the indecomposable objects in vectF -X generalized exten-
sion bundles

• ind(vectF -X) the set of indecomposable objects in vectF -X.

Proposition

There exists a bijection

ϕ : ·�Seg(M)→ ind(vectF -X)fi[i, j] 7→ EL(−ix⃗3)⟨(i+ j − 1)x⃗3⟩.
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Refinement of the bijection ϕ

• P = {Pk | k ∈ Z}, where Pk is the point whose coordinate is
(kn2 , 12).

Remark:

[i, j] passing through points in P

⇐⇒ i+ j ≡ 0( mod n)

⇐⇒ ϕ(fi[i, j]) is formed by the direct sum of two line bundles.
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Refinement of the bijection ϕ

• Seg0(M) consists of all line segments in Seg(M) passing through
points in P .

• Seg∗0(M) = {[i, j]+, [i, j]− | [i, j] ∈ Seg0(M)}.

∂′
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(i, 0)

(j, 1)

[i, j]+

[i, j]−
i+ j ≡ 0 (modn)

• Seg∗(M) = (Seg(M) \ Seg0(M)) ∪ Seg∗0(M).
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Refinement of the bijection ϕ

• For any [i, j]∗ ∈ Seg∗(M), the superscript ∗ is taken from the set
{+,−, empty}.

• The G-action on Seg(M) induces a G-action on Seg∗(M) by

g ◦ [i, j]∗ = (g · [i, j])∗ for all g ∈ G

•‚�Seg∗(M) the set of G-orbits of segments in Seg∗(M).
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• For any [i, j]∗ ∈ Seg∗(M), the superscript ∗ is taken from the set
{+,−, empty}.

• The G-action on Seg(M) induces a G-action on Seg∗(M) by

g ◦ [i, j]∗ = (g · [i, j])∗ for all g ∈ G

•‚�Seg∗(M) the set of G-orbits of segments in Seg∗(M).



Refinement of the bijection ϕ

Proposition

The bijection ϕ induces a bijection ϕ̂ : ‚�Seg∗(M) → ind(vect-X),
which can be explicitly described by the following table:

G-orbits in ‚�Seg∗(M) Indecomposable objects in vect-X·�[i,−i]+ L∗(−(i+ 1)x⃗3)·�[i,−i]− L(−(i+ 1)x⃗3)„�[i, n− i]+ L(x⃗1 − (i+ 1)x⃗3)„�[i, n− i]− L∗(x⃗1 − (i+ 1)x⃗3)‚�[i, k − i] EL(−ix⃗3)⟨(k − 1)x⃗3⟩

where i, k are integers with 1 ≤ k ≤ n− 1.



A geometric model for vector bundles

Remark:

The above proposition gives a geometric model for the category of
vector bundles over weighted projective lines of type (2, 2, n).



Applications



Applications

By using the model, we provide the intuitive combinatorial interpreta-
tion for several intrinsic geometric properties of vect-X, such as

Proposition

The group L/Z(x⃗1−x⃗2) is isomorphic toMG(S), where S is the orbit
space of S̃ under the G-action andMG(S) is the mapping class group
of S.
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Applications

Assume X = ϕ̂(fl[i, j]∗).

Proposition

The slope µX of X is given by µX = (j − i − 2) × p̄
2n + µL, where

p̄ := l. c.m(2, n) and 1
∞ = 0 is defined.

Proposition

The L-action on vect-X is determined by

X(x⃗1) = ϕ̂(Â�[i, j + n]ϱ(∗));

X(x⃗2) = ϕ̂(„�[i, j + n]∗);

X(x⃗3) = ϕ̂( Â�[i− 1, j + 1]∗).
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Applications

Recall that the vector bundle duality

∨ : vect-X→ vect-X, X 7→ Hom(X,O),

sends line bundles to line bundles, and preserves distinguished exact
sequences.

Proposition

Assume X = ϕ̂(fl[i, j]∗). Then we have

X∨ = ϕ̂(fl[j, i]∗).
Moreover, X is fixed under ∨ if and only if i = j.
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Applications

Proposition

Assume X = ϕ̂(fi[i, j]) is an extension bundle in vect-X. Then

the projective cover P (X) = ϕ̂(fl[i,←])⊕ ϕ̂(fl[→, j]);

the injective hull I(X) = ϕ̂(fl[i,→])⊕ ϕ̂(fl[←, j]),

which can be illustrated below:
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Remark: Let Y be the kernel of the projective cover π : P (X)→ X .
From a graphical perspective, we have I(Y )=P (X).
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Remark: Let Y be the kernel of the projective cover π : P (X)→ X .
From a graphical perspective, we have I(Y )=P (X).



Thank you!
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