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Sheaves on P

Sheaves on P1

Fix field k. Projective line P1 = Proj k[u, v ] has open affine cover

U+ = P1 − {∞} = Spec k[s]

U− = P1 − {0} = Spec k[s−]

where s = u/v .

A coherent sheaf E = (E+,E−;ϕ) consists of

1 a finitely generated k[s]-module E+

2 a finitely generated k[s−]-module E−

3 a k[s, s−]-isomorphism θ : k[s, s−]⊗ E− ∼−→ k[s, s−]⊗ E+

We call E± the charts and θ the glue.
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Sheaves on P

Morphisms

A morphism f = (f +, f −) : E → F consists of

1 a k[s]-linear map f + : E+ → F+

2 a k[s−]-linear map f − : E− → F−

3 fitting into a commutative square

k[s, s−]⊗ E− k[s, s−]⊗ F−

k[s, s−]⊗ E+ k[s, s−]⊗ F+

1⊗f −

θ≀ ϕ≀

1⊗f +
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Sheaves on P

Category cohP1

We obtain a k-linear category cohP1. This is furthermore

1 abelian, where

0 E F G 0

is exact provided it is exact on both charts

0 E± F± G± 0

2 with finite dimensional homomorphism and extension spaces

3 and is hereditary, so Ext2(−,−) ≡ 0

4 and noetherian, so ascending chains stabilise.
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Sheaves on P

Examples

1 O(m) = (k[s], k[s−]; sm). Indecomposable, endomorphism ring k .

2 In general, for E = (E±; θ), have shift E (m) = (E±; smθ).

Note, (E (m))(n) = E (m + n) for all m, n ∈ Z. Z → Aut(cohP1)

Can identify Hom(E ,F ) = Hom(E (m),F (m)).

3 Let σ ∈ k[u, v ] be homogeneous of degree d . Define

σ+ = σ(s, 1) ∈ k[s], σ− = σ(1, s−) ∈ k[s−]

Multiplication by σ± on E± gives morphism σ : E → E (d).
Get natural transformation σ : id → (d). k[u, v ] → Zgr(cohP1, (1))
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Sheaves on P

Examples

4 Every morphism O → O(d) is uniquely of the form σ.
So Hom(O,O(d)) has dimension d + 1.

5 Let σ ∈ k[u, v ] be homogeneous of degree d . Get short exact
sequence

0 O(−d) O Sσ 0σ

where Sσ = (k[s±]/(σ±); id). Note

Sσ(m) ∼= Sσ for all m, and

Sσ indecomposable ⇐⇒ σ = τm with τ irreducible.

7 / 39



Sheaves on P

Split torsion pair

1 Sheaf E is locally free if E± both free.
locP1 is an exact subcategory.
Every locally free sheaf is uniquely a direct sum of O(m).

2 Sheaf E is torsion if E± both torsion.
torP1 is a Serre subcategory.
Every torsion sheaf is uniquely

⊕
Sσm , σ irreducible.

3 Hom(torP1, locP1) = 0 = Ext(locP1, torP1).

4 Have functorial short exact sequence

0 Etor E Eloc 0
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Sheaves on P

Torsion sheaves

Take a = (σ) ∈ Proj k[u, v ]. Have Serre subcategory

tora P1 = add(Sσm ,m ≥ 1)

It is a uniserial length category with unique simple Sσ.

Have decomposition

torP1 =
∨
a∈P

tora P1

so no homomorphisms or extensions between sheaves supported at distinct
points.
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Sheaves on P

Grothendieck group

The Grothendieck group K0(cohP1) is Z2, where

[O(m)] = (1,m) and [Sσ] = (0, deg σ).

In general write [E ] = (rankE , deg E ). Note rankE = rankE±.

The Euler form

{E ,F} = dimHom(E ,F )− dimExt1(E ,F )

descends to bilinear form on K0(cohP1)

{(r , d), (r ′, d ′)} = rr ′ + rd ′ − dr ′.
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Sheaves on P

Extensions

Take E ∈ cohP1 and F ∈ locP1. A short exact sequence

0 E M F 0

is split on charts, so M± = F± ⊕ E±.

The glue is then of the form (
ϕ 0
γϕ θ

)
for some

γ : k[s, s−]⊗ F+ → k[s, s−]⊗ E+.

Write ηγ ∈ Ext(F ,E ) for the extension.
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Sheaves on P

Examples

Up to equivalence, every short exact sequence

0 O(−d) M O 0

is uniquely of the form M± = k[s±]2 with glue(
1 0
γ s−d

)
, γ ∈ span{s−, s−2, . . . , s1−d}.

The extension

0 O(−2m) O(−m)2 O 0
(vm,um)t (um,−vm)

corresponds to γ = s−m.
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Sheaves on P

Serre duality

Take E ∈ cohP1, F ∈ locP1, and short exact sequence

0 E (−2) M F 0

Let M have charts M± = F± ⊕ E± and glue(
ϕ 0
γϕ s−2θ

)
, γ : k[s, s−]⊗ F+ → k[s, s−]⊗ E+.

Given f : E → F , have f + : k[s, s−]⊗ E+ → k[s, s−]⊗ F+

so f +γ ∈ End(k[s, s−]⊗ F+) ∼= Mr (k[s, s
−]), where r = rankF .

Then tr(f +γ) ∈ k[s, s−], and res tr(f +γ) ∈ k (coefficient of s−).
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Sheaves on P

Serre duality

Obtain pairing

⟨−,−⟩ : Hom(E ,F )× Ext(F ,E (−2)) → k,

⟨f , ηγ⟩ = res tr(f +γ).

for F ∈ locP1.

Theorem

This extends to a bifunctorial and shift invariant perfect pairing

⟨−,−⟩ : Hom(E ,F )× Ext(F ,E (−2)) → k

on all of cohP1, called the Serre pairing.
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Sheaves on X

Weighted projective lines

A weighted projective line X consists of a set of points a1, . . . , an ∈ P1

having weights w1, . . . ,wn ∈ N.

We construct a category cohX sharing many of the nice properties of
cohP1

1 k-linear, hereditary abelian, noetherian

2 finite dimensional homomorphisms and extensions

3 split torsion pair (torX, locX)
4 torX =

∨
a∈P tora X uniserial Serre subcategory

5 Serre duality

but now torai X has wi simple objects.
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Sheaves on X

Periodic functors

Fix representatives ai = (σi ) ∈ Proj k[u, v ]. Set hi = deg σi .

Let Zn have standard basis xi . Poset where d ≥ 0 provided d =
∑

i dixi
and di ≥ 0 for all i .

A functor E : (Zn)op → cohP1 is given by

1 a sheaf Ed ∈ cohP1 for all d ∈ Zn

2 a unique morphism ϕd ,e : Ed+e → Ed for all d , e ∈ Zn with e ≥ 0.

Call E periodic with respect to (σ,w) if

1 Ed−wixi = Ed(hi )

2 ϕd−wixi ,e = ϕd ,e as maps Ed+e(hi ) → Ed(hi )

3 ϕd ,wixi = σi : Ed(−hi ) → Ed .
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Sheaves on X

Periodic functors

A morphism f : E → F is a natural transformation of functors.

Call f periodic if fd−wixi = fd .

Define cohX to be the subcategory of periodic functors with periodic
morphisms. Independent of choice of representatives σi

This is a k-linear abelian category with finite dimensional homomorphism
and extension spaces.
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Sheaves on X

Examples

Take n = 1, σ ∈ k[u, v ] irreducible, degree h, w = 2.
A coherent sheaf E ∈ cohX is given by

· · · E2 = E0(−h) E1 E0 E−1 = E1(h) · · ·ϕ0 ϕ1 ϕ0 ϕ1 ϕ0

such that ϕ1ϕ0 = σ = ϕ0ϕ1 Matrix factorisations

Special case

n = 1, σ = u2 + v2 irreducible over k , w = 2.

· · · O(−2)2 O(−1)2 O2 O(1)2 · · ·

(
u v
−v u

) (
u −v
v u

) (
u v
−v u

)

This is indecomposable with endomorphism ring k[t]/(t2 + 1).

18 / 39



Sheaves on X

Example

n = 2, σ, τ irreducible of degree 1, w1 = 3, w2 = 2.
A sheaf E ∈ cohX is a periodic array

E0(−2) E2x(−1) Ex(−1) E0(−1)

Ey (−1) E2x+y Ex+y Ey

E0(−1) E2x Ex E0

σ

τ
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Sheaves on X

Sheaves on X

The definition of cohX is over-specified. The forgetful functor restricting a
sheaf E to the axes in Zn is fully faithful.

So, just need to specify a sheaf E0 ∈ cohP1 and an n-tuple of functors
Ei : Zop → cohP1, periodic with resepect to (σi ,wi ), satisfying Ei ,0 = E0.

The advantage is that have all shifts.

For d ′ ∈ Zn define E(d ′) with (E(d ′))d = Ed−d ′ . Note

E(d ′)(d ′′) = E(d ′ + d ′′)

Also have shift E(c) with (E(c))d = Ed(1). Then E(wixi ) = E(hic).
These give shift group

L = Zn ⊕ Zc/(wixi − hic).

Group homomorphism L → Aut(cohX)
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Sheaves on X

Recollement

Have exact functor

π : cohX → cohP1, E 7→ E0.

Admits exact and fully faithful left and right adjoints, π! and π∗.

Set w̄ =
∑

i (wi − 1)xi ∈ Zn. Then for 0 ≤ d ≤ w̄ have

(π!E )−d = E and (π∗E )d = E

Theorem

We have
(π!E )(w̄) = π∗E .

Also for all i ≥ 0 have

ExtiX(π!E ,F) ∼= ExtiP(E ,F0) and ExtiX(F , π∗E ) ∼= ExtiP(F0,E )
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Sheaves on X

Locally free sheaves

1 Sheaf E is locally free if each Ed ∈ locP1.
locX is an exact subcategory.

2 If E ∈ locX, then rankEd is constant.

3 An invertible sheaf is a locally free sheaf of rank one.
For example O = OX = π!OP.

4 Every locally free sheaf is filtered by invertible sheaves.

5 Every invertible sheaf is uniquely O(d) for d ∈ L.
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Sheaves on X

Torsion sheaves

1 Sheaf E is torsion if each Ed ∈ torP1.
torX is a Serre subcategory.

2 For a ∈ P1 have Serre subcategory

tora X = {E | Ed ∈ tora P1}.

It is a uniserial length category.

3 torai X has wi simple objects Sip

0 O((p − 1)xi ) O(pxi ) Sip 0

Otherwise tora X ∼= tora P1, with unique simple π!Sa.

4 Have decomposition torX =
∨

a∈P tora X.
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Sheaves on X

Split torsion pair

Have Hom(torX, locX) = 0 = Ext(locX, torX).

Have functorial short exact sequence

0 Etor E Eloc 0

The category cohX is hereditary and noetherian.
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Sheaves on X

Examples

Previous example: n = 1, σ = u2 + v2, w = 2.
Have short exact sequence

0 π!O E π∗O 0

pos
2x 0 O(−2) O(−2)2 O(−2) 0

x 0 O(−2) O(−1)2 O 0

0 0 O O2 O 0

(0,1)t

(
u v
−v u

)
(1,0)

σ

σ

(v ,u)t

(
u −v
v u

)
(u,−v)

(0,1) (1,0)
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Sheaves on X

Examples

n = 1, σ of degree h, w = 3.

0 O(−x) O Sσ,0 0

pos
3x 0 O(−2h) O(−h) Sσ 0

2x 0 O(−h) O(−h) 0 0

x 0 O(−h) O(−h) 0 0

0 0 O(−h) O Sσ 0

σ

σ

σ

σ
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Sheaves on X

Examples

n = 1, σ of degree h, w = 3.

0 O O(x) Sσ,1 0

pos
3x 0 O(−h) O(−h) 0 0

2x 0 O(−h) O(−h) 0 0

x 0 O(−h) O Sσ 0

0 0 O O 0 0

σ

σ

σ
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Sheaves on X

Examples

n = 1, σ of degree h, w = 3.

0 O(x) O(2x) Sσ,2 0

pos
3x 0 O(−h) O(−h) 0 0

2x 0 O(−h) O Sσ 0

x 0 O O 0 0

0 0 O O 0 0

σ

σ

σ
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Sheaves on X

Grothendieck group

Recall: Every locally free sheaf has a well-defined rank. Every torsion sheaf
has rank zero.

We have K0(cohX) = Z2+
∑

i (wi−1), where

[E ] = (rank E , deg E0, deg Epxi ).

Alternative basis ∂, e∗, eip such that

[E ] = (deg E0)∂ + dim E ,

where
dim E = (rank E)e∗ +

∑
i ,p

1
hi

(
deg Epxi − deg Ewixi )eip
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Sheaves on X

Euler form

We view dim E as a dimension vector for (valued) quiver

(1, 1) (1, 2) · · · (1,w1 − 1)

Q∗ ∗ (2, 1) (2, 2) · · · (2,w2 − 1)

(n, 1) (n, 2) · · · (n,wn − 1)

(h1
,1)

(h2,1)

(h
n ,1)

Theorem

The Euler form {E ,F} = dimHom(E ,F)− dimExt(E ,F) descends to a
bilinear form on Z∂ ⊕ K0(Q∗) given by

{a∂ + x , b∂ + y} = {x , y}Q∗ + x∗b − ay∗.
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Sheaves on X

Standard resolution

Recall: restriction to axes is fully faithful.

A morphism f : E → F is completely determined by commutative diagrams

E0(−hi ) · · · E2xi Exi E0

F0(−hi ) · · · F2xi Fxi F0

f0 f2xi fxi f0

Obtain exact sequence

0 HomX(E ,F) HomP(E0,F0)⊕
⊕

i ,p HomP(Epxi ,Fpxi )

−−−→
⊕

i ,q HomP(Eqxi ,F(q−1)xi )

where 0 < p < wi and 0 ≤ q < wi .
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Sheaves on X

Standard resolution

Can reinterpret this as Hom(−,F) applied to a standard presentation of E .
This is analogous to standard resolution for quiver representations.

Theorem

Have standard presentation⊕
i ,q π!Eqxi ((q − 1)xi ) π!E0 ⊕

⊕
i ,p π!Epxi (pxi ) E 0

Can describe kernel explicitly
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Sheaves on X

Serre duality

Have π!E (w̄) = π∗E , so

ExtX(F , π!E (−2c + w̄)) = ExtX(F , π∗E (−2c)) ∼= ExtP(F0,E (−2))

which by Serre duality for P1 is dual to

HomP(E ,F0) ∼= HomX(π!E ,F).

As cohX is hereditary, apply HomX(F ,−) to standard presentation for
E(−2c + w̄) to get surjection

Ψ: ExtP(F0,E0(−2))⊕
⊕
i ,p

ExtP(Fpxi ,Epxi (−2)) ↠ Ext1X(F , E(−2c + w̄)).
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Sheaves on X

Serre duality

Set ω = −2c + w̄ in L. Have

ExtP(F0,E0(−2))⊕
⊕

i ,p ExtP(Fpxi ,Epxi (−2)) ExtX(F , E(ω))

HomP(E0,F0)⊕
⊕

i ,p HomP(Epxi ,Fpxi ) HomX(E ,F)

Ψ

Theorem

Have bifunctorial and shift invariant perfect pairing

⟨−,−⟩X : HomX(E ,F)× ExtX(F , E(ω)) → k

called the Serre pairing, such that

⟨f ,Ψ(η0, ηpxi )⟩X = ⟨f0, η0⟩P +
∑
i ,p

⟨fpxi , ηpxi ⟩P.
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Motivation

Parabolic sheaves

Take E ∈ locX. Then σi : E0(−hi ) ↣ E0 is injective with cokernel the
fibre E0[ai ] of E0 at ai . Note E0[ai ] ∼= S r

ai
for r = rank E .

Also, κ(ai ) = End(Sai ) is the residue field, and addSai
∼= modκ(ai ).

Set Vi ,p to be cokernel of E0(−hi ) ↣ Epxi . Get exact commutative

0 E0(−hi ) Epxi Vi ,p 0

0 E0(−hi ) E0 Vi ,0 0

Yields flag of κ(ai )-vector spaces inside fibre E0[ai ]

0 = Vi ,wi
⊆ · · · ⊆ Vi ,1 ⊆ Vi ,0 = E0[ai ]

Call (E0,V ) a parabolic sheaf on P1. Arise naturally in various contexts
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Motivation

Parabolic sheaves

Theorem

Have an equivalence of exact categories parP1 ∼= locX.

Idea of proof

Given (E ,V ), have

0 π!E π∗E F 0

with F torsion and Fpxi = E0[ai ] for 0 < p < wi .
The flags V determine torsion subsheaf V ⊆ F , so can take pullback

0 π!E E V 0

0 π!E π∗E F 0
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Motivation

Tilting sheaves

Theorem

Have torsion sheaves Tip ∈ torai X giving tilting sheaf

T = O(−c)⊕O ⊕
⊕
i ,p

Tip

Its endomorphism algebra is a squid (+ relations)

(1, 1) (1, 2) · · · (1,w1 − 1)

◦ ∗ (2, 1) (2, 2) · · · (2,w2 − 1)

(n, 1) (n, 2) · · · (n,wn − 1)

(h1
,1)

(h2,1)

(h
n ,1)
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Motivation

Hereditary categories

Up to derived equivalence, k-linear, hereditary abelian, noetherian
categories admitting tilting object are

finite domestic wild

tubular

wild

Horizontal line: modΛ for a fin. dim. hereditary algebra Λ.

Finite if Dynkin. Domestic if affine.

Vertical line: cohX for a weighted projective line X.

Domestic if Q∗ Dynkin. Tubular if Q∗ affine.
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That’s all, folks!

Thank you !
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