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Motivation: The reconstruction problem

T k-linear Hom-finite Krull-Schmidt triangulated category

G € T basic (classical) generator, thick(G) =T
End3(G) = P, Homg (G, Z/(G))  gxf =% (9 of, |fl=

Problem: Reconstruct T from End5(G) as a triangulated category.

In general, this is NOT possible!

=k[x]/(x¥), ¢>3,  thick(§)=DP(modA) =T

End’ Ext%(S,8) = k[e,¢]/(¢?), lel=1 and |¢]=

DP (mod A) (8) =

End}), (8) is independent of ¢ but Z(A) = A is derived invariant.

mod A)
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Differential graded algebras

A differential graded algebra * Every differential graded algebra A has a

consists of a graded algebra triangulated derived category D(A).
A= @ieZAi Hompa) (A,A[4]) = Hi(A)
AN - AY, x®y xy, * D(A) := thick(A) C D(A) is the

and a differential perfect derived category.

d: A= A(1), dod=0, X*: complex in an additive category

such that hom(X',X') = @iez hom(X',X')i
d(xy) = d(x)y + (—1)|x|xd()/) ) hom(X*®, X*)’ := HjEZ hom (X7, X*)

graded Leibniz rule o(f) =dps of — (—I)Lﬂf o dpe
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Derived endomorphism algebras

Suppose that T is algebraic:

T =~ &, for a k-linear Frobenius exact category (&, 8).

Choose a complete 8-projective resolution P* of G € T =~ Eq:

cee =3 p2 s P
S

REnd (¢ 5)(G) = hom(P*, P*): differential graded algebra of endomorphisms

NS AT

Q(G) Q7(G)

H*(REnd(¢,)(G)) = End3(G) as graded algebras
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Keller’s Reconstruction Theorem

Theorem (Keller 1994)

Set A := REnd¢5)(G). There exists an exact equivalence

T — D(A), G — A.

In general, the quasi-isomorphism type of REnd ¢ s)(G) is not determined by T

Problem: Classify the DG algebras A such that there exists an exact equivalence
T — D%(A), G+— A.

Remark: This problem is intimately related to the question of uniqueness of
differential graded enhancements for 7.
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Formality of differential graded algebras

Definition

A differential graded algebra A is
e formal if it is quasi-isomorphic to its cohomology H*(A).
e intrinsically formal if every differential graded algebra B such that

H*(A) = H*(B)

is moreover quasi-isomorphic to A.

Intrinsic formality = Formality The converse is false in general.

H*(A) =H%(A) = Aisintrinsically formal (corresponds to G € T is tilting)
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Derived endomorphism algebras of simple modules

Theorem (Keller 2001)

A =kQ/I: finite-dimensional algebra
$=8&---a&S5,direct sum of the simple A-modules  ( thick(S) = DP(mod A4) )

RHomy(S, S) is formal <=  Ais Koszul

Ais Koszul &= Ext}(S,S) is generated in degrees 0 and 1

* Hereditary algebras * Exterior algebras

* Radical square-zero algebras e Tensor products of Koszul
* Quadratic monomial algebras algebras ...
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Kadeishvili’s Intrinsic Formality Criterion

The Hochschild cohomology of a graded algebra A* is the bigraded vector space

HH"*(A*) = Ext}7 (A%, A).

Theorem (Kadeishvili 1988)

Suppose that
HH">?2(A*) =0,  p>0. ()

Then, A* is intrinsically formal as a differential graded algebra.

Theorem (Etgii—Lekili 2017, Lekili-Ueda 2022, J. Liu—Zh.Wang)

ADE zig-zag algebras in good characteristic satisfy condition (t).
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Intrinsic formality of Laurent polynomial algebras

A: arbitrary algebra
Alut] = A®k[«*], lu| =d > 1

Remark: D(A[#*]) is the 4-periodic derived category of A-modules.

Suppose that 15 = 3¢ as additive functors and that G € T satisfies
Homy(G,Y/(G)) =0 fori¢ dZ.
Then End3(G) = Endy(G)[#*] with |u| = d.

Theorem (S. Saito 2023)

If A has projective dimension at most 4 as a A-bimodule, then A[«*] satisfies
condition (1) and hence it is intrinsically formal as a differential graded algebra.
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Twisted Laurent polynomial algebras

A an arbitrary algebra and ¢: A — A an automorphism

_ Au*) B
Mod) = o reny M=4=1

Suppose that G € T satisfies

. | ¢ — 34(6)
Jdo: G - 3%(G) and Homg(G,Z/(G)) =0 fori ¢ dZ. ;

o) lzd(ﬁ
Define the automorphism v

G <— 24(G)
7 =d,: Endg(G) = Endy(G), fr— p ' oZ/(f)o0. ?

End(G) = Endy(G)(7,d), @+ u
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dZ-cluster tilting objects

Definition (Iyama—Yoshino 2008)

A basic object G € T is a d-cluster tilting object if

add(G) = {X € T| V0 < i < d, Homg(X, X (G)) = 0}
={Y € T|V0<i<d, Homs(G,Z(Y)) = 0}.

We call G a dZ-cluster tilting object if, moreover,
°*30:G—3%G)  (GeiB-Keller-Oppermann 2013).

G € T is 1Z-cluster tilting < add(G) =T

Proposition (Iyama—Yoshino 2008)

G € T: dZ-cluster tilting =  thick(G) =T



Triangulated categories with Serre functor
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Suppose that 3S: T — T a Serre functor:
Homg(Y,SX) — DHomg(X,Y), VX, Y eT

Proposition (Iyama—Oppermann 2013)

The following are equivalent for a basic 4-cluster tilting object G € T:

* G is a dZ-cluster tilting object.
e There is an isomorphism SG = G.
* Ends(G) is self-injective and Homs(2(G), G) for0 <i < d — 1.

vosnex property

The vosnex property is vacuous for d = 1,2
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Examples of 1Z-cluster tilting objects

Triangulated categories of finite type: add(G) =T

e Stable module categories of e Stable categories of
self-injective algebras of finite Gorenstein-projective modules of
representation type. finite-dimensional

e Stable categories of maximal Iwanaga-Gorenstein algebras of
Cohen-Macaulay modules of finite Gorenstein-projective type.
complete local Gorenstein e Cluster categories of hereditary
isolated singularities of finite algebras of finite representation
Cohen—Macaulay type. type.

See F. Muro'’s talk next week for more on these.
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Examples of 2Z-cluster tilting objects

Amiot cluster categories of self-injective quivers with potential

e (Barot—Kussin—-Lenzing 2010,
J.2015) Weighted projective lines
of tubular tubular type # (3, 3, 3).
® (Herschend-lyama 2011) Certain
planar quivers with potential.
e (Pasquali 2020)
Rotationally-symmetric Postnikov
dlagramS on the dlSk Figure by Colin Krawchuk

See F. Muro's talk for important examples from 3-dim birational geometry.
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Examples of dZ-cluster tilting objects

Definition (Iyama—Oppermann 2011)

A finite-dimensional algebra if 4-representation-finite if it admits a 4-cluster
tilting module.

* (GeiB-Leclerc=Schroer 2007 for 4 = 1, lyama—Oppermann 2013) Stable module
categories of (4 + 1)-preprojective algebras of 4-Auslander algebras of type A.

 (Darpo-lyama 2020) Stable module categories of certain self-injective
d-representation-finite algebras.

e (J-Kulshammer 2016) Stable module categories of self-injective Z-Nakayama
algebras.

* (lyama—Oppermann 2013) 4-Calabi-Yau Amiot-Guo—Keller cluster categories of
Keller's derived (4 + 1)-preprojective algebras of 4-representation-finite algebras
of global dim 4.

See the preprint arXiv:2208.14413 (J-Muro) for more examples.



https://arxiv.org/abs/2208.14413
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Twisted periodic algebras

Definition (Brenner—Butler, Green—Snashall-Solberg 2003)

A finite-dimensional algebra A is twisted (4 + 2)-periodic if there exists an au-

tomorphism #: A — A such that
QT2(A) = 1A, in modA‘.

We say that 4 is (4 + 2)-periodic if & = 1.

(Green-Snashall-Solberg 2003) Twisted periodic algebras are self-injective.

Proposition (Dugas 2012, Hanihara 2020 4 = 1, Chan—Darpé-Iyama—Marczinzik)

G: dZ-cluster tilting object =— Endg(G) is twisted (4 + 2)-periodic
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Twisted fractionally CY algebras

A: finite-dimensional algebra of finite global dimension

The triangulated category D°(mod A) admits the Serre functor

S := - ®. DA: D°(mod 4) — DP(mod A4).

Definition

Let / # 0 and m be integers. The algebra 4 is twisted fractionally 7-Calabi-Yau

if there exists an automorphism ¢: A — A such that
[ *
S" = [m]og.

We say that 4 is fractionally %-Calabi-Yau if ¢ = 1.
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Periodic algebras from fractionally CY algebras

T (A) := A= DA the trivial extension of A

Theorem (Chan—Darpo—Iyama—Marczinzik)

A is fractionally CY < > T (A) is periodic
trivial: o=1 4} JJ trivial: =1 Open ’ﬂ‘
A'is twisted fractionally CY <——=> T'(4) is twisted periodic

Suppose that A4 is ring-indecomposable

Theorem (Herschend—Iyama 2011)

A'is d-representation-finite of global dim 4 = A is twisted fractionally CY
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d7Z-cluster tilting objects from twisted periodic algebras

A: basic twisted (4 + 2)-periodic algebra with respect to o: A — A

Problem 1: Does there exist a differential graded algebra A with H*(A) = A(z, d)
and such that A € D(A) is a 4Z-cluster tilting object?

Problem 2: Suppose that H*(A) = A(c,d). How to determine whether A € D(A) is
a dZ-cluster tilting object?

Problem 3: Suppose that H*(A) = A(s,4) and that A € D(A) is a 4Z-cluster tilting
object.

What additional data is needed to reconstruct A from its cohomology H*(A), at least
up to quasi-isomorphism?



Lecture 2
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d7Z-cluster tilting objects from twisted periodic algebras

A: basic twisted (4 + 2)-periodic algebra with respect to o: A — A

Problem 1: Does there exist a differential graded algebra A with H*(A) = A(z, d)
and such that A € D(A) is a 4Z-cluster tilting object?

Problem 2: Suppose that H*(A) = A(c,d). How to determine whether A € D(A) is
a dZ-cluster tilting object?

Problem 3: Suppose that H*(A) = A(s,4) and that A € D(A) is a 4Z-cluster tilting
object.

What additional data is needed to reconstruct A from its cohomology H*(A), at least
up to quasi-isomorphism?
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The Derived Auslander—Iyama Correspondence

Theorem (Muro 2022 for 4 = 1, [-Muro for 4 > 1)

Suppose that the field k is perfect. The map
A (H(A), H™¥(A)) = (Homp(a) (A, A), Homp ) (A, A[~d]))
induces a bijection between the following:

1. Quasi-isomorphism classes of DG algebras A such that:

— H(A) is a basic finite-dimensional algebra.
— A € D(A) is a dZ-cluster tilting object.

2. Pairs (A, o) such that
— Ais a basic self-injective algebra and
~ 7: A — Asuch that Q42 (A) = | A, in modA’,
up to algebra isomorphisms compatible with
7 € Out(A) := Aut(A)/Inn(A).  (H™“(A) = |H°(A), )
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Constructing the inverse of the correspondence

A: twisted (4 + 2)-periodic with respect to o: A — A
Ao, d) = @ A, xxy=dd(x)y Pl=di
diedZ

We aim to construct a differential graded algebra A such that
H*(A) = A(o,d)

and A € D(A) is a dZ-cluster tilting object.

These properties should determine A up to quasi-isomorphism.
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Stasheft’s A-algebras

An As-algebra structure on a graded vector space A*

consists of homogeneous morphisms of degree 2 — » kS
* * *
my: N"Q®--- @ A*¥ — A, n>1,
-7 Z + Sl =0
n times

such that the A.-equations are satisfied:

Donmrert D) 140 (17 @ me @ 1°) = 0 (n21)

m10m1:0
m10m2=m20(m1®1+1®m1)
mo(1@my—m®1)=miomz+mo(m@1@1+10m 1+1Q1® m)

Associator for m; d(m3) in hom(A*@A*@A*, A*) (A*,my)
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Remarks on the definition of As-algebras

A=A = m,=0forn#2 fordegree reasons.
m =0 = (A*0,my) is an associative graded algebra.
(A*, my, my): differential graded algebra &= (A*, my, m, 0,...): As-algebra.

There are several sign conventions in use: Stasheff, Keller-Lefevre-Hasegawa®,
Kontsevich—-Merkulov, Fukaya—Seidel.

See Polishchuk’s Field Guide for details.

... one may equivalently consider shifted A.,-structures to dispense with most signs.


https://pages.uoregon.edu/apolish/ainf-signs.pdf
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Morphisms between As-algebras

An As,-morphism between As-algebras
[ (AF,m D) o (A5, m )
consists of degree 1 — » morphisms
for AT @ @A — A, n>1,

————
7 times

that satisfy the following equations:
2D o (UV@me ) =X (-D'mo (fi®-+-®f)  (nx1)

We say that £ is an Aw-quasi-isomorphism if £ is a quasi-isomorphism.




https://talk.jasso.info

Minimal models of differential graded algebras

An As.-algebra is minimal if 7 = 0.
A minimal model of a differential graded algebra A is an Aw-quasi-isomorphism
f: (H.(A),}’}’Zz, M3, M4, NS, - . ) A

such that i induces the identity in cohomology: H* (i) = 1.

Homotopy Transfer Theorem (Kadeishvili 1982) H* (A) A Do

Every differential graded algebra admits a H=pl=0, W=~

minimal model. i) =0 2(p) =0
poi=1 d(h)y=1-iop

Minimal models are unique up to Aw-isomorphism.
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Aco-algebras vs differential graded algebras

Aw-category = As-algebra with many objects

Theorem (Lefévre-Hasegawa 2003, ..., Canonaco—Ornaghi-Stellari 2019
Pascaleff 2024)

The canonical functor dgcat — A -cat induces an equivalence of (eo,1)-
categories after co-localising at the corresponding classes of quasi-equivalences.

This means that the notions of “differential graded category” and of “A.-
category” are equivalent in a very strong sense.

* Each Aw-algebra A has a triangulated derived category D(A).
* Aw-quasi-isomorphic A.-algebras have equivalent derived categories:
A~B = D(A) ~D(B)
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Constructing the inverse of the Correspondence

A: twisted (4 + 2)-periodic with respect to o: A — A
Ao, d)= P o, xxy=d@y, =4
diedZ

We aim to construct a minimal Aw-algebra A = (A(s, d), m) such that A € D (A) is a
dZ-cluster tilting object.

This property should determine A = (A(c, d), m) up to Aw-isomorphism.

See F. Muro'’s talk for details on the existence of such an A.
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Minimal A-structures on Yoneda algebras of simples

Theorem (Keller 2001)

A: basic finite-dimensional algebra
S=8 @S, direct sum of the simple A-modules

Every minimal model of RHom4(S, S) is generated in deg 0 and 1 as A«-algebra.

See arXiv:2402.14004 (J) for a proof using AR theory of Nakayama algebras.

S S
A=k[x]/(x"), €23 3 5
AS sy A8y
Ext%(S,S) = k[e,]/(¢?), |e|=1and |¢] =2 S < » s
AN S N A Y
me(e,é,...,6) =+t and my, =0 for k+#2/0 ¢ ¢ S :


https://arxiv.org/abs/2402.14004
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Minimal A-structures on Yoneda algebras of simples

Theorem (Keller 2001)

A =kQ/I: finite-dimensional algebra
S=8 -85, direct sum of the simple A-modules

(Ext3(S,S),0) is a minimal model of RHomy(S,S) = A4 is Koszul

Sketch of proof of the theorem:
Vn>0 Vi#n

(=) Immediate from the previous theorem.
Extl. ,(S,8(i)) =0

(<) Bigraded Homotopy Transfer Theorem.

See Jan Thomm's talk for A.-structures on Yoneda algebras of rep. generators.

Question: What is the significance of the first non-vanishing higher operation?
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An old example, revisited

A=k[x]/(x*), G=s@&§ emodd,  add(G)=modA

A=End,(G) 2 k( s == § )/(ba, ab) = T1(A))
b

(Schofield, Erdmann—Snashall 1998, Brenner—Butler—King 2002)
The preprojective algebra IT(A,) is twisted 3-periodic w.r.t.

7(s)=3, (=s, c@=-b  o(b)=-a

(End’,(G), m): minimal A.-algebra

A R A ms3(e,e,¢) =tg m3(d,0,9) =ts
%S;” %S; 7‘5& S
S < S < S < s m3 (g, b,a) = 1g  m3(d,a,b) = 139
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The Hochschild cochain complex

The bigraded Hochschild (cochain) complex of a graded algebra A* has components

CP1 (A*) = CP (A*, A*) := Homy (A*)®,A*[g]) >0, geZ.

Thus, a (p, g)-Hochschild cochain is a degree 4 morphism of
graded vector spaces

c: Y@@ A — A
———
p times

The bidegree (1,0) Hochschild differential is, for ¢ € C»* (A*),

dHOChC(xIJ s Xps xp+l) = Ex f(xZ: coo pr+l) + Zle i“(' s XiXitls . - - )) + iC(xly coo 3xp)xp+l
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'The Hochschild cochain complex (cont.)

For ¢; € C71 (A*) and ¢, € C (A*) define ¢ {c;} € G719 (A*) by

‘1 {CZ}(xla oo )xp+5—1) = Zf:l iCl(' < Xi—1> CZ(xb oo )xi—1+:)3 Kitss + » )

® The bidegree (-1, 0) Gerstenhaber bracket is

[e1, 2] == ci{er} £ e2{er ).

® The bidegree (0,0) cup product is

(- =c — o =xmfca, 0l

where m,: A* ® A* — A* is the multiplication.

mZ{Cla 52}
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Hochschild cohomology of graded algebras

The Hochschild cohomology of A* is the cohomology of the Hochschild complex:

HH®*(A*) = H**(C** (A%)) = ExeyY g (A%, A%)

The Hochschild cohomology is a Gerstenhaber algebra w.r.t the total degree e + x:

e HH®**(A*)[1] is a graded Lie

algebra with the Gerstenhaber Sq(x +y) = Sq(x) + Sq(y) + [x,y]
bracket. Sq(x-y) = Sq(x) - y* +x - [x,9] -y +x% - Sq(y)
* HH™*(A") is a graded [Sq(x),y] = [x, [x,y]]

commutative algebra with the
cup product.

* The Gerstenhaber square
Sq(e¢) induced by ¢ +— ¢{c}.

In char(k) #2, Sq(x) = %[x, x].
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Minimal A-algebras, revisited

A minimal As-algebra structure on A* consists of Hochschild cochains

m, € Cn,an (A*) , n>3,
such that the (formal) Hochschild cochain

m = (m3, mgyms,...) € l_[ C™* (A¥)

n>3

satisfies the Maurer—Cartan equation

dHoch(m) = im{m}

digoch (72,) =0 if m,=0 for 2<k<n

Shifted A.-structures are implicit here.
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Minimal A-algebras, revisited

A minimal As-algebra structure on A* consists of Hochschild cochains

m, € C"*7"(A*),  n=>3,
such that the (formal) Hochschild cochain

m = (m3, mg,ms,...) € l_[ C™* (A*)

n>3

satisfies the Maurer—Cartan equation

dbtoch () = £m{m} "2 L, m).

digoch (72,) =0 if m,=0 for 2<k<n

Shifted A.-structures are implicit here.
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The universal Massey product

A graded algebra is 4-sparse if it is concentrated in degrees 4Z.

Definition

The universal Massey product (UMP) of a 4-sparse minimal A«-algebra (A*, m)
is the Hochschild class

Mg € HH™ 74 (A%)

of the first possibly non-trivial higher operation.

The UMP satisfies Sq(724+2) = 0 and is invariant under A-isomorphisms.

Remark: For 4 = 1, Benson—Krause-Schwede (2004), Keller (2005, 2006), ...
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The restricted universal Massey product

j: A= A% — A* inclusion of the degree 0 component

71 HH**(A*, A*) — HH**(A, A%)

Definition

The restricted universal Massey product (rUMP) of a 4-sparse minimal Ae-
algebra (A*, m) is the Hochschild class

J*(maiz) € HH 74 (A, A%).

HHJ+2’_d(A, A*) = HHd+2 (A, A_d) = EXt;{\-':%)imod (A’ A_d)
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The Unit Theorem

A: twisted (4 +2)-periodic w.rt. o: A — A
A= (A(o,d), m): minimal Aw-algebra

Theorem (J-Muro)

Suppose that k is perfect. The following are equivalent:
1. A € D(A) is a dZ-cluster tilting object.
2. The rUMP
J*0mgz) € HH (A, 1A,) = Hom  (Q4(A), 1A,)

is invertible in modA°.
3. j*(mg+) is invertible in Hochschild-Tate cohomology HH®** (A, A*).

j*(myz2) = 0is an isomorphism = A is semi-simple
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The bijectivity of the correpondence

A: twisted (4 +2)-periodic w.rt. o: A — A

Theorem (J-Muro)

1. There exists @ minimal Aw-algebra structure (A(e, 4), m) s.t. the rUMP
J'(maz) € HH?2 (A, 1A,) = Hom, (Q4F(A), 14,)

is invertible in modA°.
2. Any two minimal A.-algebras as above are A-isomorphic.

See F. Muro’s talk next week for more details on this and the previous theorem,
where the crucial role of Gei3—Keller-Oppermann (4 + 2)-angulated categories
will be explained.
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Kadeishvili’s Intrinsic Formality Criterion, revisited

Theorem (Kadeishvili 1988)

Suppose that
HH*%7(A*) =0,  p>0.

Then, every minimal Ae-structure on A* is Aw-isomorphic to (A*,0).

m; € HHY 1(A*) =0 = 3 e C> 1 (A*) suchthat +dyes(f) = ms.

(1,/,0,...): (A*,mg,m4,m5,...)W(A*,O,mg,m;,...)

Aim: Generalise Kadeishvili's Theorem to deal with the case

0 # 7 € HH™> 4(A%).
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d-sparse Massey algebras

A graded algebra is 4-sparse if it is concentrated in degrees 4Z.

Definition (J-Muro)

A d-sparse Massey algebra is a pair (A*,7) consisting of:

* A d-sparse graded algebra A*. esght
e A Hochschild class v_v. ;

= HHa’+2,—d(A*)
SUCh that Sq(E) =0. Figure by DALL-E

(A*, m): d-sparse min. Aw-algebra = (A*,my ;) d-sparse Massey algebra
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'The Hochschild—Massey complex of a Massey algebra

Aim: Generalise Kadeishvili's Theorem to 4-sparse Massey algebras.

The Hochschild—Massey complex of a 4-sparse Massey algebra (A*,7) is

Cr1 (A*,7) = HHPI(A*)  p>0, geZ.

The bidegree (4 + 1, —4) Hochschild—Massey differential is (almost everywhere)

X — [z, 7.

The Hochschild-Massey cohomology of (A*,?) is

HH**(A*,7) := H%*(C** (A%,7)) .
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A Kadeishvili-type theorem for sparse Massey algebras

(A*,¢): d-sparse Massey algebra

Theorem (J-Muro)

Suppose that
HH*>?(A*,¢) = 0, p>d. ()
Then, any two minimal A«-algebras

* (1) (1) * (2) _ (2)
(N5 my sy s -) and (NS myymy oy )

such that 72" =7 = 55> are (gauge) A.-isomorphic.
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Recovering Kadeishvili’s Theorem

(A*,7): d-sparse Massey algebra

HH/27(A%0)=0, p>d e HH2?(A)=0, p>d

If this condition is satisfied, the theorem shows that a minimal A.-algebra (A*, m)
such that 7z, = 0 is formal.

Proof of Kadeishvili's Thm: Let A* be a (1-sparse) graded algebra such that

HH*%7(A*) =0,  p>0.

e The vanishing for » = 1 implies (A*,0) is the unique Massey algebra structure.
* The vanishing for p > 1 implies the Kadeishvili-type theorem applies.



On the proof of the Kadeishvili-type Theorem

https://talk.jasso.info

(A*, m3, mg, ms, ... ): minimal Aw.-algebra

The equations of an A.-morphism imply that an arbitrary collection

fi=1, feC>H(AY), feC(AY),

determines a unique minimal Aw-algebra structure

(A", mly, mig, ms, .. )

such that
f: (laﬁ,ﬁ;-..)Z (A*,m) PSS (A*,m/)

is an As-isomorphism.

For example, 72} = m3 + dioch ()
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On the proof of the Kadeishvili-type Theorem (cont.)

The gauge Aw-isomorphisms group

G(A*) = {f e [T, C"'"(A*) | i =1}

acts on the set of minimal As-structures on A*.

Tautologically, two minimal A-structures are gauge A«-isomorphic if and only if they
have the same G (A*)-orbit.

Question: How can we leverage this observation?

The set of minimal A..-algebra structures on A* are the vertices of a CW complex
A, (A*) whose 1-cells are the gauge Aw-isomorphisms!

The &(A*)-orbits are the path-connected components 7z (oo (A*)).
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With a little help from my friends

The CW complex A, (A*) is the homotopy limit of a tower of fibrations
oo (A*) =~ holim W, (A*) — -+ — W,(A*) — -+ — Wy (A*) — WU3(A")

where A, (A*) is the CW complex of minimal A4,-algebra structures on A*:

e A minimal A43-algebra structure consists of a Hochschild cochain m; € C»~1 (A*).

* A minimal A4-algebra structure consists of a Hochschild cocycle m3 € C»~1 (A*)
and a Hochschild cochain my € C*72 (A*).

We can leverage techniques from Algebraic Topology / Homotopy Theory
such as the Milnor exact sequence

¥ — @1 71 (W (M) — 70 (Uoo (A*)) — Lim 779(A,(A*)) —
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There is a spectral sequence ...

The existence of Milnor exact sequences
. 1 * * : *
* = lim" 7441 (W (A7) — 7 (Ao (A)) — Lim 7, (U, (A)) —

can be leveraged thanks to the (fringed) Bousfield—Kan spectral sequence (1972) of
the tower

Weo (A*) = holim W, (A*) — -+ — W, (A*) — -+ — U4 (A*) — A3(A¥)
Idea of proof of the Kadeishvili-type theorem:
* Two 4-sparse minimal Aw-algebra structures (A*, m1) and (A*, m?)) such that

i) =

lie in the pointed kernel of the map 7 (e (A*)) — 131_1 7o (WAoo (A*)).

e Condition (17) yields the vanishing of I(iLn1 71 (W, (A*)) — this uses Muro’s
extended Bousfield—Kan spectral sequece (2020).
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Muro’s extended Bousfield—Kan spectral sequence

‘ Ao (A*) = holim A, (A*)

Pointed sets along the line ¢ —s =0

Groups along the liner —s=1
Abelian groups elsewhere in the red region

Vector spaces in the extended blue region

V24
Ed+2

=HH2?2(A%C) p>d

r—2 2r—3

70(Wes (A*)) = lim (%, (A%)

Figure by Fernando Muro
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Concluding remarks and an invitation

Working with minimal A.-algebras instead of differential graded algebras provides
access to new invariants and thus we may formulate new properties:

“The rUMP of the 4-sparse minimal Aw-algebra (A(e,d), m) is invertible.”
| invite the audience to consider the following questions:

Let A be a differential graded algebra such that A € D(A) is a generator of a
preferred type (P), for example a 4Z-cluster tilting object.

Question 1: Can we detect property (P) in terms of the minimal models of A?
Question 2: Is there a derived correspondence for generators of type (P)?

Question 3: Are there properties of a minimal Aw-algebra A that imply an inter-
esting novel property of A € D(A)?
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The Kontsevich—Soibelman perspective

A minimal A.-algebra structure on a graded algebra A*
m € [1,55 C**7" (A%)

has total degree 1 in the differential graded Lie algebra C** (A*)[1] and is a solution
to the Maurer—Cartan equation

char k#2

dHoch(m) = im{m} i%[ms 7’}’1]

“An Axo-algebra is the same as a non-commutative formal graded manifold X over, say, field k, having a marked k-point pt equipped with
[a degree 1 homological vector field]. ... It is an interesting problem to make a dictionary from the pure algebraic language of A-algebras
and Aw-categories to the language of non-commutative geometry.”

Kontsevich-Soibelman (2006)

Perhaps certain qualitative properties of such vector fields allow to extend the
dictionary to include some aspects of the representation theory of FD algebras!
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