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Motivation

Q = (Q0,Q1, s, t): an acyclic quiver.
e,d ∈ ZQ0 : two dimension vectors.
Rd(Q) =

∏
α∈Q1

Hom(Cds(α) ,Cdt(α))

M ∈ Rd(Q): a Q-representation of dimension vector d
Gre(M) = {N ⊆ M|dim N = e}: a quiver Grassmannian
ιM : Gre(M) �

� //
∏

i∈Q0
Grei (Cdi ) = Gre(0d)

ι∗M : H•(
∏

i∈Q0
Grei (Mi))→ H•(Gre(M))

Theorem (CI- Esposito-Franzen-Reineke, 2021)

M rigid +3 ι∗M surjective
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Aim

Given x , y ∈ Rd(Q) such that y ∈ Gx we want to define a map

cy ,x : H•(Gre(y))→ H•(Gre(x))

with favourable properties, the most important being that if
y = 0d then

c0d,x = ι∗M : H•(Gre(0d))→ H•(Gre(x))

is induced by the inclusion

ιM : Gre(x)
� � //

∏
Grei (Cdi ) = Gre(0d) .
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Setting

Q = (Q0,Q1, s, t): a Dynkin quiver
e,d ∈ ZQ0 : two dimension vector
Y =

∏
α∈Q1

Cdt(α)×ds(α) : a representation variety.
G =

∏
i∈Q0

GL(di ,C): the structure group of Y .
G × Y → Y : change of basis action of G on Y .
X = {(U = (Ui)i∈Q0 , y = (yα)α∈Q1) ∈∏

Grei (Cdi )× Y | yα(Us(α)) ⊂ Ut(α)}
π : X → Y : (U, y) 7→ y
π−1(y) = Gre(y): quiver Grassmannian.
G acts on X and Y and π is G-equivariant.
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Geometric setting

G: a reductive group.
X ,Y : G-varieties.
In Y there are a finite number of G-orbits.
Every orbit closures O in Y is unibranch.
The G-stabilizer of each point of Y is connected.
π : X → Y is a proper and G-equivariant.

Definition
The quadruple (G,X ,Y , π) is a geometric setting if it satisfied
the properties above.
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Main Theorem part 1

Theorem
In a geometric setting (G,X ,Y , π) for every G-orbit O ⊂ Y
there is a canonical graded algebra H•(X[O]) such that for every
y ∈ O there exists a canonical isomorphism
H•(π−1(y)) '→ H•(X[O])

Proof: Define

H•(X[O]) = lim←−
y1,y2∈O

(
ϕy1,y2 : H•(π−1(y1))→ H•(π−1(y2)))

)
.
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Nice little neighborhoods

Definition
An open neighborhood U of a point y ∈ Y is called a nice little
neighborhood of y if it satisfies the following two conditions:

(i) U is contractible;
(ii) The map in cohomology ψ : H•(π−1(U))→ H•(π−1(y))

induced by the inclusion {y} ⊂ U is an isomorphism.
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Main Theorem part 2

Theorem
Suppose that the datum (G,X ,Y , π) is a geometric setting.
Then for every two G-orbits O1 ⊂ O2 ⊂ Y there is a canonical
specialization map c[O1],[O2] : H•(X[O1])→ H•(X[O2]).

Proof: Choose y1 ∈ O1, then a nice little neighborhood U of y1
and then y2 ∈ U ∩ O2. Define cy1,U,y2 as the composite

H•(X[O1])

cy1,U,y2

��

' // H•(π−1(y1))
' // H•(π−1(U))

��
H•(X[O2]) H•(π−1(y2))

'oo H•(π−1(y2))

Need to show that cy1,U,y2 depends only on O1 and O2.
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Specialization map for quiver Grassmannians

Theorem
Let Q be a Dynkin quiver and let [M] and [N] be two
isomorphism classes of Q-representations of the same
dimension vector d such that M ≤deg N.

(i) There are well-defined cohomology algebras H•(Gre([M]))
and H•(Gre([N])).

(ii) There is a well-defined map of graded algebras
c[N],[M] : H•(Gre([N]))→ H•(Gre([M])) such that
c[0d],[M] = ι∗M .

(iii) If Q is of type A then c[N],[M] is surjective.
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