Some endotrivial module of the symmetric group

Jialin Wang

City, University of London

Joint work with Karin Erdmann The International Conference on Representations of Algebras 21 Shanghai Jiao Tong University 2024

Jialin Wang (City) [Some endotrivial module](#page-45-0)

- • Let p be a prime number and $\mathbb F$ be an algebraically closed field of characteristic p.
- Let G be a finite group with $p \mid |G|$.
- The $\mathbb{F}G$ -modules are all assumed to be finitely generated modules.
- For $\mathbb{F}G$ -modules M, N, $M \otimes N = M \otimes_{\mathbb{F}} N$.

1 [Endotrivial modules](#page-2-0)

2 [Classification of endotrivial modules](#page-15-0)

[Some results on the endotrivial modules for](#page-28-0) \mathfrak{S}_4

For an $\mathbb{F}G$ -module M, let $\mathsf{End}_{\mathbb{F}}(M)$ denote the endomorphism algebra Hom $_{\mathbb{F}}(M, M)$. Let M^* denote the dual of M, i.e. Hom $_{\mathbb{F}}(M, \mathbb{F})$. Then we have as $\mathbb{F}G$ -modules

 $\mathsf{End}_{\mathbb{F}}(M) \cong M \otimes M^*$.

For an $\mathbb{F}G$ -module M, let $\mathsf{End}_{\mathbb{F}}(M)$ denote the endomorphism algebra Hom $_{\mathbb{F}}(M, M)$. Let M^* denote the dual of M, i.e. Hom $_{\mathbb{F}}(M, \mathbb{F})$. Then we have as $\mathbb{F}G$ -modules

$$
End_{\mathbb{F}}(M)\cong M\otimes M^*.
$$

Definition

Let M be an $\mathbb{F}G$ -module. Then we say M is endotrivial if

$$
End_{\mathbb{F}}(M) \cong M \otimes M^* \cong \mathbb{F} \oplus P,
$$

for some projective $\mathbb{F}G$ -module P.

For an \mathbb{F} G-module M, let $\mathsf{End}_{\mathbb{F}}(M)$ denote the endomorphism algebra $\operatorname{Hom}_{\mathbb{F}}(M, M)$. Let M^* denote the dual of M, i.e. $\operatorname{Hom}_{\mathbb{F}}(M, \mathbb{F})$. Then we have as $\mathbb{F}G$ -modules

 $\mathsf{End}_{\mathbb{F}}(M) \cong M \otimes M^*$.

Definition

Let M be an $\mathbb{F}G$ -module. Then we say M is endotrivial if

$$
End_{\mathbb{F}}(M) \cong M \otimes M^* \cong \mathbb{F} \oplus P,
$$

for some projective $\mathbb{F}G$ -module P.

Example

The trivial module $\mathbb F$ is endotrivial since $\mathbb F^*\otimes \mathbb F\cong \mathbb F.$

[Jo](#page-7-0)[in](#page-5-0)[t](#page-6-0) [w](#page-10-0)[or](#page-11-0)[k](#page-1-0) [wi](#page-2-0)[th](#page-14-0) [K](#page-15-0)[ar](#page-1-0)[in](#page-2-0) [E](#page-14-0)[rd](#page-15-0)[ma](#page-0-0)[nn Th](#page-45-0)e International Conference on Representations of Algebras 21 Shanghai Jiao Tong University 2024

Consider the Green ring of the stable module category of $\mathbb{F}G$, M is invertible if and only if $M \otimes N \cong \mathbb{F} \oplus P$ for some module N and some projective module P. In particular, endotrivial modules are invertible.

Consider the Green ring of the stable module category of $\mathbb{F}G$, M is invertible if and only if $M \otimes N \cong \mathbb{F} \oplus P$ for some module N and some projective module P. In particular, endotrivial modules are invertible.

Theorem (Benson-Carlson)

For $\mathbb{F}G$ -modules M, N, $\mathbb{F}|M \otimes N$, if and only if $N \cong M^*$ and dim M is coprime to p.

Consider the Green ring of the stable module category of $\mathbb{F}G$, M is invertible if and only if $M \otimes N \cong \mathbb{F} \oplus P$ for some module N and some projective module P. In particular, endotrivial modules are invertible.

Theorem (Benson-Carlson)

For $\mathbb{F}G$ -modules M, N, $\mathbb{F}|M \otimes N$, if and only if $N \cong M^*$ and dim M is coprime to p.

• The endotrivial modules are exactly all invertible elements in the Green ring of the stable module category.

Consider the Green ring of the stable module category of $\mathbb{F}G$, M is invertible if and only if $M \otimes N \cong \mathbb{F} \oplus P$ for some module N and some projective module P. In particular, endotrivial modules are invertible.

Theorem (Benson-Carlson)

For $\mathbb{F}G$ -modules M, N, $\mathbb{F}|M \otimes N$, if and only if $N \cong M^*$ and dim M is coprime to p.

- The endotrivial modules are exactly all invertible elements in the Green ring of the stable module category.
- \bullet They induce stable equivalences on the stable module category of $\mathbb{F}G$.

Properties

Some known properties of endotrivial modules:

Proposition

Let M, N be $\mathbb{F}G$ -modules. We have

 \bullet if there exist a projective $\mathbb{F}G$ -module P and a short exact sequence

 $0 \to M \to P \to N \to 0$,

then M is endotrivial if and only if N is;

Some known properties of endotrivial modules:

Proposition

Let M, N be $\mathbb{F}G$ -modules. We have

 \bullet if there exist a projective $\mathbb{F}G$ -module P and a short exact sequence

 $0 \to M \to P \to N \to 0$,

then M is endotrivial if and only if N is;

for $n \in \mathbb{Z}$, M is endotrivial if and only if $\Omega^n(M)$ is endotrivial where $\Omega^n(M)$ is the nth syzygy of M;

Some known properties of endotrivial modules:

Proposition

Let M, N be $\mathbb{F}G$ -modules. We have

 \bullet if there exist a projective $\mathbb{F}G$ -module P and a short exact sequence

 $0 \to M \to P \to N \to 0$,

then M is endotrivial if and only if N is;

- for $n \in \mathbb{Z}$, M is endotrivial if and only if $\Omega^n(M)$ is endotrivial where $\Omega^n(M)$ is the nth syzygy of M;
- if M is endotrivial, then $M \cong M_0 \oplus$ (proj) for some indecomposable endotrivial module M_0 ;

Some known properties of endotrivial modules:

Proposition

Let M, N be $\mathbb{F}G$ -modules. We have

 \bullet if there exist a projective $\mathbb{F}G$ -module P and a short exact sequence

 $0 \to M \to P \to N \to 0$,

then M is endotrivial if and only if N is;

- for $n \in \mathbb{Z}$, M is endotrivial if and only if $\Omega^n(M)$ is endotrivial where $\Omega^n(M)$ is the nth syzygy of M;
- if M is endotrivial, then $M \cong M_0 \oplus$ (proj) for some indecomposable endotrivial module M_0 ;
- if M, N are endotrivial, then so are $M \otimes N$ and M^* .

2 [Classification of endotrivial modules](#page-15-0)

[Some results on the endotrivial modules for](#page-28-0) \mathfrak{S}_4

The endotrivial modules are closed under taking tensor product but not direct sum!

Definition

Two endotrivial $\mathbb{F}G$ -modules M N are equivalent if $M \oplus P \cong N \oplus Q$ for some projective $\mathbb{F}G$ -modules P, Q.

The group of endotrivial modules of G, denoted by $T(G)$, is the set of equivalence classes $[M]$ of endotrivial $\mathbb{F}G$ -module M together with

$$
[M]+[N]=[M\otimes N].
$$

Jialin Wang (City) [Some endotrivial module](#page-0-0)

9 / 22

Theorem (Puig, Carlson-Mazza-Nakano)

The group of endotrivial modules $T(G)$ is finitely generated.

Theorem (Puig, Carlson-Mazza-Nakano)

The group of endotrivial modules $T(G)$ is finitely generated.

We have $T(G)$ is a finitely generated abelian group, so

$$
T(G)=TT(G)\oplus TF(G)
$$

where $TT(G)$ is the torsion subgroup and $TF(G)$ is the torsion-free subgroup of finite rank.

Theorem (Puig, Carlson-Mazza-Nakano)

The group of endotrivial modules $T(G)$ is finitely generated.

We have $T(G)$ is a finitely generated abelian group, so

$$
T(G)=TT(G)\oplus TF(G)
$$

where $TT(G)$ is the torsion subgroup and $TF(G)$ is the torsion-free subgroup of finite rank.

Theorem

The modules $\{\Omega^n(\mathbb{F}) : n \in \mathbb{Z}\}\$ generate a cyclic direct summand of $T(G)$.

Theorem (Puig, Carlson-Mazza-Nakano)

The group of endotrivial modules $T(G)$ is finitely generated.

We have $T(G)$ is a finitely generated abelian group, so

$$
T(G)=TT(G)\oplus TF(G)
$$

where $TT(G)$ is the torsion subgroup and $TF(G)$ is the torsion-free subgroup of finite rank.

Theorem

The modules $\{\Omega^n(\mathbb{F}) : n \in \mathbb{Z}\}\$ generate a cyclic direct summand of $T(G)$.

Theorem (Alperin)

Let n_G denote the number of conjugacy classes of maximal elementary abelian p-subgroups of G of order p². The rank of TF(G) is n_G if G has p-rank at most 2, and is equal to $n_G + 1$ otherwise.

[Jo](#page-22-0)[in](#page-16-0)[t](#page-17-0) [w](#page-21-0)[or](#page-22-0)[k](#page-14-0) [wi](#page-15-0)[th](#page-27-0) [K](#page-28-0)[ar](#page-14-0)[in](#page-15-0) [E](#page-27-0)[rd](#page-28-0)[ma](#page-0-0)[nn Th](#page-45-0)e International Conference on Representations of Algebras 21 Shanghai Jiao Tong University 2024

Some known classification on $T(G)$:

- \bullet G is abelian *p*-group (Dade);
- G is finite groups of Lie type in the defining characteristic (Carlson–Mazza–Nakano);
- G with a normal Sylow p-subgroup (Mazza);
- \bullet G with a cyclic Sylow p-subgroup (Mazza–Thévenaz);
- G is a symmetric or alternating group (Carlson–Mazza–Nakano,Carlson-Hemmer–Mazza–Nakano);

Let \mathfrak{S}_n be the symmetric group of degree *n*.

Theorem

If $p = 2$, then $TT(\mathfrak{S}_n) = 0$ and

$$
TF(\mathfrak{S}_n) = \left\{ \begin{array}{ll} \{0\} & \text{if } n \leq 3, \\ \mathbb{Z}^2 & \text{if } n = 4, 5, \\ \mathbb{Z} & \text{otherwise.} \end{array} \right.
$$

Let \mathfrak{S}_n be the symmetric group of degree *n*.

Theorem

If $p = 2$, then $TT(\mathfrak{S}_n) = 0$ and

$$
TF(\mathfrak{S}_n) = \left\{ \begin{array}{ll} \{0\} & \text{if } n \leq 3, \\ \mathbb{Z}^2 & \text{if } n = 4, 5, \\ \mathbb{Z} & \text{otherwise.} \end{array} \right.
$$

In the case when $n \geq 4$, the syzygies of \mathbb{F} , i.e. $\langle \Omega(\mathbb{F}) \rangle \cong \mathbb{Z}$ is always a direct summand of $TT(\mathfrak{S}_n)$.

Theorem

If $p \geq 3$, then

$$
\mathcal{T}(\mathfrak{S}_n) = \left\{ \begin{array}{ll} \mathcal{T}\mathcal{T}(\mathfrak{S}_n) & \text{if } 1 \leq n < 2p, \\ \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^2 & \text{if } 2p \leq n < 3p, \\ \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } 3p \leq n < p^2 \text{ or } p^2 + p \leq n, \\ (\mathbb{Z})^2 \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p^2 \leq n < p^2 + p. \end{array} \right.
$$

Theorem

If $p > 3$, then

$$
T(\mathfrak{S}_n) = \left\{\begin{array}{ll}TT(\mathfrak{S}_n) & \text{if } 1 \leq n < 2p, \\ \mathbb{Z} \oplus (Z/2\mathbb{Z})^2 & \text{if } 2p \leq n < 3p, \\ \mathbb{Z} \oplus Z/2\mathbb{Z} & \text{if } 3p \leq n < p^2 \text{ or } p^2 + p \leq n, \\ (\mathbb{Z})^2 \oplus Z/2\mathbb{Z} & \text{if } p^2 \leq n < p^2 + p. \end{array}\right.
$$

When $p \geq 3$ and $2p \leq n$, the sign representation always generates a direct summand isomorphic to $\mathbb{Z}/2\mathbb{Z}$ and $\langle \Omega(\mathbb{F}) \rangle \cong \mathbb{Z}$ is a direct summand of $TT(\mathfrak{S}_n)$.

Theorem

If $p > 3$, then

$$
\mathcal{T}(\mathfrak{S}_n) = \left\{ \begin{array}{ll} \mathcal{T}\mathcal{T}(\mathfrak{S}_n) & \text{if } 1 \leq n < 2p, \\ \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^2 & \text{if } 2p \leq n < 3p, \\ \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } 3p \leq n < p^2 \text{ or } p^2 + p \leq n, \\ (\mathbb{Z})^2 \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } p^2 \leq n < p^2 + p. \end{array} \right.
$$

When $p > 3$ and $2p < n$, the sign representation always generates a direct summand isomorphic to $\mathbb{Z}/2\mathbb{Z}$ and $\langle \Omega(\mathbb{F}) \rangle \cong \mathbb{Z}$ is a direct summand of $TT(\mathfrak{S}_n)$.

For $p=2$, $n=4,5$ or $p\geq 3$, $p^2\leq n< p^2+p$, there will be another module that generates a direct summand $\mathbb Z$ of $TT(\mathfrak{S}_n)$.

[Endotrivial modules](#page-2-0)

2 [Classification of endotrivial modules](#page-15-0)

3 [Some results on the endotrivial modules for](#page-28-0) \mathfrak{S}_4

Jialin Wang (City) [Some endotrivial module](#page-0-0)

13 / 22

Theorem (Auslander-Carlson)

Suppose $p = 2$ and the Sylow 2-subgroups of G are dihedral. Let $P(\mathbb{F})$ denote the projective cover of $\mathbb F$. Then we have

 $\mathsf{Rad}(P(\mathbb{F}))/\mathsf{Soc}(P(\mathbb{F})) \cong M \oplus M^*,$

for some endotrivial module M. Moreover, we have

 $TF(G) \cong \langle \Omega(\mathbb{F}), M \rangle \cong \mathbb{Z}^2$

Theorem (Auslander-Carlson)

Suppose $p = 2$ and the Sylow 2-subgroups of G are dihedral. Let $P(\mathbb{F})$ denote the projective cover of F . Then we have

 $\mathsf{Rad}(P(\mathbb{F}))/\mathsf{Soc}(P(\mathbb{F})) \cong M \oplus M^*,$

for some endotrivial module M. Moreover, we have

 $TF(G) \cong \langle \Omega(\mathbb{F}), M \rangle \cong \mathbb{Z}^2$

In particular, the above is true when $G = \mathfrak{S}_4$ or \mathfrak{S}_5 .

Let $p=2$ and consider Specht module for $\mathbb{F} \mathfrak{S}_4$, $\mathcal{S}^{(3,1)}$.

Let $p=2$ and consider Specht module for $\mathbb{F} \mathfrak{S}_4$, $\mathcal{S}^{(3,1)}$. There is a nonsplit short exact sequence:

$$
0 \to \mathbb{F} \to S^{(3,1)} \to D \to 0,
$$

where D is a simple self-dual $\mathbb{F}G_4$ -module of dimension 2.

15 / 22

The $\mathbb{F}\mathfrak{S}_4$ has only one block and 2 simple modules $\mathbb F$ and D.

The $\mathbb{F}\mathfrak{S}_4$ has only one block and 2 simple modules $\mathbb F$ and D. The projective covers for $\mathbb F$ and D are

The $\mathbb{F} \mathfrak{S}_4$ has only one block and 2 simple modules $\mathbb F$ and D. The projective covers for $\mathbb F$ and D are

Then

$$
\mathsf{Rad}(P(\mathbb{F}))/\mathsf{Soc}(P(\mathbb{F})) \cong S^{(3,1)} \oplus S^{(3,1)^*}
$$

$$
\mathsf{Rad}(P(D))/\mathsf{Soc}(P(D)) \cong D \oplus Q,
$$

where Q is the indecomposable module $\begin{array}{cc} \mathbb{F} \ \mathbb{F} \end{array}.$

The $\mathbb{F} \mathfrak{S}_4$ has only one block and 2 simple modules $\mathbb F$ and D. The projective covers for $\mathbb F$ and D are

Then

$$
\mathsf{Rad}(P(\mathbb{F}))/\mathsf{Soc}(P(\mathbb{F})) \cong S^{(3,1)} \oplus S^{(3,1)^*}
$$

$$
\mathsf{Rad}(P(D))/\mathsf{Soc}(P(D)) \cong D \oplus Q,
$$

where Q is the indecomposable module $\begin{array}{cc} \mathbb{F} \ \mathbb{F} \end{array}.$

We have $\mathcal{TT}(\mathfrak{S}_4)\cong \langle \Omega(\mathbb{F}), S^{3,1)}\rangle.$

Theorem (Symonds, Karagueuzian-Symonds)

The number of nonprojective summands appearing in the symmetric algebra of an $\mathbb{F} G\text{-module }M$, i.e. $\bigoplus_{n\geq 0} \mathsf{Sym}^n M$, is finite (up to isomorphism).

Let M be the natural module for $\mathbb{F} \mathfrak{S}_4$ given by D .

F

F

Let M be the natural module for $\mathbb{F}G_4$ given by D $\mathbb F$.

Theorem (Erdmann-W.)

All the indecomposable nonprojective direct summands appear in $\mathsf{Sym}^n S^{(3,1)}$ for $n\geq 0$ are given by

 $F, D, Q, \Omega(D), \Omega(Q), M$.

 \overline{X} \overline{X} \overline{X} Arin The International Conference on Representations \overline{X}

 $\mathbb F$

For $k \geq 0$, we have (in the stable module category):

 $n = 4k$: Symⁿ $S^{(3,1)} \cong \mathbb{F} \oplus a_n D \oplus b_n Q \oplus c_n M$ $n = 4k + 1$: $\mathcal{S}^{(3,1)}\cong \mathcal{S}^{(3,1)}\oplus \mathit{a}_n\Omega(D)\oplus \mathit{b}_n\Omega(Q)\oplus \mathit{c}_n M$ $n = 4k + 2$: $\mathsf{Sym}^n \mathsf{S}^{(3,1)} \cong a_nD \oplus b_nQ \oplus c_nM$ $n = 4k + 3$ $\mathsf{Sym}^n \mathsf{S}^{(3,1)} \cong a_n \Omega(D) \oplus b_n \Omega(Q) \oplus c_n M$

In fact, there is an embedding of \mathfrak{S}_4 into $SL_3(2)$ such the Sylow 2-subgroup of \mathfrak{S}_4 is also a Sylow 2-subgroup of $SL_3(2)$. Let V denote the natural module for $SL_3(2)$.

In fact, there is an embedding of \mathfrak{S}_4 into $SL_3(2)$ such the Sylow 2-subgroup of \mathfrak{S}_4 is also a Sylow 2-subgroup of $SL_3(2)$. Let V denote the natural module for $SL_3(2)$. We have

$$
V{\downarrow}_{\mathfrak{S}_4}\cong \mathcal{S}^{(3,1)},
$$

and $\mathcal{T}F(SL_3(2))=\langle \Omega(\mathbb{F}),\,V\rangle\cong \mathbb{Z}^2.$

In fact, there is an embedding of \mathfrak{S}_4 into $SL_3(2)$ such the Sylow 2-subgroup of \mathfrak{S}_4 is also a Sylow 2-subgroup of $SL_3(2)$. Let V denote the natural module for $SL_3(2)$. We have

$$
V{\downarrow}_{\mathfrak{S}_4}\cong \mathcal{S}^{(3,1)},
$$

and $\mathcal{T}F(SL_3(2))=\langle \Omega(\mathbb{F}),\,V\rangle\cong \mathbb{Z}^2.$

Theorem (Erdmann-W.)

All the indecomposable nonprojective direct summands appear in $Sym^n V$ for $n > 0$ are given by

$$
\mathbb{F}, V, \text{Sym}^2 V, \text{Sym}^3 V, R, \Omega(R),
$$

for some indecomposable $\mathbb{F}SL_3(2)$ -module R.

For $k \geq 0$, we have (in the stable module category):

 $n = 4k$: Symⁿ $V \cong \mathbb{F} \oplus a_n$ Sym² $V \oplus b_nR$ $n = 4k + 1$: $Sym^nV \cong V \oplus a_nSym^3V \oplus b_n\Omega(R)$ $n = 4k + 2$: Symⁿ $V \cong a_n$ Sym² $V \oplus b_nR$ $n = 4k + 3$: Symⁿ $V \cong a_n$ Sym³ $V \oplus b_n \Omega(R)$

Thank you!