The Deligne – Simpson Problem via weighted projective lines and deformed preprojective algebras

Andrew Hubery

Universität Bielefeld

ICRA 21, Shanghai, August 2024

C	Dverview
Overview	
T.II 1	
Talk T	
	Sheaves
Talk 2	
	Connections
Talk 3	
The Delig	ne – Simpson Problem

Connections on \mathbb{P}^1

Today: purely algebraic approach.

Atiyah defined a functorial short exact sequence

$$\alpha(E): \quad 0 \longrightarrow E(-2) \longrightarrow A(E) \longrightarrow E \longrightarrow 0$$

Explicitly, given $E = (E^{\pm}; \theta) \in \operatorname{coh} \mathbb{P}^1$, the sheaf A(E) has charts $E^{\pm} \ltimes E^{\pm}$, where

$$s^{\pm}$$
 acts via $\begin{pmatrix} s^{\pm} & 0 \\ \pm 1 & s^{\pm} \end{pmatrix}$ and glue is $\begin{pmatrix} heta & 0 \\ 0 & s^{-2} heta \end{pmatrix}$

Connections on \mathbb{P}^1

Today: purely algebraic approach.

Atiyah defined a functorial short exact sequence

$$\alpha(E): \quad 0 \longrightarrow E(-2) \longrightarrow A(E) \longrightarrow E \longrightarrow 0$$

Explicitly, given $E = (E^{\pm}; \theta) \in \operatorname{coh} \mathbb{P}^1$, the sheaf A(E) has charts $E^{\pm} \ltimes E^{\pm}$, where

$$s^{\pm}$$
 acts via $\begin{pmatrix} s^{\pm} & 0 \\ \pm 1 & s^{\pm} \end{pmatrix}$ and glue is $\begin{pmatrix} heta & 0 \\ 0 & s^{-2} heta \end{pmatrix}$

Now ∇ is a **connection** on *E* if and only if $\binom{1}{\nabla}$ is a section of $\alpha(E)$. A connection is given by *k*-linear endomorphisms ∇^{\pm} of E^{\pm} such that

$$abla^{\pm}(s^{\pm}x) = s^{\pm}
abla^{\pm}(x) \pm x$$
 and $abla^{+}(\theta(x)) = s^{-2} \theta(
abla^{-}(x))$

Generalised Atiyah classes

Functoriality gives for $f: E \to F$

$$A(E \oplus F) = A(E) \oplus A(F)$$
 and $A(f): A(E) \to A(f)$

but construction does not commute with shift

 $A(E(1)) \ncong A(E)(1).$

Generalised Atiyah classes

Functoriality gives for $f: E \to F$

 $A(E \oplus F) = A(E) \oplus A(F)$ and $A(f): A(E) \to A(f)$

but construction does not commute with shift

 $A(E(1)) \ncong A(E)(1).$

Led to 2-parameter deformation. For $\mu, \nu \in k$ define functorial

$$\alpha_{\mu,\nu}(E)$$
: 0 $\longrightarrow E(-2) \longrightarrow A_{\mu,\nu}(E) \longrightarrow E \longrightarrow 0$

For $E = (E^{\pm}; \theta)$ the sheaf $A_{\mu, \nu}(E)$ has charts $E^{\pm} \ltimes E^{\pm}$, where

$$s^{\pm}$$
 acts via $egin{pmatrix} s^{\pm} & 0 \ \pm
u & s^{\pm} \end{pmatrix}$ and glue is $egin{pmatrix} heta & 0 \ \mu s^{-} heta & s^{-2} heta \end{pmatrix}$

Generalised Atiyah classes

Proposition

$$\begin{array}{ll} Shift & \alpha_{\mu,\nu}(E)(1) = \alpha_{\mu+\nu,\nu}(E(1)) \\ \\ Baer \ sum & \alpha_{\mu,\nu} + t\alpha_{\mu',\nu'} = \alpha_{\mu+t\mu',\nu+t\nu'} \\ \\ Serre \ pairing & \langle \mathsf{id}, \alpha_{\mu,\nu}(E) \rangle = \mu \ \mathsf{rank} \ E - \nu \ \mathsf{deg} \ E \end{array}$$

Thus have family of functorial short exact sequences indexed by linear functionals $K_0(\operatorname{coh} \mathbb{P}^1) \to k$.

Atiyah sequence is for $(\mu, \nu) = (0, 1)$.

Connections on \mathbb{P}^1

By analogy call ∇ a (μ, ν) -connection on E if $\begin{pmatrix} 1 \\ \nabla \end{pmatrix}$ is a section of $\alpha_{\mu,\nu}(E)$.

Proposition

Sheaf E admits (μ, ν) -connection $\iff \mu \operatorname{rank} E' = \nu \deg E'$ for all indecomposable summands E' of E.

Special cases (in characteristic zero) $E \text{ admits } (m, 1)\text{-connection} \iff E \in \text{add } \mathcal{O}(m).$ $E \text{ admits } (1, 0)\text{-connection} \iff E \in \text{tor } \mathbb{P}^1.$

In characteristic p every indecomposable torsion sheaf of length divisible by p admits an (m, 1)- connection

Connections on $\ensuremath{\mathbb{X}}$

Extend this idea to construct family of functorial short exact sequences in $\operatorname{coh} X$ indexed by linear functionals $K_0(\operatorname{coh} X) \to k$.

Recall: Standard presentation of $\mathcal{E}\in\mathsf{coh}\,\mathbb{X}$ ended

$$\pi_! E_0 \oplus \bigoplus_{i,p} \pi_! E_{px_i}(px_i) \longrightarrow \mathcal{E}$$

Connections on ${\mathbb X}$

Extend this idea to construct family of functorial short exact sequences in $\operatorname{coh} X$ indexed by linear functionals $K_0(\operatorname{coh} X) \to k$.

Recall: Standard presentation of $\mathcal{E}\in\mathsf{coh}\,\mathbb{X}$ ended

$$\pi_! E_0 \oplus \bigoplus_{i,p} \pi_! E_{px_i}(px_i) \longrightarrow \mathcal{E}$$

For $\omega = -2c + \bar{w} \in \mathbb{L}$ this yields surjection

$$\Psi\colon \mathsf{Ext}_{\mathbb{P}}(E_0, E_0(-2)) \oplus \bigoplus_{i, p} \mathsf{Ext}_{\mathbb{P}}(E_{p_{\mathsf{X}_i}}, E_{p_{\mathsf{X}_i}}(-2)) \twoheadrightarrow \mathsf{Ext}_{\mathbb{X}}(\mathcal{E}, \mathcal{E}(\omega))$$

Serre pairing satisfies

$$\langle f, \Psi(\eta_0, \eta_{p\mathbf{x}_i}) \rangle_{\mathbb{X}} = \langle f_0, \eta_0 \rangle_{\mathbb{P}} + \sum_{i, p} \langle f_{p\mathbf{x}_i}, \eta_{p\mathbf{x}_i} \rangle_{\mathbb{P}}$$

Connections on $\ensuremath{\mathbb{X}}$

Theorem

Take $\chi \colon K_0(\mathbb{X}) \to k$, say

$$\chi[\mathcal{E}] = \mu \operatorname{\mathsf{rank}} \mathcal{E} - \nu_0 \deg E_0 - \sum_{i,p} \nu_{ip} \deg E_{p \times_i}$$

Then

$$\beta_{\chi}(\mathcal{E}) = \Psi(\alpha_{\mu,\nu_0}(E_0), \alpha_{0,\nu_{ip}}(E_{px_i}))$$

gives functorial short exact sequence

$$eta_\chi(\mathcal{E})\colon \quad 0 \longrightarrow \mathcal{E}(\omega) \longrightarrow B_\chi(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0$$

such that

$$\langle \mathsf{id}, eta_\chi(\mathcal{E})
angle_\mathbb{X} = \chi[\mathcal{E}]$$

Category of connections

By analogy call ∇ a χ -connection on \mathcal{E} if $\begin{pmatrix} 1 \\ \nabla \end{pmatrix}$ is a section of $\beta_{\chi}(\mathcal{E})$.

As B_{χ} functorial, get category conn $_{\chi} X$ having

- (1) objects $(\mathcal{E},
 abla)$ for sheaf $\mathcal{E} \in \mathsf{coh}\,\mathbb{X}$ with connection abla
- ② morphism f: (E, ∇) → (E', ∇') is f: E → E' fitting into commutative square

Category of connections

Theorem

The category $conn_{\chi} \mathbb{X}$ is k-linear, abelian and noetherian.

If char k = 0 and $\nu = \nu_0 + \sum_{ip} \nu_{ip}$ nonzero, then length category.

Category of connections

Theorem

The category $\operatorname{conn}_{\chi} \mathbb{X}$ is k-linear, abelian and noetherian.

If char k = 0 and $\nu = \nu_0 + \sum_{ip} \nu_{ip}$ nonzero, then length category.

When $\operatorname{conn}_{\chi} \mathbb{X}$ is a length category want to describe the simple objects. First: Describe classes $[\mathcal{E}] \in K_0(\operatorname{coh} \mathbb{X})$ for simples (\mathcal{E}, ∇) . This is essentially the Deligne – Simpson Problem !

Proof: abelian

Easy: $\operatorname{conn}_{\chi} \mathbb{X}$ is *k*-linear and additive.

Show abelian. Take morphism $f: (\mathcal{E}, \nabla) \to (\mathcal{E}', \nabla')$.

Let $\iota \colon \mathcal{K} \to \mathcal{E}$ be kernel for f in coh X. Then $B_{\chi}(\iota)$ is kernel of $B_{\chi}(f)$. Composite

$$\mathcal{K} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\begin{pmatrix} 1 \\ \nabla \end{pmatrix}} B_{\chi}(\mathcal{E}) \xrightarrow{B_{\chi}(f)} B_{\chi}(\mathcal{E}')$$

equals $\binom{1}{\nabla'}f\iota = 0$, so $\binom{1}{\nabla}\iota$ factors uniquely through $B_{\chi}(\iota)$.

Proof: abelian

Easy: $\operatorname{conn}_{\chi} \mathbb{X}$ is *k*-linear and additive.

Show abelian. Take morphism $f: (\mathcal{E}, \nabla) \to (\mathcal{E}', \nabla')$.

Let $\iota \colon \mathcal{K} \to \mathcal{E}$ be kernel for f in coh X. Then $B_{\chi}(\iota)$ is kernel of $B_{\chi}(f)$. Composite

$$\mathcal{K} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\begin{pmatrix} 1 \\ \nabla \end{pmatrix}} B_{\chi}(\mathcal{E}) \xrightarrow{B_{\chi}(f)} B_{\chi}(\mathcal{E}')$$

equals $\binom{1}{\nabla \iota} f \iota = 0$, so $\binom{1}{\nabla} \iota$ factors uniquely through $B_{\chi}(\iota)$. Get section $\mathcal{K} \to B_{\chi}(\mathcal{K})$. Similarly for cokernels.

Finally, map from coimage of f to image of f is an isomorphism in coh X, so is an isomorphism in conn χ X.

Proof: noetherian

Take ascending chain inside (\mathcal{E}, ∇)

$$(\mathcal{E}_1,\nabla_1)\subseteq (\mathcal{E}_2,\nabla_2)\subseteq \cdots$$

Get ascending chain of sheaves inside \mathcal{E} . Stabilises since $\operatorname{coh} \mathbb{X}$ noetherian. Get inclusions $(\mathcal{E}', \nabla_1') \subseteq (\mathcal{E}', \nabla_2') \subseteq \cdots$

Identity on \mathcal{E}' so must have $\nabla'_i = \nabla'_{i+1}$ for all i.

Assume: only finitely many indecomposable torsion sheaves $\mathcal{G}_1, \ldots, \mathcal{G}_m$ admit χ -connection.

To show: $\operatorname{conn}_{\chi} \mathbb{X}$ is artinian.

Take descending chain inside (\mathcal{E}, ∇)

$$(\mathcal{E}, \nabla) \supseteq (\mathcal{E}_1, \nabla_1) \supseteq (\mathcal{E}_2, \nabla_2) \supseteq \cdots$$

Then rank \mathcal{E}_i form decreasing sequence, so stabilises.

Assume: only finitely many indecomposable torsion sheaves $\mathcal{G}_1, \ldots, \mathcal{G}_m$ admit χ -connection.

To show: $\operatorname{conn}_{\chi} \mathbb{X}$ is artinian.

Take descending chain inside (\mathcal{E}, ∇)

$$(\mathcal{E}, \nabla) \supseteq (\mathcal{E}_1, \nabla_1) \supseteq (\mathcal{E}_2, \nabla_2) \supseteq \cdots$$

Then rank \mathcal{E}_i form decreasing sequence, so stabilises.

May assume ranks constant, so $T_i = \mathcal{E}/\mathcal{E}_i$ torsion.

Enough to show induced sequence stabilises

$$(\mathcal{E}, \nabla) \twoheadrightarrow \cdots \twoheadrightarrow (\mathcal{T}_2, \nabla'_2) \twoheadrightarrow (\mathcal{T}_1, \nabla'_1)$$

Have sequence

$$(\mathcal{E}, \nabla) \twoheadrightarrow \cdots \twoheadrightarrow (\mathcal{T}_2, \nabla'_2) \twoheadrightarrow (\mathcal{T}_1, \nabla'_1)$$

Assumption gives: each \mathcal{T}_i lies in $\operatorname{add}(\mathcal{G}_1, \ldots, \mathcal{G}_m)$.

Have sequence

$$(\mathcal{E}, \nabla) \twoheadrightarrow \cdots \twoheadrightarrow (\mathcal{T}_2, \nabla'_2) \twoheadrightarrow (\mathcal{T}_1, \nabla'_1)$$

Assumption gives: each \mathcal{T}_i lies in $\operatorname{add}(\mathcal{G}_1, \ldots, \mathcal{G}_m)$.

Surjection $\mathcal{E} \twoheadrightarrow \mathcal{T}_i$, so multiplicity of \mathcal{G}_j in \mathcal{T}_i bounded by

dim Hom $(\mathcal{E}, \mathcal{G}_j)$

Only finitely many choices for \mathcal{T}_i . One \mathcal{T} occurs infinitely often. For surjection $(\mathcal{T}, \nabla') \twoheadrightarrow (\mathcal{T}, \nabla'')$ must have $\nabla' = \nabla''$. Thus sequence stabilises.

Remains to show only finitely many indecomposable torsion with connection.

Remains to show only finitely many indecomposable torsion with connection.

Have finitely many classes $x_i \in K_0(\operatorname{coh} \mathbb{X})$ such that every indecomposable torsion \mathcal{T} has class

 $[\mathcal{T}] = x_m + [\pi_! S]$ some *i*, some $S \in \text{tor } \mathbb{P}^1$ with $\pi_! S \subseteq \mathcal{T}$.

Take $x_0 = 0$ and classes of indecomposables in tor_{*a*_{*i*} X of length $< w_i$.}

Remains to show only finitely many indecomposable torsion with connection.

Have finitely many classes $x_i \in K_0(\operatorname{coh} \mathbb{X})$ such that every indecomposable torsion \mathcal{T} has class

 $[\mathcal{T}] = x_m + [\pi_! S]$ some *i*, some $S \in \text{tor } \mathbb{P}^1$ with $\pi_! S \subseteq \mathcal{T}$.

Sheaf $\pi_! S \in \text{tor } \mathbb{X}$ has rank 0 and $\deg(\pi_! S)_d = b$ constant.

Thus $\chi[\pi_! S] = -b(\nu_0 + \sum_{ip} \nu_{ip}) = -b\nu$.

Remains to show only finitely many indecomposable torsion with connection.

Have finitely many classes $x_i \in K_0(\operatorname{coh} \mathbb{X})$ such that every indecomposable torsion \mathcal{T} has class

 $[\mathcal{T}] = x_m + [\pi_! S]$ some *i*, some $S \in \text{tor } \mathbb{P}^1$ with $\pi_! S \subseteq \mathcal{T}$.

Sheaf $\pi_! S \in \text{tor } \mathbb{X}$ has rank 0 and $\deg(\pi_! S)_d = b$ constant.

Thus
$$\chi[\pi_1 S] = -b(\nu_0 + \sum_{ip} \nu_{ip}) = -b\nu.$$

If char k = 0 and $\nu \neq 0$, then this is never zero for $S \neq 0$.

Thus $\chi[\mathcal{T}] = 0$ implies $x_i \neq 0$, so \mathcal{T} supported at some weighted point a_i . Then unique choice for b, and unique choice for S with $\pi_1 S \subseteq \mathcal{T}$.

Existence

Theorem

Suppose k has characteristic zero, or is algebraically closed. A sheaf $\mathcal{E} \in \operatorname{coh} \mathbb{X}$ admits χ -connection if and only if

 $\chi[\mathcal{E}'] = 0 \quad \forall \text{ direct summands } \mathcal{E}' \text{ of } \mathcal{E}$

Have more complicated statement for general field

Existence

Theorem

Suppose k has characteristic zero, or is algebraically closed. A sheaf $\mathcal{E} \in \operatorname{coh} \mathbb{X}$ admits χ -connection if and only if

 $\chi[\mathcal{E}'] = 0 \quad \forall \text{ direct summands } \mathcal{E}' \text{ of } \mathcal{E}$

Have more complicated statement for general field

Proof

Have $\beta_{\chi}(\mathcal{E}) = 0$ if and only if $\beta_{\chi}(\mathcal{E}') = 0$ for all summands \mathcal{E}' .

Existence

Theorem

Suppose k has characteristic zero, or is algebraically closed. A sheaf $\mathcal{E} \in \operatorname{coh} \mathbb{X}$ admits χ -connection if and only if

 $\chi[\mathcal{E}'] = 0 \quad \forall \text{ direct summands } \mathcal{E}' \text{ of } \mathcal{E}$

Have more complicated statement for general field

Proof

Have $\beta_{\chi}(\mathcal{E}) = 0$ if and only if $\beta_{\chi}(\mathcal{E}') = 0$ for all summands \mathcal{E}' .

Suppose \mathcal{E} indecomposable. Have $\Lambda = \text{End}(\mathcal{E})$ local and map

$$\Lambda \to \operatorname{End}_k(\Lambda/J(\Lambda)), \quad f \mapsto \overline{f}$$

Then Serre pairing $\langle f, \beta_{\chi}(\mathcal{E}) \rangle$ is proportional to $\operatorname{tr}(\overline{f})\chi[\mathcal{E}]$.

Easy first property

Want to understand simple objects $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$.

Lemma

Take $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$. If $\mathcal{E} = \mathcal{E}' \oplus \mathcal{E}''$ with $\operatorname{Ext}(\mathcal{E}'', \mathcal{E}') = 0$, then have subobject $(\mathcal{E}', \nabla') \subseteq (\mathcal{E}, \nabla)$.

Easy first property

Want to understand simple objects $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} X$.

Lemma

Take $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$. If $\mathcal{E} = \mathcal{E}' \oplus \mathcal{E}''$ with $\operatorname{Ext}(\mathcal{E}'', \mathcal{E}') = 0$, then have subobject $(\mathcal{E}', \nabla') \subseteq (\mathcal{E}, \nabla)$.

Proof

Consider composite
$$\mathcal{E}' \xrightarrow{\begin{pmatrix} 1 \\ \nabla \end{pmatrix} \iota} B_{\chi}(\mathcal{E}) \longrightarrow B_{\chi}(\mathcal{E}'')$$

Vanishes when composed with $B_{\chi}(\mathcal{E}'') \to \mathcal{E}''$, so factors uniquely through kernel $\mathcal{E}''(\omega)$ but $\operatorname{Hom}(\mathcal{E}', \mathcal{E}''(\omega)) \cong D\operatorname{Ext}(\mathcal{E}'', \mathcal{E}') = 0.$

Easy first property

Want to understand simple objects $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} X$.

Lemma

Take $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$. If $\mathcal{E} = \mathcal{E}' \oplus \mathcal{E}''$ with $\operatorname{Ext}(\mathcal{E}'', \mathcal{E}') = 0$, then have subobject $(\mathcal{E}', \nabla') \subseteq (\mathcal{E}, \nabla)$.

Proof

Consider composite
$$\mathcal{E}' \xrightarrow{\begin{pmatrix} 1 \\ \nabla \end{pmatrix} \iota} B_{\chi}(\mathcal{E}) \longrightarrow B_{\chi}(\mathcal{E}'')$$

Vanishes when composed with $B_{\chi}(\mathcal{E}'') \to \mathcal{E}''$, so factors uniquely through kernel $\mathcal{E}''(\omega)$ but $\operatorname{Hom}(\mathcal{E}', \mathcal{E}''(\omega)) \cong D\operatorname{Ext}(\mathcal{E}'', \mathcal{E}') = 0.$

Thus $\binom{1}{\nabla}\iota\colon \mathcal{E}'\to B_{\chi}(\mathcal{E})$ factors uniquely through $B_{\chi}(\mathcal{E}')$.

Let Q_* be Dynkin. Then $\operatorname{coh} \mathbb{X}$ is derived equivalent to $\operatorname{mod} \Lambda$ for tame hereditary algebra Λ .

Let Q_* be Dynkin. Then $\operatorname{coh} X$ is derived equivalent to $\operatorname{mod} \Lambda$ for tame hereditary algebra Λ .

Have $K_0(\operatorname{coh} \mathbb{X}) = \mathbb{Z} \partial \oplus K_0(Q_*)$ and $K_0(\Lambda) = \mathbb{Z} \delta \oplus K_0(Q_*)$. Identify via $\partial \mapsto \delta$.

- Let Q_* be Dynkin. Then $\operatorname{coh} \mathbb{X}$ is derived equivalent to $\operatorname{mod} \Lambda$ for tame hereditary algebra Λ .
- Have $K_0(\operatorname{coh} \mathbb{X}) = \mathbb{Z} \partial \oplus K_0(Q_*)$ and $K_0(\Lambda) = \mathbb{Z} \delta \oplus K_0(Q_*)$. Identify via $\partial \mapsto \delta$.

Let $\Phi \subset \mathcal{K}_0(Q_*)$ be root system. Roots for Λ contained in $\mathbb{Z}\delta \times (\Phi \cup \{0\})$.

Classes of indecomposable A-modules correspond to positive roots.

Let Q_* be Dynkin. Then $\operatorname{coh} X$ is derived equivalent to $\operatorname{mod} \Lambda$ for tame hereditary algebra Λ .

Have $K_0(\operatorname{coh} \mathbb{X}) = \mathbb{Z} \partial \oplus K_0(Q_*)$ and $K_0(\Lambda) = \mathbb{Z} \delta \oplus K_0(Q_*)$. Identify via $\partial \mapsto \delta$.

Let $\Phi \subset \mathcal{K}_0(Q_*)$ be root system. Roots for Λ contained in $\mathbb{Z}\delta \times (\Phi \cup \{0\})$.

Classes of indecomposable Λ -modules correspond to positive roots.

Theorem

Classes of indecomposable locally free sheaves correspond to

roots
$$a\partial + x$$
 with $x_* > 0$

Classes of indecomposable torsion sheaves correspond to

roots a with a > 0 or roots $a \partial + x$ with $a \ge 0, x_* = 0$

For a root $x \in \Phi$ there is at most one $a \in \mathbb{Z}$ with $\chi(a\partial + x) = 0$.

As $\chi(\partial) = \nu \neq 0$ only finitely many indecomposable sheaves admit χ -connection.

We may asume they all lie in Gen \mathcal{T} for some tilting $\mathcal{T} \in \text{loc} \mathbb{X}$ with $\text{End}(\mathcal{T}) \cong \Lambda$.

For a root $x \in \Phi$ there is at most one $a \in \mathbb{Z}$ with $\chi(a\partial + x) = 0$.

As $\chi(\partial) = \nu \neq 0$ only finitely many indecomposable sheaves admit χ -connection.

We may asume they all lie in Gen \mathcal{T} for some tilting $\mathcal{T} \in \text{loc} \mathbb{X}$ with $\text{End}(\mathcal{T}) \cong \Lambda$.

Theorem

The fully faithful functor

$$\mathsf{Hom}(\mathcal{T},-)\colon \mathit{Gen}\,\mathcal{T}\to\mathsf{mod}\,\Lambda$$

lifts to an equivalence

 $\operatorname{conn}_{\chi} \mathbb{X} \cong \operatorname{mod} \Pi^{\chi}$

where Π^{χ} is a deformed preprojective algebra.

Have an equivalence $\operatorname{conn}_{\chi} \mathbb{X} \cong \operatorname{mod} \Pi^{\chi}$.

The dimension vectors of the simple $\Pi^{\chi}\text{-modules}$ were described by Crawley-Boevey and Holland.

Let $R_{\chi} = \{ \text{roots } a\delta + x \mid \chi(a\delta + x) = 0 \}$. This is finite since $\chi(\delta) \neq 0$.

Let $\Sigma_{\chi} \subseteq R_{\chi}$ be the minimal positive elements.

Theorem

There exists a simple Π^{χ} -module of dimension vector $a\delta + x$ if and only if $a\delta + x \in \Sigma_{\chi}$.

Logarithmic connections

Following Mihai, consider pushout of Atiyah sequence along product $\sigma = \sigma_1 \cdots \sigma_n$, having degree $h = \sum_i h_i$

Explicitly, the sheaf M(E) has charts $E^{\pm} \ltimes E^{\pm}$, where

$$s^{\pm}$$
 acts via $egin{pmatrix} s^{\pm} & 0 \ \pm \sigma^{\pm} & s^{\pm} \end{pmatrix}$ and glue is $egin{pmatrix} heta & 0 \ 0 & s^{h-2} heta \end{pmatrix}$

Logarithmic connections

Call ∇ a log connection if $\begin{pmatrix} 1 \\ \nabla \end{pmatrix}$ is a section of the pushout sequence

$$0 \longrightarrow E(h-2) \longrightarrow M(E) \longrightarrow E \longrightarrow 0$$

Thus log connection given by k-linear ∇^{\pm} such that

$$abla^{\pm}(s^{\pm}x) = s^{\pm}
abla^{\pm}(x) \pm \sigma^{\pm}x \quad ext{and} \quad
abla^{+}(heta(x)) = s^{h-2} heta(
abla^{-}(x))$$

Logarithmic connections have at most simple poles at the points a_i

Again, get abelian category log conn \mathbb{P}^1 having objects (E, ∇) consisting of a sheaf E equipped with a log connection ∇ .

Example

Take $\{a_1, a_2\} = \{0, \infty\}$, so $\sigma = uv$. For all $m \in \mathbb{Z}$ and $\alpha \in k$ have log connection ∇_{α} on $\mathcal{O}(m)$ given by

$$abla^+_lpha(s^r)=(lpha+r)s^r$$
 and $abla^-_lpha(s^{-r})=(lpha+m-r)s^{-r}$

Morphism $u^n : \mathcal{O}(m) \to \mathcal{O}(m+n)$ yields morphism

$$u^n$$
: $(\mathcal{O}(m), \nabla_{\alpha}) \rightarrow (\mathcal{O}(m+n), \nabla_{\alpha-n}).$

Similarly for morphism v^n .

Note

Taking their cokernels shows that torsion sheaves supported at a_i admit log connections.

Residues

If $E \in \operatorname{loc} \mathbb{P}^1$, then $\sigma \colon E(-h) \to E$ is injective with cokernel

$$E[\sigma] = \bigoplus_i E[a_i]$$

the direct sum of the fibres.

Thus $\sigma: E(-2) \to E(h-2)$, and also $A(E) \to M(E)$, has cokernel $E[\sigma](h-2)$.

Need explicit isomorphism to $E[\sigma]$.

Residues

If $E \in \operatorname{loc} \mathbb{P}^1$, then $\sigma \colon E(-h) \to E$ is injective with cokernel

$$E[\sigma] = \bigoplus_i E[a_i]$$

the direct sum of the fibres.

Thus $\sigma: E(-2) \to E(h-2)$, and also $A(E) \to M(E)$, has cokernel $E[\sigma](h-2)$.

Need explicit isomorphism to $E[\sigma]$. Set

$$ho^+=d(\sigma^+)/d(s^+)$$
 and $ho^-=-d(\sigma^-)/d(s^-).$

Then $\rho^+ = s^{h-2}\rho^- + hs^-\sigma^+$. As σ^+ acts as zero on all $\mathcal{T} \in \operatorname{add}(S_{\sigma})$, get isomorphism

$$\rho\colon \mathcal{T} \xrightarrow{\sim} \mathcal{T}(h-2) \quad \forall \ \mathcal{T} \in \mathsf{add}(S_{\sigma}).$$

Residues

Let ∇ be a log connection on locally free sheaf *E*.

Have exact commutative diagram

$$\begin{array}{cccc} 0 & \longrightarrow & E(-h) & \stackrel{\sigma}{\longrightarrow} & E & \longrightarrow & E[\sigma] & \longrightarrow & 0 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ 0 & \longrightarrow & & & & & \\ 0 & \longrightarrow & & & & & \\ \end{array} \xrightarrow{\sigma} & E[\sigma](h-2) & \longrightarrow & 0 \end{array}$$

Call induced map $\operatorname{Res} \nabla \in \operatorname{End}(E[\sigma])$ the **residue** of ∇ .

Decomposes to give residue maps $\operatorname{Res}_i \nabla \in \operatorname{End}(E[a_i])$ on fibres.

Example

Take $\{a_1, a_2\} = \{0, \infty\}$, so $\sigma = uv$. Take $\alpha \in k$. Have log connection ∇ on $\mathcal{O}(m)$

$$abla^+(s^r) = (lpha + r)s^r, \quad
abla^-(s^{-r}) = (lpha + m - r)s^{-r}$$

Example

Take $\{a_1, a_2\} = \{0, \infty\}$, so $\sigma = uv$. Take $\alpha \in k$. Have log connection ∇ on $\mathcal{O}(m)$

$$abla^+(s^r) = (\alpha + r)s^r, \quad \nabla^-(s^{-r}) = (\alpha + m - r)s^{-r}$$

Have $\rho^{\pm} = \pm 1$. To compute $\operatorname{Res}_0 \nabla$ use charts on U^+

$$\begin{array}{ccc} 0 & \longrightarrow & k[s] & \xrightarrow{s} & k[s] & \longrightarrow & k & \longrightarrow & 0 \\ & \begin{pmatrix} s \\ 1+\nabla^+ \end{pmatrix} \downarrow & & \downarrow \begin{pmatrix} 1 \\ 0 & s \end{pmatrix} & & \downarrow \begin{pmatrix} 1 \\ \nabla^+ \end{pmatrix} & & \downarrow \\ Res_0 \nabla & & \downarrow \\ 0 & \longrightarrow & k[s] \ltimes & k[s] & \longrightarrow & k[s] \ltimes & k[s] & \longrightarrow & k & \longrightarrow & 0 \end{array}$$

Get $\operatorname{Res}_0 \nabla = \alpha$. Using charts on U^- get $\operatorname{Res}_\infty \nabla = -(\alpha + m)$.

If (E, V) is a parabolic sheaf, and ∇ a log connection on E, then can ask how the residues

$$\operatorname{Res}_i
abla \colon E[a_i] o E[a_i]$$

interact with the flags

$$0 = V_{i,w_i} \subseteq \cdots V_{i,1} \subseteq V_{i,0} = E[a_i]$$

If (E, V) is a parabolic sheaf, and ∇ a log connection on E, then can ask how the residues

$$\operatorname{\mathsf{Res}}_i
abla \colon E[a_i] o E[a_i]$$

interact with the flags

$$0 = V_{i,w_i} \subseteq \cdots V_{i,1} \subseteq V_{i,0} = E[a_i]$$

Given scalars $\zeta_{ip} \in k$, call ∇ a ζ -connection on (E, V) provided

$$(\mathsf{Res}_i \nabla - \zeta_{ip})(V_{i,p-1}) \subseteq V_{i,p} \quad \forall \ i,p$$

Get category conn $_{\zeta}$ par \mathbb{P}^1 .

Recall: Equivalence of categories par $\mathbb{P}^1 \cong \mathsf{loc} \mathbb{X}$.

Define subcategory $\operatorname{conn}_{\chi} \operatorname{loc} \mathbb{X}$ by taking those $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$ with $\mathcal{E} \in \operatorname{loc} \mathbb{X}$.

Recall: Equivalence of categories par $\mathbb{P}^1 \cong \mathsf{loc}\,\mathbb{X}.$

Define subcategory $\operatorname{conn}_{\chi} \operatorname{loc} \mathbb{X}$ by taking those $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$ with $\mathcal{E} \in \operatorname{loc} \mathbb{X}$.

Theorem

Fix scalars ζ_{ip} . Define $\chi \colon K_0(\operatorname{coh} \mathbb{X}) \to k$ using

$$\mu = -\sum_i h_i \zeta_{iw_i}, \quad
u_0 = 1 + \sum_i (\zeta_{i1} - \zeta_{iw_i}), \quad
u_{ip} = \zeta_{ip+1} - \zeta_{ip}.$$

Recall: Equivalence of categories par $\mathbb{P}^1 \cong \mathsf{loc}\,\mathbb{X}.$

Define subcategory $\operatorname{conn}_{\chi} \operatorname{loc} \mathbb{X}$ by taking those $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$ with $\mathcal{E} \in \operatorname{loc} \mathbb{X}$.

Theorem

Fix scalars ζ_{ip} . Define $\chi \colon K_0(\operatorname{coh} \mathbb{X}) \to k$ using

$$\mu=-\sum_i h_i \zeta_{i w_i}, \quad
u_0=1+\sum_i (\zeta_{i1}-\zeta_{i w_i}), \quad
u_{ip}=\zeta_{ip+1}-\zeta_{ip}.$$

Then the equivalence par $\mathbb{P}^1 \cong \text{loc } \mathbb{X}$ extends to an equivalence

 $\operatorname{conn}_\zeta\operatorname{par} \mathbb{P}^1\cong\operatorname{conn}_\chi\operatorname{loc}\mathbb{X}$

of categories of sheaves equipped with a connection.

Idea of proof.

Equivalence par $\mathbb{P}^1 \cong \mathsf{loc}\,\mathbb{X}$ follows from pullback diagram

Idea of proof.

Equivalence par $\mathbb{P}^1 \cong \mathsf{loc}\,\mathbb{X}$ follows from pullback diagram

Also have

$$0 \longrightarrow \mathcal{E}(\omega) \longrightarrow B_{\chi}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0$$

Idea of proof.

Equivalence par $\mathbb{P}^1 \cong \mathsf{loc}\,\mathbb{X}$ follows from pullback diagram

Also have

$$0 \longrightarrow \mathcal{E}(\omega) \longrightarrow B_{\chi}(\mathcal{E}) \longrightarrow \mathcal{E} \longrightarrow 0$$

and

Summary

Have defined category $\operatorname{conn}_{\chi} \mathbb{X}$ of sheaves together with a χ -connection. It is *k*-linear, abelian, noetherian. In nice cases also a length category.

Summary

Have defined category $\operatorname{conn}_{\chi} \mathbb{X}$ of sheaves together with a χ -connection. It is *k*-linear, abelian, noetherian. In nice cases also a length category.

Given ζ there exists χ and an equivalence $\operatorname{conn}_{\chi} \operatorname{loc} \mathbb{X} \cong \operatorname{conn}_{\zeta} \operatorname{par} \mathbb{P}^1$. Thus locally free sheaves on \mathbb{X} with a connection are the same as parabolic sheaves on \mathbb{P}^1 with an appropriate log connection.

Summary

Have defined category $\operatorname{conn}_{\chi} \mathbb{X}$ of sheaves together with a χ -connection. It is *k*-linear, abelian, noetherian. In nice cases also a length category.

Given ζ there exists χ and an equivalence $\operatorname{conn}_{\chi} \operatorname{loc} \mathbb{X} \cong \operatorname{conn}_{\zeta} \operatorname{par} \mathbb{P}^1$. Thus locally free sheaves on \mathbb{X} with a connection are the same as parabolic sheaves on \mathbb{P}^1 with an appropriate log connection.

Basic aim is to describe classes $[\mathcal{E}] \in \mathcal{K}_0(\operatorname{coh} \mathbb{X})$ for simple objects $(\mathcal{E}, \nabla) \in \operatorname{conn}_{\chi} \mathbb{X}$. Can do this easily in domestic type by passing to deformed preprojective algebras.

Next time

Introduce the Deligne – Simpson Problem.

Relate to parabolic sheaves with connection via functor

$$\operatorname{conn}_{\zeta} \operatorname{par} \mathbb{P}^1 \to \operatorname{log} \operatorname{conn} \mathbb{P}^1, \quad (E, V, \nabla) \mapsto (E, \nabla)$$

forgetting the parabolic structure.

Reinterpret in terms of $\operatorname{conn}_{\chi} \mathbb{X}$.

Give local description of $conn_{\chi} \mathbb{X}$ via deformed preprojective algebras.

Thank You !