Cotorsion pairs and model structures on Morita rings

Jian Cui

Shanghai Jiao Tong University

2024.8.6

Contents

- 2 Abelian model structures and Hovey correspondence
- 3 Cotorsion pairs on Morita rings
- 4 Model structures on Morita rings

Definition

Let *f* and *g* be morphisms in a category *M*. The morphism *f* is said to be a *retract* of *g*, if there exists two morphisms $\varphi : f \longrightarrow g$ and $\psi : g \longrightarrow f$ in the morphism category $\text{Mor}(\mathcal{M})$, such that $\psi\varphi=\text{Id}_f$. That is, there exists the following commutative diagram

$$
X \xrightarrow{\varphi_1} X' \xrightarrow{\psi_1} X
$$

$$
f \downarrow g \downarrow f \downarrow f \downarrow
$$

$$
Y \xrightarrow{\varphi_2} Y' \xrightarrow{\psi_2} Y
$$

such that $\psi_1 \varphi_1 = \text{Id}_X$, $\psi_2 \varphi_2 = \text{Id}_Y$.

Closed model structures

Definition (Daniel Quillen, 1967)

A closed model structure on a category *M* is a triple (Cofib(*M*), $Fib(\mathcal{M})$, $Weq(\mathcal{M})$ of classes of morphisms, where the morphisms in the three classes are respectively called cofibrations (usually denoted by \hookrightarrow), fibrations (usually denoted by \rightarrow), and weak equivalences, satisfying the following conditions (CM1) - (CM4):

 ${\sf (CM1)}$ $(2 \text{ out of 3)}$ Let $X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z$ be morphisms in ${\cal M}.$ If two of the morphisms f , g , gf are weak equivalences, then so is the third.

(CM2) (closed under retracts) If *f* is a retract of *g*, and *g* is a cofibration (fibration, weak equivalence), then so is *f*.

Definition

(CM3) (lifting) Given a commutative square

$$
\begin{array}{ccc}\nA & a & & & \\
A & & & & \\
i & & & & \\
\downarrow & & & & \\
B & & & & & \\
\hline\n\end{array}
$$

where $i \in \mathrm{Cofib}(\mathcal{M})$ and $p \in \mathrm{Fib}(\mathcal{M})$, if either $i \in \mathrm{Weq}(\mathcal{M})$ or $p \in \text{Weq}(\mathcal{M})$, then there exists a morphism $s : B \longrightarrow X$ such that $a = si$, $b = ps$. (CM4) (factorization) Any morphism *f* : *X −→ Y* has two factorizations: (i) $f = pi$, where $i \in \mathrm{Cofib}(\mathcal{M}) \cap \mathrm{Weq}(\mathcal{M})$, $p \in \mathrm{Fib}(\mathcal{M})$; (ii) $f = p' i'$, where $i' \in \mathrm{Cofib}(\mathcal{M})$, $p' \in \mathrm{Fib}(\mathcal{M}) \cap \mathrm{Weq}(\mathcal{M})$.

Definition

Let $(Cofib(\mathcal{M}), Fib(\mathcal{M}), W(\mathcal{M}))$ be a closed model structure on a category M with 0 object.

- (1) *trivial cofibrations*: $\text{Cofib}(\mathcal{M}) \cap \text{W}(\mathcal{M})$.
- (2) *trivial fibrations*: $Fib(\mathcal{M}) \cap W(\mathcal{M})$.
- (3) *cofibrant objects*: $C = \{X \in \mathcal{M} \mid 0 \longrightarrow X \text{ is a cofibration}\}.$
- (4) *fibrant objects*: $\mathcal{F} = \{ Y \in \mathcal{M} \mid Y \longrightarrow 0 \text{ is a fibration} \}.$
- (5) *trivial objects*: $W = \{ W \in \mathcal{M} \mid 0 \longrightarrow W$ is a weak equivalence $\}$
- ${X \in \mathcal{M} \mid W \longrightarrow 0 \text{ is a weak equivalence}}.$
- (6) *trivial cofibrant objects*: *C ∩ W*.
- (7) *trivial fibrant objects*: *F ∩ W*.

Definition

A category *M* endowed with a closed model structure is called *a closed model category*, if

(CM0) *M* is closed under finite projective and inductive limits.

Quillen's homotopy category

By localizing the model structure $(\mathrm{Cofib}(\mathcal{M}), \ \mathrm{Fib}(\mathcal{M}), \ W(\mathcal{M}))$ on the category M using $W(M)$, we obtain the homotopy category $H₀M$, which makes weak equivalence become isomorphisms and has universal property for it.

Theorem (D. Quillen; A. Beligiannis, I. Reiten)

Let $(Cofib(\mathcal{M}),$ $Fib(\mathcal{M}),$ $W(\mathcal{M}))$ be a model structure on an additive category *M*. Then the homotopy category Ho*M* is pretriangulated.

Abelian model structures

Definition (M. Hovey; A. Beligiannis, I. Reiten)

A model structure $(Cofib(\mathcal{A}), Fib(\mathcal{A}), W(\mathcal{A}))$ on an Abelian category *A* is called an abelian model structure, if:

- (1) Fib $(A) = \{$ epimorphism $f |$ Ker f is a fibrant object $\};$
- (2) $\text{Cofib}(\mathcal{A}) = \{\text{monomorphism } f \mid \text{Coker } f \text{ is a cofibrant object}\}.$

Cotorsion pairs

Definition

Let *A* be an Abelian category.

(1) A pair of classes of objects (C, \mathcal{F}) in $\mathcal A$ is called a *cotorsion pair*, if:

$$
\mathcal{C} = {}^{\perp}\mathcal{F} = \{ X \in \mathcal{A} \mid \text{Ext}^1(X, \mathcal{F}) = 0 \}, \qquad \mathcal{F} = \mathcal{C}^{\perp}.
$$

(2) A cotorsion pair (C, \mathcal{F}) is called *hereditary*, if:

- *C* is closed under the kernel of epimorphisms, and
- *F* is closed under cokernel of monomorphisms.

(3) A cotorsion pair (C, \mathcal{F}) is called *complete*, if there exists short exact sequence *∀X ∈ A*

$$
0 \to F \to C \to X \to 0, \quad 0 \to X \to F' \to C' \to 0
$$

where $C, C' \in \mathcal{C}, F, F' \in \mathcal{F}$.

proposition

Let *A* be an Abelian category with enough projective and injective objects. Then the two conditions in the hereditary of a cotorsion pair above are equivalent, and each of them is equivalent to $\text{Ext}_{\mathcal{A}}^2(\mathcal{C}, \mathcal{F}) = 0$; and also equivalent to $\text{Ext}_{\mathcal{A}}^{i}(\mathcal{C}, \mathcal{F}) = 0$ for $i \geq 1$.

proposition

Let *A* be an Abelian category with enough projective and injective objects. Then the two conditions in the completeness of a cotorsion pair above are equivalent.

Hovey triples

Definition

Let *A* be an Abelian category. A triple of classes of objects $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is called a *Hovey triple*, if: (1) the class of objects Z is a *thick subcategory*, that is, Z is closed under direct summands, and for a short exact sequence 0 *−→ X −→ Y −→ Z −→* 0 in *A*, if there are two terms in *Z*, then so is the third term; (2) $(\mathcal{X}, \mathcal{Y} \cap \mathcal{Z})$ and $(\mathcal{X} \cap \mathcal{Z}, \mathcal{Y})$ are complete cotorsion pairs.

Hovey correspondence

Theorem (M. Hovey, 2002)

There is a one-to-one correspondence between abelian model structures $(\mathrm{Cofib}(\mathcal{A}), \ \mathrm{Fib}(\mathcal{A}), \ \mathrm{W}(\mathcal{A}))$ with cofibrant objects \mathcal{C} , fibrant objects *F* and trivial objects *W* on Abelian category *A* and Hovey triples:

$$
(\mathrm{Cofib}(\mathcal{A}), \ \mathrm{Fib}(\mathcal{A}), \ \mathrm{W}(\mathcal{A})) \mapsto (\mathcal{C}, \mathcal{F}, \mathcal{W})
$$

and its inverse:

However triple
$$
(\mathcal{C}, \mathcal{F}, \mathcal{W}) \mapsto (\mathrm{Cofib}(\mathcal{A}), \mathrm{Fib}(\mathcal{A}), \mathrm{W}(\mathcal{A}))
$$

where

Cofib $(A) = \{$ monomorphism $f \mid Coker f \in C\}$

 $Fib(\mathcal{A}) = \{$ epimorphism $f |$ $Ker f \in \mathcal{F}\},$

 $W(A) = \{pi \mid i \text{ monic with Coker } i \in \mathcal{C} \cap \mathcal{W}, \ p \text{ epic with Ker } p \in \mathcal{F} \cap \mathcal{W} \}.$

Compatible cotorsion pairs

Definition

Two cotorsion pairs (Φ*,* Φ *⊥*) and (*[⊥]*Ψ*,* Ψ) in an Abelian category *A* are called *compatible*, if:

- $(1) \operatorname{Ext}^1_{\mathcal{A}}(\Phi, \Psi) = 0$, that is, $\Phi \subseteq {}^{\perp} \Psi$, $\Psi \subseteq \Phi^{\perp}$;
- (2) $\Phi \cap \Phi^{\perp} = {}^{\perp} \Psi \cap \Psi.$

Notice that the compatibility depends on the order of two cotorsion pairs.

Theorem (H. Becker 2014; J. Gillespie, 2015)

Let $(\Phi, \; \Phi^{\perp})$ and $({}^{\perp}\Psi, \; \Psi)$ be two hereditary, complete and compatible cotorsion pairs in an Abelian category *A*. Then (*⊥*Ψ*,* Φ *⊥, W*) is a hereditary Hovey triple, where

$$
\mathcal{W} = \{ Y \in \mathcal{A} | \exists \text{ exact sequence } 0 \to P \to F \to Y \to 0, \ P \in \Psi, \ F \in \Phi \}
$$

=
$$
\{ Y \in \mathcal{A} | \exists \text{ exact sequence } 0 \to Y \to P' \to F' \to 0, \ P' \in \Psi, \ F' \in \Phi \}.
$$

 $\textsf{That is, }\ {}^\perp\Psi\cap\mathcal{W}=\Phi,\;\;\Phi^\perp\cap\;\mathcal{W}=\Psi,\text{ and }\mathcal{W}\text{ is a thick subcategory.}$ Thus the corresponding model structure is:

- Cofib (A) = {monomorphism $f \nvert$ Coker $f \in L$ [⊥] Ψ};
- *•* Fib(*A*) = *{*epimorphism *f |* Ker*f ∈* Φ *[⊥]}*;
- $W(A) = \{pi \mid i \text{ monic with Coker } i \in \Phi, p \text{ epic with Ker } p \in \Psi\};$
- *•* Ho(*A*) = (*⊥*Ψ *∩* Φ *⊥*)*/*(*⊥*Ψ *∩* Ψ) = (*⊥*Ψ *∩* Φ *⊥*)*/*(Φ *∩* Φ *⊥*).

Morita rings

A, *B*: rings, $_BM_A$, $_AN_B$: bimodules, $\phi : M \otimes_A N \to B$, $\psi: N\otimes_B M \to A$: bimodule maps, s.t. $\forall \, \, m, m' \in M, \quad \, n, n' \in N$

$$
m'\psi(n\otimes_B m)=\phi(m'\otimes_A n)m, \quad n'\phi(m\otimes_A n)=\psi(n'\otimes_B m)n.
$$

A *Morita ring* is $\Lambda = \Lambda_{(\phi, \psi)} := \left(\begin{smallmatrix} A & A N_B \ A M_A & B \end{smallmatrix} \right)$ *^BM^A B* , with componentwise addition, and multiplication

$$
\left(\begin{array}{cc} a & n \\ m & b \end{array}\right) \left(\begin{array}{cc} a' & n' \\ m' & b' \end{array}\right) = \left(\begin{array}{cc} aa' + \psi(n \otimes_B m') & an' + nb' \\ ma' + bm' & \phi(m \otimes_A n') + bb' \end{array}\right).
$$

E. Green: A Λ-module: $\binom{X}{Y}_{f,g'}$, $f \in \text{Hom}_{B}(M \otimes_A X, Y)$ and $g\in \operatorname{Hom}_{A}(N\otimes_{B}Y,X)$, s.t. $g(1\otimes f)=0=f(1\otimes g)$. A Λ -map is $\binom{a}{b}$: $\binom{X}{Y}_{f,g}$ \rightarrow $\binom{X'}{Y'}_{f',g}$, with *a* and *b* an *A*-map and a *B*-map, respectively, s.t. the diagrams commute:

$$
M \otimes_A X \xrightarrow{1_M \otimes a} M \otimes_A X'
$$

\n
$$
N \otimes_B Y \xrightarrow{1_N \otimes b} N \otimes_B Y'
$$

\n
$$
N \otimes_B Y \xrightarrow{1_N \otimes b} N \otimes_B Y'
$$

\n
$$
N \otimes_B Y \xrightarrow{q} N \otimes_B Y'
$$

\n
$$
X \xrightarrow{a} X'.
$$

Adjoint pair: *^A*-Mod *^M⊗A−*/*B*-Mod Hom*B*(*M,−*) $\overbrace{S \rightarrow \infty}^{M \otimes A^-}$ B -Mod with adjoint isomorphism: $f \in \text{Hom}_{B}(M \otimes_{A} X, Y) \xrightarrow{\cong} \text{Hom}_{A}(X, \text{Hom}_{B}(M, Y)) \ni \widetilde{f}$ Adjoint pair: *^B*-Mod *^N⊗B−*/*A*-Mod Hom*A*(*N,−*) $\frac{N\otimes B^-}{\leq N\leq N}$ 4-Mod with adjoint isomorphism: $g \in \text{Hom}_{A}(N \otimes_{B} Y, X) \xrightarrow{\cong} \text{Hom}_{B}(Y, \text{Hom}_{A}(N, X)) \ni \widetilde{g}.$

12 functors

- \bullet **T**_{*A*} : *A*-Mod → Λ-Mod, $X \mapsto (\begin{smallmatrix} X \\ M\otimes_A X \end{smallmatrix})_{1,0}$.
- \bullet *T***_{***B***} :** *B***-Mod → Λ-Mod,** $Y \mapsto \left(\frac{N \otimes_B Y}{Y}\right)_{0,1}$ **.**
- *•* U_{*A*} : Λ-Mod → *A*-Mod, $\left(\frac{X}{Y}\right)_{f,g}$ \mapsto *X*.
- \bullet U_{*B*} : Λ-Mod → *B*-Mod, $\left(\frac{X}{Y}\right)_{f,g}^{\infty}$ \mapsto *Y*.
- \bullet $H_A: A \text{-Mod} \to \Lambda \text{-Mod}, X \mapsto \left(\begin{array}{c} X \\ (N,X) \end{array}\right)$
- $0, \epsilon'_{\mathbf{Y}}$ [.] *X* $\overline{ }$
- *•* $H_B: B$ -Mod → Λ-Mod, $Y \mapsto \begin{pmatrix} (M,Y) \\ Y \end{pmatrix}$ *Y* $\epsilon_{Y,0}$.
- $C_A : \Lambda\text{-Mod} \to A\text{-Mod}, \ \left(\begin{array}{c} X \\ Y \end{array}\right)_{f,g} \mapsto \text{Coker } g.$
- $C_B: \Lambda\text{-Mod} \to B\text{-Mod}, \ \left(\begin{array}{c} X \\ Y \end{array}\right)_{f,g}^{\infty} \mapsto \text{Coker } f.$
- K_{*A*} : Λ -Mod \rightarrow *A*-Mod, $\left(\frac{X}{Y}\right)_{f,g} \mapsto \text{Ker } \widetilde{f}$.
- K_B: Λ -Mod \rightarrow *B*-Mod, $\left(\frac{X}{Y}\right)_{f,g} \rightarrow$ Ker \widetilde{g} .
- \bullet *Z_A* : *A*-Mod → Λ-Mod, *X* \mapsto $\binom{X}{0}_{0,0}$.
- \bullet *Z_B* : *B*-Mod → Λ-Mod, *Y* → $\left(\begin{array}{c} 0 \\ Y \end{array}\right)_{0,0}$.

2 rerecollements

There are two recollements of abelian categories (E. L. Green - C. Psaroudakis):

$$
A\text{-Mod} \xrightarrow{\begin{array}{c} C_A \\ \hline Z_A \\ \hline K_A \end{array}} \Lambda_{(0,0)}\text{-Mod} \xrightarrow{\begin{array}{c} T_B \\ \hline U_B \\ \hline H_B \end{array}} B\text{-Mod}
$$

and

$$
B\text{-Mod} \xrightarrow{\begin{array}{c} C_B \\ \hline Z_B \\ \hline K_B \end{array}} \Lambda_{(0,0)}\text{-Mod} \xrightarrow{\begin{array}{c} T_A \\ \hline U_A \\ \hline H_A \end{array}} A\text{-Mod}.
$$

(Hereditary) cotorsion pairs (ctp) in Morita rings: Series I

For a class *X* of *A*-modules and a class *Y* of *B*-modules, define: $\begin{bmatrix} \mathcal{X} \\ \mathcal{Y} \end{bmatrix} := \{ \begin{bmatrix} X \\ Y \end{bmatrix} f, g \in \Lambda \text{-Mod} \mid X \in \mathcal{X}, Y \in \mathcal{Y} \}$ $\Delta(\mathcal{X}, \mathcal{Y}) := \{ \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$ *L*² $\overline{ }$ $f,g \in \Lambda\text{-Mod} \ \ | \ \ f\colon M\otimes_A L_1 \longrightarrow L_2 \ \ \text{ and } \ \ g\colon$ $N \otimes_B L_2 \longrightarrow L_1$ are monomorphisms, Coker $f \in \mathcal{Y}$, Coker $g \in \mathcal{X}$ } ∇ (*X*, *Y*) := { $\left(\frac{L_1}{L_2}\right)$ *L*² $\overline{ }$ $f,g \in \Lambda\text{-Mod} \ \ | \ \ f\colon L_1 \longrightarrow \operatorname{Hom}_B(M,L_2)$ and \widetilde{g} : *L*₂ → Hom_{*A*}(*N, L*₁) are epimorphisms, Ker $\widetilde{f} \in \mathcal{X}$, Ker $\widetilde{g} \in \mathcal{Y}$ } $\text{Mon}(\Lambda) := \Delta(A \text{-Mod}, B \text{-Mod}) = \{ \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$ *L*² $\overline{ }$ f _{*f*}^{*g*} \in **Λ**-Mod $|$ *f* and *g* are monomorphisms*}* $\text{Epi}(\Lambda) := \nabla(A \text{-Mod}, B \text{-Mod}) = \{ \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}$ L_2 $\overline{ }$ f _{*f*}^{*g*} \in **Λ**-Mod $|$ \widetilde{f} and \widetilde{g} are epimorphisms}.

(Hereditary) cotorsion pairs (ctp) in Morita rings: Series I

Theorem

Let $\Lambda = \begin{pmatrix} A & N \\ M & B \end{pmatrix}$ be a Morita ring with $\phi = 0 = \psi$, and $(\mathcal{U}, \mathcal{X})$, (V, V) cotorsion pairs in A-Mod and B-Mod respectively. Then:

(1) If $\text{Tor}_1(M, \mathcal{U}) = 0 = \text{Tor}_1(N, \mathcal{V})$, then $(\perp^{\perp}(\stackrel{\mathcal{X}}{\mathcal{Y}}), (\stackrel{\mathcal{X}}{\mathcal{Y}}))$ is a cotorsion pair. It is hereditary if and only if $(\mathcal{U}, \mathcal{X})$ and $(\mathcal{V}, \mathcal{Y})$ are hereditary.

(2) If $\text{Ext}^1(N, \mathcal{X}) = 0 = \text{Ext}^1(M, \mathcal{Y})$, then $\begin{pmatrix} U \\ V \end{pmatrix}$ $\left(\begin{array}{c}\nu\\ \nu\end{array}\right)$ $)^\perp$) is a cotorsion pair. It is hereditary if and only if $(\mathcal{U}, \mathcal{X})$ and $(\mathcal{V}, \mathcal{Y})$ are hereditary.

(Hereditary) cotorsion pairs (ctp) in Morita rings: Series II

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M\, B \end{smallmatrix} \right)$ be a Morita ring with $\ M \otimes_A N = 0 = N \otimes_B M$, and $(\mathcal{U}, \mathcal{X})$, $(\mathcal{V}, \mathcal{Y})$ cotorsion pairs in A-Mod and B-Mod respectively. Then:

 (1) $(\Delta(\mathcal{U}, \mathcal{V}), \ \Delta(\mathcal{U}, \mathcal{V})^{\perp})$ is a cotorsion pair in $\Lambda\text{-Mod}.$

If M_A and N_B are flat, then it is hereditary if and only if $(\mathcal{U}, \mathcal{X})$ and (V, V) are hereditary.

 (2) $({}^{\perp}\nabla(\mathcal{X},\mathcal{Y}),\;\nabla(\mathcal{X},\mathcal{Y}))$ is a cotorsion pair in $\Lambda\text{-Mod}.$

If *BM* and *AN* are projective, then it is hereditary if and only if $(\mathcal{U}, \mathcal{X})$ and (V, V) are hereditary.

The condition " $M \otimes_A N = 0 = N \otimes_B M$ " in the theorem can not be weakened as $" \phi = 0 = \psi"$.

comparison

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M\, B \end{smallmatrix} \right)$ be a Morita ring with $M \otimes_A N = 0 = N \otimes_B M$, and $(\mathcal{U}, \mathcal{X})$, $(\mathcal{V}, \mathcal{Y})$ cotorsion pairs in A-Mod and B-Mod, respectively. (1) If $\operatorname{Tor}^A_1(M, \mathcal{U}) = 0 = \operatorname{Tor}^B_1(N, \mathcal{V})$, then the cotorsion pairs

 $(\perp^{\perp}(\frac{\mathcal{X}}{\mathcal{Y}}), (\frac{\mathcal{X}}{\mathcal{Y}}))$ and $(\Delta(\mathcal{U}, \mathcal{V}), \Delta(\mathcal{U}, \mathcal{V})^{\perp})$

in Λ -mod have a relation $\perp \left(\begin{smallmatrix} \mathcal{X} \ \mathcal{Y} \end{smallmatrix} \right) \subseteq \Delta(\mathcal{U},\mathcal{V}),$ or equivalently, $\Delta(U, V)^{\perp} \subseteq \begin{pmatrix} X \\ Y \end{pmatrix}$.
 \therefore $\Delta(U, V)^{\perp} \subseteq \begin{pmatrix} Y \\ Y \end{pmatrix}$. $P(A \cap B)$ If $\operatorname{Ext}^1_A(N, \mathcal{X}) = 0 = \operatorname{Ext}^1_B(M, \mathcal{Y})$, then the cotorsion pairs

> $\frac{u}{v}$), $\left(\begin{array}{c} u \\ v \end{array}\right)$ $(\perp^{\perp} \nabla(\mathcal{X}, \mathcal{Y}), \; \nabla(\mathcal{X}, \mathcal{Y}))$

in Λ -mod have a relation $(\begin{matrix} \mathcal{U} \ \mathcal{V} \end{matrix})^{\perp} \subseteq \nabla(\mathcal{X}, \mathcal{Y})$, or equivalently, $\frac{1}{\sqrt{\mathcal{V}}}(\mathcal{X}, \mathcal{Y}) \subseteq \left(\frac{\mathcal{U}}{\mathcal{V}}\right)$.

Remark

In the case of $M = 0$, theorems above are obtained by R. M. Zhu, Y. Y. Peng, N. Q. Ding, Publ. Math. Debrecen 98(1)(2021), 83-113. In particular, when $M = 0$ we have:

 $(\perp^{\perp}(\begin{array}{c} \chi \\ \gamma \end{array}), (\begin{array}{c} \chi \\ \gamma \end{array})) = (\Delta(\mathcal{U}, \mathcal{V}), \Delta(\mathcal{U}, \mathcal{V})^{\perp});$

$$
(\left(\begin{smallmatrix} U \\ V \end{smallmatrix}\right), \left(\begin{smallmatrix} U \\ V \end{smallmatrix}\right)^{\perp}) = (\perp \nabla(\mathcal{X}, \mathcal{Y}), \nabla(\mathcal{X}, \mathcal{Y})).
$$

An important example

 $\mathsf{W}\mathsf{e}$ claim that generally $({}^{\perp}({}^{\mathcal{X}}_{\mathcal{Y}}) \, , \, \left({}^{\mathcal{X}}_{\mathcal{Y}}\right)) \neq (\Delta(\mathcal{U}, \mathcal{V}), \, \Delta(\mathcal{U}, \mathcal{V})^{\perp});$ $(\perp \nabla(\mathcal{X}, \mathcal{Y}), \nabla(\mathcal{X}, \mathcal{Y})) \neq ((\begin{smallmatrix} \mathcal{U} \\ \mathcal{V} \end{smallmatrix})$), $\left(\begin{array}{c} u \\ v \end{array}\right)$ *⊥*)*.*

Example. Let $\Lambda = \begin{pmatrix} A & N \\ M & B \end{pmatrix} = \begin{pmatrix} A & M \\ M & A \end{pmatrix}$, $A = B = k(1 \longrightarrow 2)$, where char $k \neq 2$. Thus $e_1 A e_2 = 0$ and $e_2 A e_1 \cong k$. Take $M = N = Ae_2 \otimes_k e_1 A$. Then $M \otimes_A N = 0 = N \otimes_A M$. The AR quiver of *A* is

(1) Take
$$
(U, \mathcal{X}) = (A \text{-Mod}, A\mathcal{I}) = (\mathcal{V}, \mathcal{Y}), L = \left(\begin{smallmatrix} Ae_1 \\ Ae_1 \end{smallmatrix}\right)_{\sigma,\sigma}
$$
. Then

$$
L \in \text{Mon}(\Lambda) = \Delta(A\text{-Mod}, A\text{-Mod}) = \Delta(\mathcal{U}, \mathcal{V}), \qquad L \in \left(\frac{\mathcal{I}}{\mathcal{I}}\right) = \left(\frac{\mathcal{X}}{\mathcal{Y}}\right).
$$

The following exact sequence of Λ-modules does not split:

$$
0 \to \begin{pmatrix} A_{e_1} \\ A_{e_1} \end{pmatrix}_{\sigma,\sigma} \xrightarrow{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}} \begin{pmatrix} A_{e_1 \oplus A_{e_1}} \\ A_{e_1 \oplus A_{e_1}} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ A_{e_1} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \
$$

i.e., $\operatorname{Ext}_{\Lambda}^{1}(L, L) \neq 0$. So $\operatorname{Mon}(\Lambda) \nsubseteq \perp (\frac{1}{\Lambda})$, and hence $(\text{Mon}(\Lambda), \text{Mon}(\Lambda)^{\perp}) \neq (\perp \left(\frac{\mathcal{I}}{\mathcal{I}}\right))$ \int , $\left(\frac{I}{I}\right)$)*.*

(2) Take
$$
(\mathcal{U}, \mathcal{X}) = (\mathcal{P}, A\text{-Mod}) = (\mathcal{V}, \mathcal{Y})
$$
, $L = \begin{pmatrix} Ae_1 \\ Ae_1 \end{pmatrix}_{\sigma,\sigma} \in \begin{pmatrix} \mathcal{P} \\ \mathcal{P} \end{pmatrix} = \begin{pmatrix} \mathcal{U} \\ \mathcal{V} \end{pmatrix}$.
Then $L \in \text{Eip}(\Lambda) = \nabla(A\text{-Mod}, A\text{-Mod}) = \nabla(\mathcal{X}, \mathcal{Y})$. By (1),
 $\text{Ext}^1_{\Lambda}(L, L) \neq 0$, which shows $\text{Epi}(\Lambda) \nsubseteq \begin{pmatrix} \mathcal{P} \\ \mathcal{P} \end{pmatrix}^{\perp}$, and hence

$$
({}^{\perp}\mathrm{Epi}(\Lambda), \mathrm{ Epi}(\Lambda)) \neq (({}^{\mathcal{P}}_{\mathcal{P}}), ({}^{\mathcal{P}}_{\mathcal{P}})^{\perp}).
$$

Jian Cui (Shanghai Jiao Tong University) Cotorsion pairs and model structures on Mori^{2024.8}.6 25/32

Equality

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M\, B \end{smallmatrix} \right)$ be a Morita ring with $\; M \otimes_A N = 0 = N \otimes_B M \text{,}$ and $(\mathcal{U}, \mathcal{X})$, $(\mathcal{V}, \mathcal{Y})$ cotorsion pairs in A-Mod and in B-Mod, respectively. (1) Assume that $\operatorname{Tor}^A_1(M, \ U) = 0 = \operatorname{Tor}^B_1(N, \ V)$. If $M \otimes_A U \subseteq Y$ or $N \otimes_B \mathcal{V} \subseteq \mathcal{X}$, then

$$
(\Delta(\mathcal{U}, \mathcal{V}), \ \Delta(\mathcal{U}, \mathcal{V})^{\perp}) = (\perp^{\perp}(\begin{smallmatrix} \mathcal{X} \\ \mathcal{Y} \end{smallmatrix}), \ (\begin{smallmatrix} \mathcal{X} \\ \mathcal{Y} \end{smallmatrix})).
$$

Thus $(\Delta(\mathcal{U}, \mathcal{V}), \begin{pmatrix} \mathcal{X} \\ \mathcal{Y} \end{pmatrix})$ is a cotorsion pair. $B(X; \mathbb{R}) = \text{Ext}^1_B(M, \mathcal{Y}) = 0 = \text{Ext}^1_A(N, \mathcal{X})$. If $\text{Hom}_B(M, \mathcal{Y}) \subseteq \mathcal{U}$ or $\text{Hom}_A(N, \mathcal{X}) \subseteq \mathcal{V}$, then

$$
({}^{\perp}\nabla(\mathcal{X},\mathcal{Y}),\ \nabla(\mathcal{X},\mathcal{Y}))=(({\mathcal{U}\choose \mathcal{V}}),\ ({\mathcal{U}\choose \mathcal{V}}^{\perp}).
$$

Thus $\left(\begin{smallmatrix} U \\ V \end{smallmatrix}\right)$ $\big)$, ∇ $(\mathcal{X}, \mathcal{Y})$ is a cotorsion pair.

Jian Cui (Shanghai Jiao Tong University) Cotorsion pairs and model structures on Morita rings 2024.8.6 26 / 32

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M \ B \end{smallmatrix} \right)$ be a noetherian Morita ring with $M \otimes_A N = 0 = N \otimes_B M$. Assume that \overrightarrow{A} and \overrightarrow{B} are quasi-Frobenius rings, $\overrightarrow{A}N$ and $\overrightarrow{B}M$ are projective, and that *M^A* and *N^B* are flat. Then

(1) Λ is a Gorenstein ring with inj. $\dim_{\Lambda}\Lambda \leq 1$.

 (2) $\left(\frac{\perp}{\tau}\right)$ *I* $\left(\frac{1}{\tau} \right)$ *I* $\tilde{D}(t) = (\mathrm{Mon}(\Lambda), \ \mathrm{Mon}(\Lambda)^\perp);$ and it is the Gorenstein-proj. $\widetilde{\mathrm{c}^{~}}$ cotorsion pair $\widetilde{\mathrm{(GP(\Lambda)}},\ \Lambda^{\mathcal{P}^{\leq 1}})$. So it is complete and hereditary, and

 $GP(\Lambda) = Mon(\Lambda) = \perp_{\Lambda} \mathcal{P}, \quad Mon(\Lambda) = \perp_{\Lambda} \mathcal{P}^{\leq 1}.$

 $(2)'$ $((\begin{matrix} \mathcal{P} \\ \mathcal{P} \end{matrix})'$), $\left(\begin{matrix} P \\ P \end{matrix}\right)$ $\big)^\perp) = (\perp \operatorname{Epi}(\Lambda), \; \operatorname{Epi}(\Lambda));$ and it is the Gorenstein-inj. c otorsion pair $\hat{A}^{\mathcal{D} \leq 1}, \; \mathrm{GI}(\Lambda))$. So it is complete and hereditary, and

 $GI(\Lambda) = Epi(\Lambda) = \Lambda \mathcal{I}^{\perp}, \quad {}^{\perp}Epi(\Lambda) = \Lambda \mathcal{P}^{\leq 1}.$

Note that $GP(\Lambda) = Mon(\Lambda)$ is a new result.

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M & B \end{smallmatrix}\right)$ be a Morita ring with $\phi = 0 = \psi$, and $(\mathcal{V}, \mathcal{Y})$ a complete ϵ tp in $B\text{-Mod.}$ Suppose that N_B is flat and $_BM$ is projective. (1) If $M \otimes_A P \subseteq Y$, then $\left(\begin{matrix} \perp \end{matrix} \begin{matrix} A-\text{Mod} \\ Y \end{matrix} \right)$), $A-Mod$)) is a complete cotorsion

Y Y pair in Λ-Mod.

If $M \otimes_A N = 0 = N \otimes_B M$, then one has the complete cotorsion pair:

$$
(\mathrm{T}_A({}_A\mathcal{P})\oplus\mathrm{T}_B(\mathcal{V}),\,\, \big(\begin{smallmatrix}A\text{-Mod}\\ \mathcal{Y}\end{smallmatrix}\big)).
$$

(2) If $\text{Hom}_A(N, \ _A\mathcal{I}) \subseteq \mathcal{V}$, then ((^{A-Mod} *V*), $\left(\begin{array}{c} A-\text{Mod} \\ V\end{array}\right)$ *V ⊥*) is a complete cotorsion pair in Λ-Mod.

If $M \otimes_A N = 0 = N \otimes_B M$, then one has the complete cotorsion pair:

 $\left(\begin{array}{c} A-\text{Mod} \\ V \end{array}\right)$ *V* $\big)$, $H_A(A\mathcal{I}) \oplus H_B(\mathcal{Y})$.

- *•* If *B* is left noetherian and *^BM* is inj., then *M ⊗^A P ⊆ Y* always holds.
- *•* If *B* is quasi-Frobenius and N_B is flat, then $\text{Hom}_A(N, _A \mathcal{I}) \subseteq \mathcal{V}$ always holds.
- Jian Cui (Shanghai Jiao Tong University) Cotorsion pairs and model structures on Morita rings 2024.8.6 28 / 32

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M & B \end{smallmatrix}\right)$ be a Morita ring with $\phi = 0 = \psi$, and $\ (\mathcal{U}, \mathcal{X})$ a complete ϵ tp in $A\text{-Mod.}$ Suppose that $\ M_A$ is flat and $\ _{A}N$ is proj.. (1) If $N \otimes_B \mathcal{P} \subseteq \mathcal{X}$, then $(\perp \begin{pmatrix} \mathcal{X} \\ B\text{-Mod} \end{pmatrix}, \begin{pmatrix} \mathcal{X} \\ B\text{-Mod} \end{pmatrix})$ is a complete ctp in Λ-Mod.

If $M \otimes_A N = 0 = N \otimes_B M$, then one has complete ctp

$$
(\mathrm{T}_A(\mathcal{U}) \oplus \mathrm{T}_B({}_B\mathcal{P}),\ (\tfrac{\mathcal{X}}{B\text{-Mod}})).
$$

 (2) If $\text{Hom}_B(M, B_\mathcal{I}) \subseteq \mathcal{U}$, then $(\begin{pmatrix} \mathcal{U} \\ B\text{-Mod} \end{pmatrix}, (\begin{pmatrix} \mathcal{U} \\ B\text{-Mod} \end{pmatrix}^\perp)$ is a complete ctp in Λ-Mod.

If $M \otimes_A N = 0 = N \otimes_B M$, then one has complete ctp

 $((\begin{smallmatrix} \mathcal{U} \\ B\text{-Mod} \end{smallmatrix}), \ H_A(\mathcal{X}) \oplus H_B(\mathcal{B}\mathcal{I})).$

- *•* If *A* is left noetherian and *^AN* is inj., then *N ⊗^B P ⊆ X* always holds.
- If *A* is quasi-Frobenius and M_A is flat, then $\text{Hom}_B(M, B\mathcal{I}) \subseteq \mathcal{U}$ always holds.
- Jian Cui (Shanghai Jiao Tong University) Cotorsion pairs and model structures on Morita rings 2024.8.6 29 / 32

Model structures on Morita rings

Model structures on Morita rings

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M \ B \end{smallmatrix} \right)$ be a Morita ring with $M \otimes_A N = 0 = N \otimes_B M$, and $(\mathcal{V}',\ \mathcal{Y},\ \mathcal{W})$ a Hovey triple in $B\text{-Mod.}$ Suppose that $\ N_B$ is flat and $_BM$ is projective.

(1) If $M \otimes_A \mathcal{P} \subseteq \mathcal{Y} \cap \mathcal{W}$, then

$$
(\mathrm{T}_A({}_A\mathcal{P}) \oplus \mathrm{T}_B(\mathcal{V}'),\ \left(\begin{smallmatrix}A-\mathrm{Mod}\\\mathcal{Y}\end{smallmatrix}\right),\ \left(\begin{smallmatrix}A-\mathrm{Mod}\\\mathcal{W}\end{smallmatrix}\right))
$$

is a Hovey triple in Λ -Mod; and it is hereditary with $\text{Ho}(\Lambda) \cong \text{Ho}(B)$, provided that $(\mathcal{V}', \mathcal{Y}, \mathcal{W})$ is hereditary. (2) If $\text{Hom}_A(N, \ _A\mathcal{I}) \subseteq \mathcal{V}' \cap \mathcal{W}$, then

> $\left(\begin{array}{c} A-\text{Mod} \\ \mathcal{V}' \end{array}\right)$ *V ′ ,* H*A*(*AI*) *⊕* H*B*(*Y*)*, A*-Mod *W* $))$

is a Hovey triple in Λ -Mod; and it is hereditary with $\text{Ho}(\Lambda) \cong \text{Ho}(B)$, provided that $(\mathcal{V}', \mathcal{Y}, \mathcal{W})$ is hereditary.

Jian Cui (Shanghai Jiao Tong University) Cotorsion pairs and model structures on Mori^t 2024.8.6 30/32

Model structures on Morita rings

Theorem

Let $\Lambda = \left(\begin{smallmatrix} A & N \ M\, B \end{smallmatrix} \right)$ be a Morita ring with $M \otimes_A N = 0 = N \otimes_B M$, and $(\mathcal{U}',\; \mathcal{X},\; \mathcal{W})$ a Hovey triple in $A\text{-Mod.}$ Suppose that $\; M_A$ is flat and $\; _{A}N$ is projective.

(1) If $N \otimes_B \mathcal{P} \subseteq \mathcal{X} \cap \mathcal{W}$, then

 $(T_A(\mathcal{U}') \oplus T_B(\mathcal{B}^{\mathcal{P}}), \ \left(\begin{array}{c} \mathcal{X} \\ \mathcal{B}\text{-Mod} \end{array}\right), \ \left(\begin{array}{c} \mathcal{W} \\ \mathcal{B}\text{-Mod} \end{array}\right))$

is a Hovey triple; and it is hereditary with $\text{Ho}(\Lambda) \cong \text{Ho}(A)$, provided that $(\mathcal{U}', \mathcal{X}, \mathcal{W})$ is hereditary.

(2) If $\text{Hom}_B(M, B_{\text{I}}) ⊆ U' ∩ W$, then

 $(\begin{pmatrix} \mathcal{U}' \\ B\text{-Mod} \end{pmatrix}, \quad H_A(\mathcal{X}) \oplus H_B(\mathcal{B}\mathcal{I}), \quad (\begin{pmatrix} \mathcal{W} \\ B\text{-Mod} \end{pmatrix})$

is a Hovey triple; and it is hereditary with $\text{Ho}(\Lambda) \cong \text{Ho}(A)$, provided that $(\mathcal{U}', \mathcal{X}, \mathcal{W})$ is hereditary.

Model structures on Morita rings

