Resolving dualities and applications to semi-derived Ringel-Hall algebras

Jiangsheng Hu

Hangzhou Normal University, China

August 6, 2024 ICRA 21, SJTU 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 Dualities of resolving subcategories of module categories

3 Applications to semi-derived Ringel-Hall algebras

This talk is based on a joint work with Hongxing Chen (Capital Normal University).

In the talk:

A: Artin algebra (e.g. finite-dim. k-algebra over a field k); A-mod: the category of finitely generated (left) A-modules; D: the usual duality over A-mod (e.g. $D = \text{Hom}_k(-,k)$).

うして ふゆ く は く は く む く し く

Tilting modules over algebras

Definition

A module ${}_{A}T \in A$ -mod is called *n*-tilting $(n \in \mathbb{N})$ if the following hold: (T1) proj.dim $({}_{A}T) \leq n$; (T2) $\operatorname{Ext}_{A}^{i}(T,T) = 0 \quad \forall i \geq 1$; (T3) \exists exact sequence $0 \to A \to T_{0} \to T_{1} \to \cdots \to T_{n} \to 0$ in A-mod with $T_{i} \in \operatorname{add}(T)$ for all $i \geq 0$.

T is also called a tilting A-B-bimodule with $B := \operatorname{End}_A(T)$.

うして ふゆ く は く は く む く し く

Equivalences induced by tilting modules

- Brenner-Butler tilting theorem [Brenner and Butler, 1980]
- one-to-one correspondence between basic tilting modules and contravariant finite resolving subcategories of modules with finite projective dimension [Auslander and Reiten, 1991]
- derived equivalences between the bounded derived category of an algebra and the one of the endomorphism algebra of a tilting module over the algebra [Happel, 1988]
- homological invariants or dimensions

• • • • • • •

How about "dualities" of categories induced by (tilting) modules?

Dualities of categories

Definition

Contravariant functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ between categories \mathcal{C} and \mathcal{D} are called *inverse dualities* if both $G \circ F$ and $F \circ G$ are isomorphic to the **identity** functors.

Natural conditions are added on F and G whenever $\mathcal C$ and $\mathcal D$ are endowed with more structures.

e.g. if C and D are (additive, exact, triangulated) categories, then F and G are required to be (additive, exact, triangulated) functors.

うして ふゆ く は く は く む く し く

Morita duality

 $R,\,S:$ rings.

Theorem (Morita)

Let $C \subseteq R$ -Mod and $\mathcal{D} \subseteq S^{op}$ -Mod be full subcategories closed under isomorphisms. Suppose $_{R}R \in C$, $S_{S} \in \mathcal{D}$, and $F : C \to \mathcal{D}$ and $G : \mathcal{D} \to C$ are inverse dualities. $\implies \exists$ faithfully balanced bimodule $_{R}M_{S}$ s.t. (a) $F \cong \operatorname{Hom}_{R}(-, M)|_{\mathcal{C}}$ and $G \cong \operatorname{Hom}_{S^{op}}(-, M)|_{\mathcal{D}}$; (b) $C \subseteq \{X \in R$ -Mod $\mid X \simeq \operatorname{Hom}_{S^{op}}(\operatorname{Hom}_{R}(X, M), M)\}$ and $\mathcal{D} \subseteq \{Y \in S^{op}$ -Mod $\mid Y \simeq \operatorname{Hom}_{R}(\operatorname{Hom}_{S^{op}}(Y, M), M)\}$. Moreover, the bimodule M defines a Morita duality $\Leftrightarrow _{R}M$ and M_{S} are injective cogenerators.

Def: $_RM_S$ is faithfully balanced if $S \cong \operatorname{End}_R(M)$ and $R^{op} \cong \operatorname{End}_{S^{\operatorname{op}}}(M)$.

(ロ) (回) (日) (日) (日) (0) (0)

 $\mathcal{P}^{<\infty}(A) := \{ X \in A \text{-mod} \mid \operatorname{proj.dim} (_A X) < \infty \}.$

For $T \in A$ -mod, define

 ${}^{\perp}({}_{A}T) := \{ M \in A \text{-mod} \mid \operatorname{Ext}_{A}^{i}(M,T) = 0, \; \forall i \ge 1 \}.$

M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991) 111-152.

Definition (Auslander and Reiten)

A full subcategory of A-mod is resolving if it contains projective modules and is closed under isomorphisms, extensions and kernels of epimorphisms. Y. Miyashita, Tilting modules of finite projective dimension, *Math. Z.* 193 (1986) 113-146.

Theorem (Miyashita)

For a tilting bimodule $_{A}T_{B}$, let

$$\mathcal{C} := {}^{\perp}({}_{A}T) \cap \mathcal{P}^{<\infty}(A) \text{ and } \mathcal{D} := {}^{\perp}(T_{B}) \cap \mathcal{P}^{<\infty}(B^{op}).$$

Then Hom $_A(-,T)|_{\mathcal{C}}: \mathcal{C} \to \mathcal{D}$ and Hom $_{B^{op}}(-,T)|_{\mathcal{D}}: \mathcal{D} \to \mathcal{C}$ are inverse dualities.

うしゃ ふゆ きょう きょう うくの

Huisgen-Zimmermann's correspondence

B. Huisgen-Zimmermann, Dualities from iterated tilting, Isr. J. Math. 243 (2021) 315-353.

Theorem (Huisgen-Zimmermann)

Let $\mathcal{C} \subseteq A$ -mod and $\mathcal{D} \subseteq B^{op}$ -mod be resolving subcategories. Suppose $\mathcal{C} \subseteq \mathcal{P}^{<\infty}(A), \ \mathcal{D} \subseteq \mathcal{P}^{<\infty}(B^{op}), \ and \ F : \mathcal{C} \to \mathcal{D} \ and \ G : \mathcal{D} \to \mathcal{C} \ are inverse \ dualities \ which \ are \ strictly \ exact.$ $\implies \exists \ tilting \ bimodule \ _AT_B \ s.t.$ (a) $F \cong \operatorname{Hom}_A(-,T)|_{\mathcal{C}} \ and \ G \cong \operatorname{Hom}_{B^{op}}(-,T)|_{\mathcal{D}};$ (b) $\mathcal{C} = {}^{\perp}(_AT) \cap \mathcal{P}^{<\infty}(A) \ and \ \mathcal{D} = {}^{\perp}(T_B) \cap \mathcal{P}^{<\infty}(B^{op}).$

うして ふゆ く 山 マ ふ し マ うくの

For $T \in A$ -mod, define $\operatorname{cogen}^*({}_AT) \subseteq A$ -mod: $M \in \operatorname{cogen}^*({}_AT) \Leftrightarrow \exists$ exact sequence in A-mod

$$0 \to M \to T_0 \to T_1 \to T_2 \to \cdots$$

with all $T_i \in \text{add}(AT)$ for $i \ge 0$ s.t. the sequence

 $\cdots \to \operatorname{Hom}_{A}(T_{2},T) \to \operatorname{Hom}_{A}(T_{1},T) \to \operatorname{Hom}_{A}(T_{0},T) \to \operatorname{Hom}_{A}(M,T) \to 0$

is exact.

Let

$$\mathcal{W}(_AT) := {}^{\perp}(_AT) \cap \operatorname{cogen}^*(_AT).$$

うして ふゆ く 山 マ ふ し マ うくの

Then $T \in \mathcal{W}(AT) \Leftrightarrow \operatorname{Ext}_{A}^{i}(T,T) = 0, \forall i \ge 1.$

Definition (Wakamatsu, 1988)

An A-module T is called a Wakamatsu tilting module if $A \oplus T \in \mathcal{W}(AT)$. This is equivalent to the following two conditions: (1) End $_{B^{\mathrm{op}}}(T) \cong A^{\mathrm{op}}$, where $B := \operatorname{End}_{A}(T)$; (2) $\operatorname{Ext}_{A}^{i}(T,T) = 0 = \operatorname{Ext}_{B^{\mathrm{op}}}^{i}(T,T)$ for all $i \ge 1$.

• If ${}_{A}T$ is Wakamatsu tilting, then T_{B} is Wakamatsu tilting. So, T is also called a Wakamatsu tilting A-B-bimodule.

うして ふゆ く 山 マ ふ し マ うくの

• A Wakamatsu tilting A-module T is tilting $\Leftrightarrow \max\{\operatorname{proj.dim}(_AT), \operatorname{proj.dim}(T_B)\} < \infty.$

Wakamatsu tilting conjecture [Beligiannis and Reiten, 2007]:

If $_{A}T$ is Wakamatsu tilting and proj.dim $(_{A}T) < \infty$, then it is tilting.

T. Wakamatsu, Tilting modules and Auslander's Gorenstein property, J. Algebra 275 (2004) 3-39.

E.L. Green, I. Reiten and Ø. Solberg, Dualities on Generalized Koszul Algebras, Mem. Amer. Math. Soc. vol. 159, 2002.

Theorem (Wakamatsu)

For a Wakamatsu tilting bimodule ${}_{A}T_{B}$, the functors Hom ${}_{A}(-,T)$: A-mod $\rightarrow B^{op}$ -mod and Hom ${}_{B^{op}}(-,T)$: B^{op} -mod \rightarrow A-mod can be restricted to inverse dualities

 $\mathcal{W}(AT) \simeq \mathcal{W}(T_B).$

うして ふぼう ふほう ふほう ふしつ

 \mathcal{A}, \mathcal{B} : abelian categories with enough projective objects; $\mathcal{C} \subseteq \mathcal{A}$ and $\mathcal{D} \subseteq \mathcal{B}$: full subcategories.

Definition

Contravariant additive functors $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ are called *inverse resolving dualities* if the following hold:

() $C \subseteq A$ and $D \subseteq B$ are resolving subcategories.

(C and D contains all projective objects and are closed under isomorphisms, extensions and kernels of epimorphisms.)

- ② Both of compositions G F and F G are isomorphic to the identity functors.
- F and G are exact functors between C and D.
 (C and D are regarded as fully exact subcategories of A and B, respectively).

Gorenstein projective modules

Definition

A module $X \in A$ -mod is called Gorenstein projective if \exists exact complex of projective A-modules

$$P^{\bullet}: \dots \to P^{-2} \to P^{-1} \to P^0 \xrightarrow{d^0} P^1 \to P^2 \to \dots$$

s.t. $X \cong \text{Im} (d^0)$ and the complex $\text{Hom}_A^{\bullet}(P^{\bullet}, A)$ is also exact.

Definition

A module $X \in A$ -mod is called semi-Gorenstein-projective if $\operatorname{Ext}_A^i(X, A) = 0, \ \forall i \ge 1.$

C.M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, *Algebra & Number Theory* 14 (2020) 1-36.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

For each $n \in \mathbb{N}$, define three resolving subcats. of A-mod:

- $\mathcal{P}^{\leq n}(A)$: modules with projective dimension $\leq n$,
- $\mathcal{GP}^{\leq n}(A)$: modules with Gorenstein-projective dimension $\leq n$,
- $SGP^{\leq n}(A)$: modules with semi-Gorenstein-projective dimension $\leq n$.

 $\mathcal{GP}(A) := \mathcal{GP}^{\leqslant 0}(A)$: cat. of Gorenstein-projective A-modules; $\mathcal{SGP}(A) := \mathcal{SGP}^{\leqslant 0}(A)$: cat. of semi-Gorenstein-projective A-modules. In general, $\mathcal{GP}(A) \subseteq \mathcal{SGP}(A)$.

Characterization of resolving dualities

A, B: Artin algebras;

 $\mathcal{C} \subseteq A$ -mod, $\mathcal{D} \subseteq B^{op}$ -mod: full subcategories.

Theorem

Suppose that $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ are inverse resolving dualities. Then:

(1) \exists a Wakamatsu tilting bimodule ${}_{A}T_{B}$ s.t.

(a)
$$F \cong \operatorname{Hom}_{A}(-,T)|_{\mathcal{C}}$$
 and $G \cong \operatorname{Hom}_{B^{op}}(-,T)|_{\mathcal{D}}$;

(b) $\mathcal{C} \subseteq \mathcal{W}(_AT)$ and $\mathcal{D} \subseteq \mathcal{W}(T_B)$.

(2) The bimodule ${}_{A}T_{B}$ is **tilting** \Leftrightarrow F and G can be restricted to any one of inverse dualities of the following types: $\mathcal{C} \cap \mathcal{P}^{<\infty}(A) \simeq \mathcal{D} \cap \mathcal{P}^{<\infty}(B^{op}), \quad \mathcal{C} \cap \mathcal{P}^{\leq n}(A) \simeq \mathcal{D} \cap \mathcal{P}^{\leq m}(B^{op}),$ $\mathcal{C} \cap \mathcal{GP}^{\leq n}(A) \simeq \mathcal{D} \cap \mathcal{GP}^{\leq m}(B^{op}), \quad \mathcal{C} \cap \mathcal{SGP}^{\leq n}(A) \simeq \mathcal{D} \cap \mathcal{SGP}^{\leq m}(B^{op}),$ where n and m are some natural numbers.

A key lemma

$$\mathcal{W}(AT) := {}^{\perp}(AT) \cap \operatorname{cogen}^*(AT)$$

Lemma

If $_{A}T$ is a tilting module of projective dimension ℓ , then

$$\mathcal{W}(_{A}T) = {}^{\perp}(_{A}T) \cap \mathcal{GP}^{\leqslant \ell}(A) = {}^{\perp}(_{A}T) \cap \mathcal{GP}^{<\infty}(A),$$

 $\mathcal{W}(T_B) = {}^{\perp}(T_B) \cap \mathcal{GP}^{\leqslant \ell}(B^{op}) = {}^{\perp}(T_B) \cap \mathcal{GP}^{<\infty}(B^{op}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clearly, $\mathcal{W}(_AA) = \mathcal{GP}(A).$

Gorenstein version of Miyachita's duality and Huisgen-Zimmermann's correspondence

Corollary

(1) If ${}_{A}T_{B}$ is a tilting bimodule with $\ell := \text{proj.dim}({}_{A}T)$, then Hom ${}_{A}(-,T)$ and Hom ${}_{B^{op}}(-,T)$ can be restricted to inverse resolving dualities

$${}^{\perp}({}_{A}T) \cap \mathcal{GP}^{\leqslant \ell}(A) \simeq {}^{\perp}(T_{B}) \cap \mathcal{GP}^{\leqslant \ell}(B^{op}).$$

(2) Let $\mathcal{C} \subseteq A$ -mod and $\mathcal{D} \subseteq B^{op}$ -mod be full subcategories. If there are inverse resolving dualities $\mathcal{C} \simeq \mathcal{D}$ s.t. $\mathcal{GP}(A) \subseteq \mathcal{C} \subseteq$ $\mathcal{GP}^{\leq n}(A)$ and $\mathcal{GP}(B^{op}) \subseteq \mathcal{D} \subseteq \mathcal{GP}^{\leq m}(B^{op})$ for some natural numbers n and m, then \exists a tilting bimodule ${}_{A}T_{B}$ s.t.

 $\mathcal{C} = {}^{\perp}(_A T) \cap \mathcal{GP}^{\leqslant \ell}(A) \quad and \quad \mathcal{D} = {}^{\perp}(T_B) \cap \mathcal{GP}^{\leqslant \ell}(B^{op})$

where $\ell := \operatorname{proj.dim}(_AT)$.

Applications of resolving dualities

Corollary

Let $_{A}T_{B}$ be a tilting bimodule. Then:

• There is a triangle equivalence $\mathscr{D}(\mathcal{GP}(A)) \simeq \mathscr{D}(\mathcal{GP}(B))$ which restrictes to an equivalence $\mathscr{D}^*(\mathcal{GP}(A)) \simeq \mathscr{D}^*(\mathcal{GP}(B))$ for any $* \in \{+, -, b\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 $K_n(\mathcal{GP}(A)) \simeq K_n(\mathcal{GP}(B)) \text{ for any } n \in \mathbb{N}.$

Applications of resolving dualities

A: a finite-dimensional algebra A over a finite field.

Corollary

If ${}_{A}T_{B}$ is a 1-tilting bimodule, then there is an isomorphism between the semi-derived Ringel-Hall algebra of $\mathcal{GP}(A)$ and the one of $\mathcal{GP}(B)$:

 $\mathcal{SDH}(\mathcal{GP}(A)) \cong \mathcal{SDH}(\mathcal{GP}(B)).$

Corollary [LW, Corollary A23]

If ${}_{A}T_{B}$ is a 1-tilting bimodule over 1-Gorenstein algebras A and B, then $SDH(\mathcal{GP}(A)) \cong SDH(\mathcal{GP}(B))$ as algebras.

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへの

[B] T. Bridgeland, Quantum groups via Hall algebras of complexes, Ann. of Math. 177 (2013) 739-759.
[G] M. Gorsky, Semi-derived and derived Hall algebras for stable categories, Int. Math. Res. Not. 2018 (2018), 138-159.
[LP] M. Lu and L.G. Peng, Semi-derived Ringel-Hall algebras and Drinfeld double, Adv. Math. 383 (2021) 107668.
[LW] M. Lu and W.Q. Wang, Hall algebras and quantum symmetric pairs I: foundations, Proc. Lond. Math. Soc. 124 (2022) 1-82.

Semi-derived Ringel-Hall algebras of weakly 1-Gorenstein exact categories

Let k be a finite field and \mathcal{A} a small exact category linear over k.

Definition (Lu and Wang, 2022)

 $\begin{array}{l} \mathcal{A} \ is \ called \ weakly \ Gorenstein \ if \ \mathcal{P}^{<\infty}(\mathcal{A}) = \mathcal{I}^{<\infty}(\mathcal{A}); \\ weakly \ d\text{-}Gorenstein \ if \ it \ is \ weakly \ Gorenstein \ and \ \mathcal{P}^{<\infty}(\mathcal{A}) = \\ \mathcal{P}^{\leqslant d}(\mathcal{A}) = \mathcal{I}^{\leqslant d}(\mathcal{A}). \end{array}$

In case \mathcal{A} is a weakly 1-Gorenstein exact category with finite morphism spaces and finite extension spaces, the *semi-derived Ringel-Hall algebra* of \mathcal{A} was defined in [LW] (see also [B,G,LP] for some cases) and denoted by $\mathcal{SDH}(\mathcal{A})$.

Based on Lu-Wang's construction, we introduce a new definition for SDH(A) (up to isomorphism of algebras) which behaves better under dualities.

・ロト ・ 母 ト ・ 目 ト ・ 目 ・ うへぐ

- $\mathcal{GP}(A)$ for A: finite-dim. k-algebra;
- A-mod for A: finite-dim. 1-Gorenstein k-algebra.

Applications of resolving dualities to establish isomorphisms of semi-derived Ringel-Hall algebras

Set
$$\mathcal{A} := {}^{\perp}({}_{A}T) \cap \mathcal{GP}^{\leqslant 1}(A)$$
 and $\mathcal{B} := {}^{\perp}(T_{B}) \cap \mathcal{GP}^{\leqslant 1}(B^{op}).$
 $\mathcal{GP}(A) \xrightarrow{\subseteq} \mathcal{A}$
 \downarrow_{F}
 (1)
 $\mathcal{GP}(B) \xleftarrow{G} \mathcal{GP}(B^{op}) \xrightarrow{\subseteq} \mathcal{B}.$
 $\mathcal{SDH}(\mathcal{GP}(A)) \xrightarrow{\widetilde{\phi}_{A}} \mathcal{SDH}(\mathcal{A})$
 (2)
 $\downarrow_{\mathbf{V}_{F}}$
 $(\mathcal{SDH}(\mathcal{B}))^{op}$
 $\downarrow_{(\widetilde{\psi}_{B^{op}})^{op}}$
 $\mathcal{SDH}(\mathcal{GP}(B)) \xleftarrow{(\mathbf{Y}_{G})^{op}} (\mathcal{SDH}(\mathcal{GP}(B^{op}))^{op})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

 $\mathcal{X} = \{X \in A \text{-mod} \mid \operatorname{Ext}_{A}^{1}(T, X) = 0\}, \mathcal{Y} = \{Y \in B \text{-mod} \mid \operatorname{Tor}_{1}^{B}(T, Y) = 0.$ Note: $\mathcal{X} \cong \mathcal{Y}$ of exact categories by the Brenner-Butler tilting theorem. The proof of [LW, Corollary A23]:

 $\mathcal{SDH}(\mathcal{GP}(A)) \cong \mathcal{SDH}(A\operatorname{-mod}) \cong \mathcal{SDH}(\mathcal{X}) \cong \mathcal{SDH}(\mathcal{Y}) \cong \mathcal{SDH}(B\operatorname{-mod}) \cong \mathcal{SDH}(\mathcal{GP}(B))$

where \mathcal{X} and \mathcal{Y} are weakly 1-Gorenstein exact categories. Note: for a general algebra A, the category \mathcal{X} may not be weakly 1-Gorenstein. Our proof:

 $\mathcal{SDH}(\mathcal{GP}(A)) \cong \mathcal{SDH}(\mathcal{A}) \cong (\mathcal{SDH}(\mathcal{B}))^{op} \cong (\mathcal{SDH}(\mathcal{GP}(B^{op}))^{op} \cong \mathcal{SDH}(\mathcal{GP}(B)).$

where $\mathcal{A} := {}^{\perp}({}_{A}T) \cap \mathcal{GP}^{\leqslant 1}(A)$ and $\mathcal{B} := {}^{\perp}(T_{B}) \cap \mathcal{GP}^{\leqslant 1}(B^{op}).$

More details

• H.X. Chen and J.S. Hu, Resolving dualities and applications to homological invariants, to appear in Canad. J. Math., arXiv:2209.11627.

Thank you very much!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ