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Equivalences induced by tilting modules

This talk is based on a joint work with Hongxing Chen (Capital
Normal University).

In the talk:
A: Artin algebra (e.g. finite-dim. k-algebra over a field k);

A-mod: the category of finitely generated (left) A-modules;

D: the usual duality over A-mod (e.g. D = Hom k(−, k)).



Tilting modules over algebras

Definition

A module AT ∈ A-mod is called n-tilting (n ∈ N) if the following
hold:
(T1) proj.dim (AT ) ⩽ n;
(T2) ExtiA(T, T ) = 0 ∀i ⩾ 1;
(T3) ∃ exact sequence 0 → A → T0 → T1 → · · · → Tn → 0 in
A-mod with Ti ∈ add (T ) for all i ⩾ 0.

T is also called a tilting A-B-bimodule with B := EndA(T ).



Equivalences induced by tilting modules

Brenner-Butler tilting theorem [Brenner and Butler, 1980]

one-to-one correspondence between basic tilting modules and
contravariant finite resolving subcategories of modules with
finite projective dimension [Auslander and Reiten, 1991]

derived equivalences between the bounded derived category
of an algebra and the one of the endomorphism algebra of a
tilting module over the algebra [Happel, 1988]

homological invariants or dimensions

· · · · · ·

How about “dualities” of categories induced by (tilting) modules?



Dualities of categories

Definition

Contravariant functors F : C → D and G : D → C between
categories C and D are called inverse dualities if both G ◦ F and
F ◦G are isomorphic to the identity functors.

Natural conditions are added on F and G whenever C and D are endowed with more
structures.

e.g. if C and D are (additive, exact, triangulated) categories, then F and G are

required to be (additive, exact, triangulated) functors.



Morita duality

R, S: rings.

Theorem (Morita)

Let C ⊆ R-Mod and D ⊆ Sop-Mod be full subcategories closed
under isomorphisms. Suppose RR ∈ C, SS ∈ D, and F : C → D
and G : D → C are inverse dualities.
=⇒ ∃ faithfully balanced bimodule RMS s.t.

(a) F ∼= HomR(−,M)|C and G ∼= Hom Sop(−,M)|D;
(b) C ⊆ {X ∈ R-Mod | X ≃ Hom Sop(HomR(X,M),M)} and

D ⊆ {Y ∈ Sop-Mod | Y ≃ HomR(Hom Sop(Y,M),M)}.
Moreover, the bimodule M defines a Morita duality ⇔ RM and
MS are injective cogenerators.

Def: RMS is faithfully balanced if S ∼= EndR(M) and Rop ∼= End Sop (M).



Modules of finite projective dimensions

P<∞(A) := {X ∈ A-mod | proj.dim (AX) < ∞}.

For T ∈ A-mod, define

⊥(AT ) := {M ∈ A-mod | ExtiA(M,T ) = 0, ∀i ⩾ 1}.

M. Auslander and I. Reiten, Applications of contravariantly finite subcategories,

Adv. Math. 86 (1991) 111-152.

Definition (Auslander and Reiten)

A full subcategory of A-mod is resolving if it contains projective
modules and is closed under isomorphisms, extensions and ker-
nels of epimorphisms.



Miyashita’s duality

Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986)

113-146.

Theorem (Miyashita)

For a tilting bimodule ATB, let

C := ⊥(AT ) ∩ P<∞(A) and D := ⊥(TB) ∩ P<∞(Bop).

Then HomA(−, T )|C : C → D and HomBop(−, T )|D : D → C are
inverse dualities.



Huisgen-Zimmermann’s correspondence

B. Huisgen-Zimmermann, Dualities from iterated tilting, Isr. J. Math. 243 (2021)

315-353.

Theorem (Huisgen-Zimmermann)

Let C ⊆ A-mod and D ⊆ Bop-mod be resolving subcategories.
Suppose C ⊆ P<∞(A), D ⊆ P<∞(Bop), and F : C → D and
G : D → C are inverse dualities which are strictly exact.
=⇒ ∃ tilting bimodule ATB s.t.

(a) F ∼= HomA(−, T )|C and G ∼= HomBop(−, T )|D;
(b) C = ⊥(AT ) ∩ P<∞(A) and D = ⊥(TB) ∩ P<∞(Bop).



Full subcategories cogenerated by modules

For T ∈ A-mod, define cogen∗(AT ) ⊆ A-mod:

M ∈ cogen∗(AT ) ⇔ ∃ exact sequence in A-mod

0 → M → T0 → T1 → T2 → · · ·

with all Ti ∈ add(AT ) for i ⩾ 0 s.t. the sequence

· · · → HomA(T2, T ) → HomA(T1, T ) → HomA(T0, T ) → HomA(M,T ) → 0

is exact.
Let

W(AT ) :=
⊥(AT ) ∩ cogen∗(AT ).

Then T ∈ W(AT ) ⇔ ExtiA(T, T ) = 0, ∀i ⩾ 1.



Wakamatsu tilting modules

Definition (Wakamatsu,1988)

An A-module T is called a Wakamatsu tilting module if
A⊕ T ∈ W(AT ).
This is equivalent to the following two conditions:
(1) EndBop(T ) ∼= Aop, where B := EndA(T );
(2) ExtiA(T, T ) = 0 = ExtiBop(T, T ) for all i ⩾ 1.

If AT is Wakamatsu tilting, then TB is Wakamatsu tilting. So, T is also called
a Wakamatsu tilting A-B-bimodule.

A Wakamatsu tilting A-module T is tilting
⇔ max{proj.dim (AT ), proj.dim (TB)} <∞.

Wakamatsu tilting conjecture [Beligiannis and Reiten, 2007]:

If AT is Wakamatsu tilting and proj.dim (AT ) <∞, then it is tilting.



Wakamatsu’s duality

T. Wakamatsu, Tilting modules and Auslander’s Gorenstein property, J. Algebra

275 (2004) 3-39.

E.L. Green, I. Reiten and ∅. Solberg, Dualities on Generalized Koszul Algebras,

Mem. Amer. Math. Soc. vol. 159, 2002.

Theorem (Wakamatsu)

For a Wakamatsu tilting bimodule ATB, the functors
HomA(−, T ) : A-mod → Bop-mod and HomBop(−, T ) : Bop-mod →
A-mod can be restricted to inverse dualities

W(AT ) ≃ W(TB).



Resolving dualities

A, B: abelian categories with enough projective objects;
C ⊆ A and D ⊆ B: full subcategories.

Definition

Contravariant additive functors F : C → D and G : D → C are
called inverse resolving dualities if the following hold:

1 C ⊆ A and D ⊆ B are resolving subcategories.
(C and D contains all projective objects and are closed under isomorphisms,

extensions and kernels of epimorphisms.)

2 Both of compositions G ◦F and F ◦G are isomorphic to the
identity functors.

3 F and G are exact functors between C and D.
(C and D are regarded as fully exact subcategories of A and B, respectively).



Gorenstein projective modules

Definition

A module X ∈ A-mod is called Gorenstein projective if
∃ exact complex of projective A-modules

P • : · · · → P−2 → P−1 → P 0 d0−→ P 1 → P 2 → · · ·

s.t. X ∼= Im (d0) and the complex Hom •
A(P

•, A) is also exact.

Definition

A module X ∈ A-mod is called semi-Gorenstein-projective if
ExtiA(X,A) = 0, ∀i ⩾ 1.

C.M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective

modules, Algebra & Number Theory 14 (2020) 1-36.



Resolving subcategories of module categories

For each n ∈ N, define three resolving subcats. of A-mod:

P⩽n(A): modules with projective dimension ⩽ n,

GP⩽n(A): modules with Gorenstein-projective dimension ⩽ n,

SGP⩽n(A): modules with semi-Gorenstein-projective dimension
⩽ n.

GP(A) := GP⩽0(A): cat. of Gorenstein-projective A-modules;
SGP(A) := SGP⩽0(A): cat. of semi-Gorenstein-projective A-modules.

In general, GP(A) ⊆ SGP(A).



Characterization of resolving dualities

A, B: Artin algebras;
C ⊆ A-mod, D ⊆ Bop-mod: full subcategories.

Theorem

Suppose that F : C → D and G : D → C are inverse resolving
dualities. Then:
(1) ∃ a Wakamatsu tilting bimodule ATB s.t.

(a) F ∼= HomA(−, T )|C and G ∼= HomBop(−, T )|D;
(b) C ⊆ W(AT ) and D ⊆ W(TB).

(2) The bimodule ATB is tilting ⇔ F and G can be restricted
to any one of inverse dualities of the following types:
C ∩ P<∞(A) ≃ D ∩ P<∞(Bop), C ∩ P⩽n(A) ≃ D ∩ P⩽m(Bop),

C∩GP⩽n(A) ≃ D∩GP⩽m(Bop), C∩SGP⩽n(A) ≃ D∩SGP⩽m(Bop),

where n and m are some natural numbers.



A key lemma

W(AT ) :=
⊥(AT ) ∩ cogen∗(AT )

Lemma

If AT is a tilting module of projective dimension ℓ, then

W(AT ) =
⊥(AT ) ∩ GP⩽ℓ(A) = ⊥(AT ) ∩ GP<∞(A),

W(TB) =
⊥(TB) ∩ GP⩽ℓ(Bop) = ⊥(TB) ∩ GP<∞(Bop).

Clearly, W(AA) = GP(A).



Gorenstein version of Miyachita’s duality and
Huisgen-Zimmermann’s correspondence

Corollary

(1) If ATB is a tilting bimodule with ℓ := proj.dim (AT ), then
HomA(−, T ) and HomBop(−, T ) can be restricted to inverse re-
solving dualities

⊥(AT ) ∩ GP⩽ℓ(A) ≃ ⊥(TB) ∩ GP⩽ℓ(Bop).

(2) Let C ⊆ A-mod and D ⊆ Bop-mod be full subcategories. If
there are inverse resolving dualities C ≃ D s.t. GP(A) ⊆ C ⊆
GP⩽n(A) and GP(Bop) ⊆ D ⊆ GP⩽m(Bop) for some natural
numbers n and m, then ∃ a tilting bimodule ATB s.t.

C = ⊥(AT ) ∩ GP⩽ℓ(A) and D = ⊥(TB) ∩ GP⩽ℓ(Bop)

where ℓ := proj.dim (AT ).



Applications of resolving dualities

Corollary

Let ATB be a tilting bimodule. Then:

1 There is a triangle equivalence D(GP(A)) ≃ D(GP(B))
which restrictes to an equivalence D∗(GP(A)) ≃ D∗(GP(B))
for any ∗ ∈ {+,−, b}.

2 Kn(GP(A)) ≃ Kn(GP(B)) for any n ∈ N.



Applications of resolving dualities

A: a finite-dimensional algebra A over a finite field.

Corollary

If ATB is a 1-tilting bimodule, then there is an isomorphism be-
tween the semi-derived Ringel-Hall algebra of GP(A) and the one
of GP(B):

SDH(GP(A)) ∼= SDH(GP(B)).

Corollary [LW, Corollary A23]

If ATB is a 1-tilting bimodule over 1-Gorenstein algebras A and
B, then SDH(GP(A)) ∼= SDH(GP(B)) as algebras.



(Semi-)derived Ringel-Hall algebras

[B] T. Bridgeland, Quantum groups via Hall algebras of com-
plexes, Ann. of Math. 177 (2013) 739-759.
[G] M. Gorsky, Semi-derived and derived Hall algebras for stable
categories, Int. Math. Res. Not. 2018 (2018), 138-159.
[LP] M. Lu and L.G. Peng, Semi-derived Ringel-Hall algebras
and Drinfeld double, Adv. Math. 383 (2021) 107668.
[LW] M. Lu and W.Q. Wang, Hall algebras and quantum sym-
metric pairs I: foundations, Proc. Lond. Math. Soc. 124 (2022)
1-82.



Semi-derived Ringel-Hall algebras of weakly
1-Gorenstein exact categories

Let k be a finite field and A a small exact category linear over k.

Definition (Lu and Wang, 2022)

A is called weakly Gorenstein if P<∞(A) = I<∞(A);
weakly d-Gorenstein if it is weakly Gorenstein and P<∞(A) =
P⩽d(A) = I⩽d(A).

In case A is a weakly 1-Gorenstein exact category with finite
morphism spaces and finite extension spaces, the semi-derived
Ringel-Hall algebra of A was defined in [LW] (see also [B,G,LP]
for some cases) and denoted by SDH(A).
Based on Lu-Wang’s construction, we introduce a new definition for SDH(A) (up

to isomorphism of algebras) which behaves better under dualities.

GP(A) for A: finite-dim. k-algebra;

A-mod for A: finite-dim. 1-Gorenstein k-algebra.



Applications of resolving dualities to establish
isomorphisms of semi-derived Ringel-Hall algebras

Set A := ⊥(AT ) ∩ GP⩽1(A) and B := ⊥(TB) ∩ GP⩽1(Bop).

GP(A)
⊆ // A

F
��

GP(B) GP(Bop)
G
≃
oo ⊆ // B.

(1)

SDH(GP(A))
ϕ̃A // SDH(A)

ΥF

��
(SDH(B))op

(ψ̃Bop )op

��
SDH(GP(B)) (SDH(GP(Bop))op

(ΥG)opoo

(2)



Different methods

X = {X ∈ A-mod | Ext1A(T,X) = 0},Y = {Y ∈ B-mod | TorB1 (T, Y ) = 0.

Note: X ∼= Y of exact categories by the Brenner-Butler tilting theorem.

The proof of [LW, Corollary A23]:

SDH(GP(A)) ∼= SDH(A-mod) ∼= SDH(X ) ∼= SDH(Y) ∼= SDH(B-mod) ∼= SDH(GP(B))

where X and Y are weakly 1-Gorenstein exact categories.

Note: for a general algebra A, the category X may not be weakly 1-Gorenstein.

Our proof:

SDH(GP(A)) ∼= SDH(A) ∼= (SDH(B))op ∼= (SDH(GP(Bop))op ∼= SDH(GP(B)).

where A := ⊥(AT ) ∩ GP⩽1(A) and B := ⊥(TB) ∩ GP⩽1(Bop).



More details

• H.X. Chen and J.S. Hu, Resolving dualities and applications to ho-

mological invariants, to appear in Canad. J. Math., arXiv:2209.11627.

Thank you very much!
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