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Generalized quantum cluster algebra

Bai, Chen, Ding, and Xu introduce the generalized quantum cluster algebras,

which is a generalization of quantum cluster algebras and also a g-deformation of
a very special case of generalized cluster algebras.
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Generalized quantum cluster algebra

Bai, Chen, Ding, and Xu introduce the generalized quantum cluster algebras,
which is a generalization of quantum cluster algebras and also a g-deformation of
a very special case of generalized cluster algebras.

o A compatible pair (B, A) consists of an integer m x n-matrix B and a
skew-symmetric integer m X m-matrix A such that

BTA =D 0,

where D = diag{d; ', ...,d; '} is a diagonal n x n matrix whose diagonal
coefficients are positive integers.
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Generalized quantum cluster algebra

Bai, Chen, Ding, and Xu introduce the generalized quantum cluster algebras,
which is a generalization of quantum cluster algebras and also a g-deformation of
a very special case of generalized cluster algebras.

o A compatible pair (B, A) consists of an integer m x n-matrix B and a
skew-symmetric integer m X m-matrix A such that

BTA =D 0,

where D = diag{d; ', ...,d; '} is a diagonal n x n matrix whose diagonal
coefficients are positive integers.

e The quantum torus Ty associated with A is the Z[¢*2]-algebra generated by
the distinguished Z[¢*2]-basis {X(a)|a € Z™} with multiplication given by

X(a)X(8) = g2 M X(a + )

for any o, B € Z™. Let F, be skew field of fractions of Ty.
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e The mutation data (R, h), where R = diag{r1,--- ,r,} is a diagonal n x n
matrix whose diagonal coefficients are positive integers and h = (hy;--- ;hy,),
hy := {hk’o(q%),hk’l(q%), ooy P, (q2)}, where hkﬂ-(q%) € Z[¢* 2] satisfying

1 1 1 1
hi,i(q2) = hir_,(q2) and hio(q?) = hir, (¢2) = 1.
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e The mutation data (R, h), where R = diag{r1,--- ,r,} is a diagonal n x n
matrix whose diagonal coefficients are positive integers and h = (hy;--- ;hy,),
hy := {hk’o(q%),hk’l(q%), ooy P, (q2)}, where hkﬂ-(q%) € Z[¢* 2] satisfying
h,i(g2) = hiry o (q%) and hgo(q%) = i (q%) = 1.

o A (R, h)-quantum seed is a triple & = (X, B, A), where (B, A) is a
compatible pair and X = (X1,...,X,,) is an m-tuple of elements of F such
that

e Xi,...,X,, generated Fa over Q(q%);
o XX, = ¢ X;X;, where A = (\;;)

We define X (a) := g% Ti<i Ai X0 ... X0 where a = (ay, ..., am,)T € 2.
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o Let ke[l,n]:={1,2,--- ,n}.

(1 0 -+ [—ebyre]y -+ 0]
1 ... [—€b2ka]+ Ce 0
Elff;: 00 --- -1 0],
0 0 [—Ebmflka]Jr 0
_O 0 [_Ebmkrk;]Jr 1_
B 1 0 Ce 0 e 0 ]
1 e 0 e 0
F,fEB = [Ekak1]+ [Skak2}+ e -1 - [Ekakn]+
0 0 oo o - 0
| 0 0 oo o .- 1 ]

where ¢ € {1,—1} and B = (b;).
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e The mutation py, in direction k transforms the compatible pair (B, A) into
ur(B, A) := (B, \’), where

B' = EPEBFFE, N = (BPT)TAEPE

transforms the quantum cluster X = (X1,--+ , X,,) into
pe(X) =X = (X1,...,X],) is given by

X(ez) if i £ k;
X =X(e;) = .
TR S DXl + (- s)[ebul —e) Wik,
where by, is the k-th column vector of B and ¢ € {£1}, e1,- -+ , ey is the

standard basis of Z™. In fact, py is an isomorphism Fy — F,-. Moreover
the mutation py is an involution. And (X', B’,A’) is also a A
(R, h)-quantum seed in F .
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o Let T,, be a n-regular tree. Fix a root vertex ty € T,,, Xy, = (X, B, A) the
initial (R, h)-quantum seed. We assign each vertex t € T,, an
(R, h)-quantum seed X; which can be obtained from X, by iterated

mutations such that if ¢ —— ¢/ , then 3y = ug(X:). We call such an
assignment ¢t — 3; an (R, h)-quantum seed pattern.
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o Let T,, be a n-regular tree. Fix a root vertex ty € T,,, Xy, = (X, B, A) the
initial (R, h)-quantum seed. We assign each vertex t € T,, an
(R, h)-quantum seed X; which can be obtained from X, by iterated

mutations such that if ¢ —— ¢/ , then 3y = ug(X:). We call such an
assignment ¢t — 3; an (R, h)-quantum seed pattern.

@ For each vertex t, we refer to X; = (X1, -+ , Xm;t) @ quantum cluster,
X;..(1 < i <n) quantum cluster variables and X,,1;4+(1 < i < m—n)
coefficients.
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o Let T,, be a n-regular tree. Fix a root vertex ty € T,,, Xy, = (X, B, A) the
initial (R, h)-quantum seed. We assign each vertex t € T,, an
(R, h)-quantum seed X; which can be obtained from X, by iterated

mutations such that if ¢ —— ¢/ , then 3y = ug(X:). We call such an
assignment ¢t — 3; an (R, h)-quantum seed pattern.

@ For each vertex t, we refer to X; = (X1, -+ , Xm;t) @ quantum cluster,
X;..(1 < i <n) quantum cluster variables and X,,1;4+(1 < i < m—n)
coefficients.

o Let Ay := {X,j1<i<n}, the (R, h)-quantum cluster algebra A,(%;,) is the
Z[qi%][Xniil, ..., XF1] subalgebra of F, := Fa,, generated by elements of
X,
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Laurent phenomenon

@ Bai, Chen, Ding, and Xu prove the Laurent phenomenon for Generalized
quantum cluster algebras.
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Laurent phenomenon

@ Bai, Chen, Ding, and Xu prove the Laurent phenomenon for Generalized
quantum cluster algebras.

Let T,, be a n-regular tree. We refer to the vertex to € Ty, X, = (X, B, A) the
initial (R, h)-quantum seed. Then, we have

1
Xiﬂf € Z[qu][Xlilﬁ T 7X$1]v

for all i € [1,m] and t € T,,.
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Laurent phenomenon

@ Bai, Chen, Ding, and Xu prove the Laurent phenomenon for Generalized
quantum cluster algebras.

Let T,, be a n-regular tree. We refer to the vertex to € Ty, X, = (X, B, A) the
initial (R, h)-quantum seed. Then, we have

1
Xiﬂf € Z[qu][Xlilﬁ T 7X$1]v

for all i € [1,m] and t € T,,.

@ Moreover The F-polynomial and separation formula for cluster algebras have
played key roles not only in the structure theory of cluster algebras but also in
the categorification of cluster algebras.
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Laurent phenomenon

@ Bai, Chen, Ding, and Xu prove the Laurent phenomenon for Generalized
quantum cluster algebras.

Let T,, be a n-regular tree. We refer to the vertex to € Ty, X, = (X, B, A) the
initial (R, h)-quantum seed. Then, we have

1
Xiﬂf € Z[qu][Xlilﬁ T 7X$1]v

for all i € [1,m] and t € T,,.

@ Moreover The F-polynomial and separation formula for cluster algebras have
played key roles not only in the structure theory of cluster algebras but also in
the categorification of cluster algebras.

@ We aim to prove the existence of F-polynomial and establish the separation
formula for generalized quantum cluster algebras. Moreover we will give a
computing method for F-polynomial using c-vectors and g-vectors.
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Fock-Goncharov decomposition

We extend the Fock-Goncharov decomposition of quantum cluster algebras to
generalized quantum cluster algebras.
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Fock-Goncharov decomposition

We extend the Fock-Goncharov decomposition of quantum cluster algebras to
generalized quantum cluster algebras.
Notation:

@ For the edge t—* ¢ in T,,. The mutation puy in direction k yields a
unique Z[qi%]—algebra isomorphism ¢ : Fa,, — Fa, such that
X (es) if i # k;

Pt D) 7 3 g Xulslebuls + (e~ 9)-eul —e) i =k
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Fock-Goncharov decomposition

We extend the Fock-Goncharov decomposition of quantum cluster algebras to
generalized quantum cluster algebras.
Notation:

@ For the edge t—* ¢ in T,,. The mutation puy in direction k yields a
unique Z[qi%]—algebra isomorphism ¢ : Fa,, — Fa, such that

Xt( i) if i % k;

Nk;t(Xt’ (ei)) = Z hk s( %) ( [€bk]+ 4 (Tk _ 3)[_gbk}+ — ei) if i = k.

fuz hea(ah) @S5 2)) o> 0;

=1

O hislg®)(g22)) e = {1 ifa=0;

71 k ) .
(> hrs(g?)(q 21 ifa<0.
0

i=a S$=

b(2i+1)
2

=
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Fock-Goncharov decomposition

We extend the Fock-Goncharov decomposition of quantum cluster algebras to
generalized quantum cluster algebras.
Notation:

@ For the edge t—* ¢ in T,,. The mutation puy in direction k yields a
unique Z[qi%]—algebra isomorphism ¢ : Fa,, — Fa, such that
Xi(e:) if i # k;

,Uk;t(Xt’ (ei)) = Z hk s( %) ( [€bk]+ 4 (Tk _ 3)[_gbk}+ — ei) if i = k.

b(2i—1)

fuz hea(ah) @S5 2)) o> 0;
O hislg®) (g2 2)*) e = 1 ifa=0;
b(zi;rl) 2)*)~t ifa<0.

° Yt(a) := Xy(B;a), o € Z"™. We also denote f/k;t = Yt(fk), k € [1,n], where
f1,-++, fn is the standard basis of Z".

Huihui Ye(SCU) On F-polynomials for generalized quantum cluster algebras and Gupta's formula



For edge t —F ¥ inT,and ke [1,n], we have two types of Z[q*2]-algebras
isomorphisms.:

7/Jkt( &)t Fa, = Fa,

Xy ( = Xt th S % 2;k ?'?‘)5)_{‘%(B:Ot)D}7

where 3 is the first n entries of § € Z™, a € Z".
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For edge t —F ¥ inT,and ke [1,n], we have two types of Z[q*2]-algebras
isomorphisms.:

7/Jkt( &)t Fa, = Fa,

X '_> Xt th S % 2;k ?'?‘)5)_{‘%(B:Ot)D}7
where 3 is the first n entries of § € Z™, a € Z".

Prstie + Fa, — Fa,
Xy (a) = X(B o)
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For edge t —F ¥ inT,and ke [1,n], we have two types of Z[q*2]-algebras
isomorphisms.:

7/Jkt( &)t Fa, = Fa,

X '_> Xt th S % 2‘}% ??)5)_{dk(570¢)D}7
where 3 is the first n entries of § € Z™, a € Z".

Prstie + Fa, — Fa,
Xy (a) = X(B o)

Proposition 2.1

For an edge t —— ¢ inT, andc € {£1}, we have

MKkt = wk;t (Yi;t)s © ¢k§t§5'
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e C-matrices C; = (c;j,1):
] Cto = In,

o If t —" ' €T,, then

—Cijst if j =k;

Cij:t! = .
’ Cijit + Tk (Cikse [bkjiel 4 + [—€Cinst] 4 brjie) if J # K

Huihui Ye(SCU) On F-polynomials for generalized quantum cluster algebras and Gupta's formula



e C-matrices C; = (c;j,1):
] Cto = In;
o If t——1t' €Ty, then

Ciint = Cis =k
R Cijst + T (Cikie[ebgie] + + [—Cinse]+bujie)  iF 5 # ks

@ G-matrices Gt = (él;t, s 7gm;t):
o Gto = Im;
o If t——1t' €Ty, then

& if i # k;

i = —8, + Tk(zl[*bjk;zhéj;t - Zl[*cjk;thbj;to) if i = k.
Jj= =
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@ The following identities hold for G- and C-matrices:

Cg:t[D O]Qj;t = (ci;tagj;t)D = d;léij, fori,j € [1,77,], teT,,
GtBt = BtOCt~

And they are the key to proving the Proposition 2.2.
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@ The following identities hold for G- and C-matrices:

cgt[D 0lg;.; = (it 84)D = d; 165, fori,j € [L,n], t €Ty,
GtBt = BtoCt~

And they are the key to proving the Proposition 2.2.
@ For eacht € T,,, we have a

i1 i2

path in T, i: tg i1 to

i3 ik

te=t,

i1 i2 i3 25

subpath in T), i; : o th to t;, forjellk.

g; 1= the common sign of components of ¢; ;
Jj el k]

+ e
t;_, and €/ = EjCijt; for
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Now define
to .__ .
My i= Hiqste © Mgty © * " Migst_q * -7:/\% - ]:Ato'

For each j € [1, k], we also set

+

. N ot et
’(/}(lj) ::wil;to( (t:; )51 © 1/)1'2;750( :(2) )62 ©---0 'L/}ij;to(Yt; )E] : ]:Ato — ‘7:At0

to .__ .
¢tj '*¢i1;to;61 © ¢i2;t1;62 O---0 (z)ij;tj—ufj . ]:Atj - ‘FAtO'
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Now define
¢
Pty 7= Pigsto © Pigsty © * Pigity_y ‘FAtk - ]:Ato'
For each j € [1, k], we also set

c+
’(/}( ) wll,to( ot )51 o '(/)zz,to( & )62 ©---0 ’(/}ZJJO( ) ]:At — ‘7:At0

0 . .
¢tj '*¢i1;t0;61 © ¢i2;t1;62 ©---0 (z)ij;tj—uij . ]:Atj — ‘FAtO'

Proposition 2.2

Keep the notation as above, we have

py = (i) 0 612+ Fa,, — Fiy,-
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Now define
¢
Pty 7= Pigsto © Pigsty © * Pigity_y ‘FAtk - ]:Ato
For each j € [1, k], we also set

c+
’(/}( ) wll,to( ot )51 o '(/)zz,to( & )62 ©---0 ’(/}ZJJO( ) ]:At — ‘7:At0

0 . .
¢tj '*¢i1;t0;61 © ¢i2;t1;62 ©---0 (z)ij;tj—uij . ]:Atj — ‘FAtO'

Proposition 2.2

Keep the notation as above, we have

py = (i) 0 612+ Fa,, — Fiy,-

+
ot € ] Sadi ] t
Key'd)tg © wijJrl?tj (Yij_rll;tj)awrl = wij+1§t0 (Yt(])+1)5]+1 o (bt?'
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© F-polynomial and Gupta’s formula
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Notation

For 5|mpI|C|ty of notation, we also denote by dijy =di;, Ty = Ti;y € = Cijt;_y,
c; =¢cic; & =B & =8, 8 =&

We first deflne a set of elements {L; ; | 7,5 € [1,k]} of Fa, by the initial
condition

(1)
1

th (@O Y5 ) et €00) for i € (1,

with recurrence relations: for j € [1,n],

T(+1)

= )(0 G+ —ej+1{(d el 1.6 )p}
Ljt1,i = Ly,( E:hzj+1, (q7)(q “*”LHH)) IHUEEHDE10G DT,

Then set

T(1)
Ll - Z hzl,s

T(J+1>

J+1 - Z h21+17 % ( G+ (J+1) L]]+1) 7j € [Lki 1]

Mh—‘

Lt
2d 1\S
W Yto ) )
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Calculating X¢, (—8;,) p¢® (Xiyt, ), we have that

X (&)1 (Kiiee) =Ko (— &) (00) (Kt (81)) 8 (i) (Koo (—83)) ¥ i2) (Ko (81)
S (1) (X (—8)) ¥ (i) (Xt (81))

:L;m«gk,dmcr>D}L562{<gk,d(2>c;>p} . L;m{(sk,d(mcz)o}'
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Calculating X¢, (—8;,) p¢® (Xiyt, ), we have that

X (&)1 (Kiiee) =Ko (— &) (00) (Kt (81)) 8 (i) (Koo (—83)) ¥ i2) (Ko (81)
S (1) (X (—8)) ¥ (i) (Xt (81))

:L;m«gk,du)cr>D}L562{<gk,d<2>c;>p} . L;m{(sk,dmcmo}.

Keep the notation as above. We have

e {dg (] .gx)p}

g =g i)(€C; :8k)D

Koo (—BHLS (Kip) = [ L; 710 8000,
JE[L,K]

Huihui Ye(SCU) On F-polynomials for generalized quantum cluster algebras and Gupta's formula



The above Product as a rational polynomial in Yto only depends on the principal
part of the exchange matrix B.
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The above Product as a rational polynomial in Yto only depends on the principal
part of the exchange matrix B.

v

Definition 3.3

ﬁ L—€j{d(j)(f-';r ,8x)D}
J

The element F;, , 1= is called the F-polynomial of
JE[L.k]

Xy, (€;,) whenever F;, .., is a polynomial.

.
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The above Product as a rational polynomial in Yto only depends on the principal
part of the exchange matrix B.

Definition 3.3

— T
The element F; I1 Z; cilda) (e &x)p}

- is called the F-polynomial of
JE[LK]

Xy, (€;,) whenever F;, .., is a polynomial.

Theorem 3.4

(1) The element F;, 4, is a Laurent polynomial in Yl;to, ce Yn;to.
(2) Suppose that h; s(1) > 0 for each i € [1,n] and s € [1,7; — 1], then F;, 4, is
a polynomial in Y11y, ..., Yoz, -

.

Huihui Ye(SCU) On F-polynomials for generalized quantum cluster algebras and Gupta's formula



We give a brief proof for Theorem 3.4: Observing the definition of

L;,i € [1,k], there are two polynomials A(?l;to, e ,\A{'n;tn)7 P(\A{l;tm . .,?n;to)
with coefficients in N[ ] for hivs(q%), 1<i<n,1<s<r; (as variables) and
Y1 tor e Yn’to satisfying the following equation

Fiotn Yitgs s Youto) = A¥ 1oy -+ Yot )P (Y 1stos - s Youtg) H
Then using Newton polytope for Laurent polynomials in X4, -+, Xap;t, of this
equation. We will get that Fj, .4, (Y1.40, ..., Yny,) also is a Laurent polynomial in
Yiig,  Yosto- Moreover in a mild condition h; (1) > 0 for i € [1, n] and
s € [1,r; — 1]. Setting q2 = 1 does not shrink New(F;,. tk(Yl Aoy Yn,tg))

NeW(Fik;tk (?1;&)7 ce v?n;to)) :NeW<Fik§tlc (?1;%’ s v?n;to”q%:l)

—NEW( Zkﬂfk(y’ )zi,S:hi,S(1),i€[1,n],s€[1,ri71])a

where Fj, 4, (v,2) is the F-polynomial of the cluster variable z;, .;, of the
corresponding generalized cluster algebra with principal coefficients. Thus
New(F;, .1, (Yl;to, . 7?n;to)) does not contain any points with negative
coordinates. It follows that F;, .., (Y1 dos - Yn,to) is a polynomial in

~

Yiitgs--s Ysto-
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Theorem 3.5 (Separation formula)

Suppose that h; s(1) > 0 for each i € [1,n] and s € [1,7; — 1]. For each i € [1,n]
andt € Ty, let F;.1[Z1,. .., Z,] be the associated F-polynomial of X;.; and 8
the g-vector of X;.;. We have

Xist = K¢, (éi;t)Fi;t (Yl;tov 000 vYn;to)-

Huihui Ye(SCU)

On F-polynomials for generalized quantum cluster algebras and Gupta's formula



Theorem 3.5 (Separation formula)

Suppose that h; s(1) > 0 for each i € [1,n] and s € [1,7; — 1]. For each i € [1,n]
andt € Ty, let F;.1[Z1,. .., Z,] be the associated F-polynomial of X;.; and 8
the g-vector of X;.;. We have

Xist = K¢, (éi;t)Fi;t (YAi§to’ 000 7Yn;to)-

Remark 3.6

| A\

H I Ej{d(])(cj ,81)D }
JE[L,K]
F'-polynomials of generalized quantum cluster algebras. When R = I,,, it
specializes to Gupta' s formula for quantum cluster algebras.

We call the equation F;

s o Gupta' s formula for

\
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Thanks for your attention!

's formula
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