Point varieties of noncommutative conics

HúHǎi gāngWǔWén chāo胡海刚处五超世国科学技术大学USTC)

2024-8-6

ICRA21 2024@ 上海交通大学 SJTU

Notations

- k is an algebraically closed field of characteristic 0. All algebras are over k.
- V is a vector space over k, and T(V) is the tensor algebra.
- A quadratic algebra is a graded algebra A = T(V)/(R), where $R \subset V \otimes V$.
- $k[x_1, \ldots, x_n]$ is the polynomial algebra.

Introduction

In projective geometry, the projective scheme

$$X = \operatorname{Proj} k[x_1, \dots, x_n]/(f),$$

where $0 \neq f \in k[x_1, \dots, x_n]_2$, is called a quadric hypersurface. If n = 3, X is called a conic.

Introduction

In projective geometry, the projective scheme

$$X = \operatorname{Proj} k[x_1, \dots, x_n]/(f),$$

where $0 \neq f \in k[x_1, \dots, x_n]_2$, is called a quadric hypersurface. If n = 3, X is called a conic.

In noncommutative algebraic geometry, the noncommutative projective scheme

$$X_{nc} = \operatorname{Proj}_{nc} S/(f)$$

where S is an n-dim quantum polynomial algebra and $0 \neq f \in S_2$ a regular central element, is called a noncommutative quadric hypersurface. If n = 3, X_{nc} is called a noncommutative conic. (For convenience, we will simply say S/(f) is a noncommutative quadric hypersurface.)

Remark

Classifications of quantum polynomial algebras and noncommutative quadric hypersurfaces are very important problems in noncommutative algebraic geometry!

Remark

Classifications of quantum polynomial algebras and noncommutative quadric hypersurfaces are very important problems in noncommutative algebraic geometry!

- Point varieties are important invariants in the classification of 3-dim quantum polynomial algebras ([Artin-Tate-Van den Bergh, 91]).
- NOT every quantum polynomial algebra or every noncommutative quadric hypersurface has the point variety.

Remark

Classifications of quantum polynomial algebras and noncommutative quadric hypersurfaces are very important problems in noncommutative algebraic geometry!

- Point varieties are important invariants in the classification of 3-dim quantum polynomial algebras ([Artin-Tate-Van den Bergh, 91]).
- NOT every quantum polynomial algebra or every noncommutative quadric hypersurface has the point variety.

Goal

Prove the existence of point varieties of noncommutative conics (main result 1), and give some classification results of point varieties (main result 2).

Preliminaries

Definition (Artin-Schelter, 87)

A graded algebra $S = k \oplus S_1 \oplus S_2 \oplus \cdots$ generated in degree 1 is called an *n*-dimensional quantum polynomial algebra (qpa for short) if

- $\underline{\operatorname{Ext}}_{S}^{i}(k,S) = \begin{cases} k & \text{if } i = n, \\ 0 & \text{otherwise;} \end{cases}$
- $H_S(t) := \sum_{i=0}^{\infty} (\dim_k S_i) t^i = 1/(1-t)^n.$

Preliminaries

Definition (Artin-Schelter, 87)

A graded algebra $S = k \oplus S_1 \oplus S_2 \oplus \cdots$ generated in degree 1 is called an *n*-dimensional quantum polynomial algebra (qpa for short) if

- $\underline{\operatorname{Ext}}_{S}^{i}(k,S) = \begin{cases} k & \text{if } i = n, \\ 0 & \text{otherwise;} \end{cases}$
- $H_S(t) := \sum_{i=0}^{\infty} (\dim_k S_i) t^i = 1/(1-t)^n.$

In noncommutative algebraic geometry, we regard an n-dim qpa as a noncommutative version of $k[x_1, \ldots, x_n]$.

- $k[x_1, \ldots, x_n]$ is an n-dim qpa.
- $k\langle x, y, z \rangle / (xy + yx, xz + zx, yz + zy)$ is a 3-dim qpa.

Fact (Artin-Tate-Van den Bergh, 91)

A 3-dim quantum polynomial algebra is a domain.

Fact (Artin-Tate-Van den Bergh, 91)

A 3-dim quantum polynomial algebra is a domain.

Fact (Artin-Schelter, 87; Artin-Tate-Van den Bergh, 90, 91; Itaba-Matsuno, 21, 22; Matsuno, 21)

3-dim quantum polynomial algebras are completely classified.

Fact (Artin-Tate-Van den Bergh, 91)

A 3-dim quantum polynomial algebra is a domain.

Fact (Artin-Schelter, 87; Artin-Tate-Van den Bergh, 90, 91; Itaba-Matsuno, 21, 22; Matsuno, 21)

3-dim quantum polynomial algebras are completely classified.

Fact (Zhang, 96; Shelton-Tingey, 01)

Quantum polynomial algebras and noncommutative quadric hypersurfaces are Koszul (and thus quadratic).

Definition (Artin-Tate-Van den Bergh, 90; Mori, 06)

We say a quadratic algebra A = T(V)/(R) satisfies condition (G1) if \exists a projective variety $E_A \subset \mathbb{P}(V^*)$ and $\sigma_A \in \operatorname{Aut} E$ s.t.

$$\mathcal{V}(R) := \{ (p, q) \in \mathbb{P}(V^*) \times \mathbb{P}(V^*) \mid f(p, q) = 0, \ \forall f \in R \}$$

=\{ (p, \sigma_A(p)) \in \mathbb{P}(V^*) \times \mathbb{P}(V^*) \ | p \in E_A \}.

If A satisfies (G1), we call (E_A, σ_A) the geometric pair of A, and E_A the point variety of A.

Theorem (Artin-Tate-Van den Bergh, 90)

Every 3-dimensional quantum polynomial algebra satisfies condition (G1).

Theorem (Artin-Tate-Van den Bergh, 90)

Every 3-dimensional quantum polynomial algebra satisfies condition (G1).

The point varieties of 3-dim qpa:

We say a 3-dim qpa S is of type EC if the point variety of S is an elliptic curve. Type EC is the "generic" case of 3-dim qpas.

Theorem (Mori, 06)

For two quantum polynomial algebras (or noncommutative quadric hypersurfaces) A, A' satisfy condition (G1). We have

$$\operatorname{Proj}_{nc} A \cong \operatorname{Proj}_{nc} A' \Rightarrow E_A \cong E_{A'}.$$

Theorem (Mori, 06)

For two quantum polynomial algebras (or noncommutative quadric hypersurfaces) A, A' satisfy condition (G1). We have

$$\operatorname{Proj}_{nc} A \cong \operatorname{Proj}_{nc} A' \Rightarrow E_A \cong E_{A'}.$$

$$A \cong A' \Longrightarrow \operatorname{GrMod} A \cong \operatorname{GrMod} A'$$

$$\downarrow^{[\operatorname{Zhang}]}$$

$$E_A \cong E_{A'} \xleftarrow{[\operatorname{Mori}]} \operatorname{Proj}_{nc} A \cong \operatorname{Proj}_{nc} A'.$$

Main result 1

Theorem (H-W)

Every noncommutative conic A = S/(f) satisfies condition (G1).

Main result 1

Theorem (H-W)

Every noncommutative conic A = S/(f) satisfies condition (G1).

Sketch of proof:

1. Consider A = T(V)/(R). For fixed basises of V and R, construct the linear resolutions of k_A and k_A explicitly:

$$\cdots \longrightarrow A^{\oplus 4} \xrightarrow{N} A^{\oplus 4} \xrightarrow{M} A^{\oplus 4} \xrightarrow{J} A^{\oplus 3} \longrightarrow A \to k_A \to 0,$$

and

$$\cdots \longrightarrow A^{\oplus 4} \xrightarrow[N]{} A^{\oplus 4} \xrightarrow[M]{} A^{\oplus 4} \xrightarrow[L]{} A^{\oplus 3} \longrightarrow A \to {}_Ak \to 0,$$

where $M, N \in V^{4\times 4}, J \in V^{3\times 4}, L \in V^{4\times 3}$ are matrices.

2. Show that

$$X_L := \mathcal{Z}(\{3\text{-minors of }L\})$$

= $\mathcal{Z}(\{3\text{-minors of }N\})$
= $\mathcal{Z}(\{3\text{-minors of }J\}) =: X_J.$

(Where $\mathcal{Z}(\{?\})$ is the projective variety defined by the zero set of $\{?\}$.)

Remark

It is HARD to compare X_L and X_J directly.

3. Use the fact

A satisfies (G1)
$$\Leftrightarrow X_L = X_J$$
.

Classification of type EC case

Let A = S/(f) be a noncommutative conic. We say A is of type EC if S is of type EC.

There are 2 steps to classify point varieties of noncommutative conics A = S/(f) of type EC.

- 1. Find all noncommutative conics of type EC.
- 2. Calculate point varieties.

Find all noncommutative conics of type EC

There are infinitely many isomorphism classes of 3-dim qpas S of type EC. The hard thing is to determine when the center $Z(S)_2$ is nontrivial.

Find all noncommutative conics of type EC

There are infinitely many isomorphism classes of 3-dim qpas S of type EC. The hard thing is to determine when the center $Z(S)_2$ is nontrivial.

Theorem (H-Matsuno-Mori, 23)

Let S be a 3-dim qpa, and (E, σ) the geometric pair of S. If $Z(S)_2 \neq \{0\}$, then

(*) there is an irreducible component $E' \subset E$ such that $(\sigma|_{E'})^2 = \mathrm{id}$.

Theorem (Matsuno, 21)

A 3-dim qpa S of type EC satisfies (*) if and only if S is isomorphic to one of the following:

A.
$$k\langle x, y, z \rangle/(yz + zy + \lambda x^2, zx + xz + \lambda z^2, xy + yx + \lambda z^2)$$
.

B.
$$k\langle x, y, z \rangle/(x^2 + y^2 + \lambda z^2, xz + zy + \lambda yx, zx + yz + \lambda xy)$$
.

Where $0 \neq \lambda \in k$, and $\lambda^3 \neq 1, -8$.

Theorem (Matsuno, 21)

A 3-dim qpa S of type EC satisfies (*) if and only if S is isomorphic to one of the following:

- A. $k\langle x, y, z \rangle/(yz + zy + \lambda x^2, zx + xz + \lambda z^2, xy + yx + \lambda z^2)$.
- B. $k\langle x, y, z \rangle/(x^2 + y^2 + \lambda z^2, xz + zy + \lambda yx, zx + yz + \lambda xy)$.

Where $0 \neq \lambda \in k$, and $\lambda^3 \neq 1, -8$.

Lemma

- A. $Z(S)_2 = \{ax^2 + by^2 + cz^2 \mid a, b, c \in k\}.$
- B. $Z(S)_2 = \{a(xy + yx) + bz^2 \mid a, b \in k\}.$

Calculate point varieties

Let S be a 3-dim qpa, and (E, σ) the geometric pair of S.

Theorem (H-Matsuno-Mori, 23; H-W)

Let A = S/(f) be a noncommutative conic of type EC. Then f is reducible. Moreover

- A. $f = g^2$ where $g \in S_1$, and $E_A = (E \cap \mathcal{Z}(g)) \cup \sigma(E \cap \mathcal{Z}(g))$.
- B. f = gg' where $g, g' \in S_1$, and $E_A = (E \cap \mathcal{Z}(g)) \cup \tau \sigma(E \cap \mathcal{Z}(g))$, where $\tau \in \text{Aut } \mathbb{P}^2$ defined by $\tau(a:b:c) = (b:a:c)$.

There are 3 intersection points p_1, p_2, p_3 in $E \cap \mathcal{Z}(g)$ above. Then

$$E_A = \begin{cases} \{p_1, p_2, p_3, \sigma(p_1), \sigma(p_2), \sigma(p_3)\} & \text{in case A,} \\ \{p_1, p_2, p_3, \tau\sigma(p_1), \tau\sigma(p_2), \tau\sigma(p_3)\} & \text{in case B.} \end{cases}$$

Main result 2

Theorem (H-W)

There are exactly 3 isomorphism classes of point varieties of noncommutaive conics of type EC.

They are:

Cohen-Macaulay representations

Theorem (H-Matsuno-Mori, 23; H-W)

For two noncommutative conics A, A' of type EC. Then

$$E_A \cong E_{A'} \Leftrightarrow \mathrm{CM}^{\mathbb{Z}} A \cong \mathrm{CM}^{\mathbb{Z}} A'.$$

Thank you for listening!