# The Deligne – Simpson Problem via weighted projective lines and deformed preprojective algebras

Andrew Hubery

Universität Bielefeld

ICRA 21, Shanghai, August 2024

| Ove                           | erview |
|-------------------------------|--------|
| Overview                      |        |
|                               |        |
|                               |        |
| Talk 1                        |        |
| Sheaves                       |        |
|                               |        |
| Talk 2                        |        |
| Connections                   |        |
|                               |        |
| Talk 3                        |        |
| The Deligne – Simpson Problem |        |

# Sheaves on $\mathbb{P}^1$

Fix field k. Projective line  $\mathbb{P}^1 = \operatorname{Proj} k[u, v]$  has open affine cover

$$U^{+} = \mathbb{P}^{1} - \{\infty\} = \operatorname{Spec} k[s]$$
$$U^{-} = \mathbb{P}^{1} - \{0\} = \operatorname{Spec} k[s^{-}]$$

where s = u/v.

#### Sheaves on $\mathbb{P}^1$

Fix field k. Projective line  $\mathbb{P}^1 = \operatorname{Proj} k[u, v]$  has open affine cover

$$U^{+} = \mathbb{P}^{1} - \{\infty\} = \operatorname{Spec} k[s]$$
$$U^{-} = \mathbb{P}^{1} - \{0\} = \operatorname{Spec} k[s^{-}]$$

where s = u/v.

A coherent sheaf  $E = (E^+, E^-; \phi)$  consists of

- 1 a finitely generated k[s]-module  $E^+$
- 2 a finitely generated  $k[s^-]$ -module  $E^-$
- 3) a  $k[s,s^-]$ -isomorphism  $\theta \colon k[s,s^-] \otimes E^- \xrightarrow{\sim} k[s,s^-] \otimes E^+$

We call  $E^{\pm}$  the **charts** and  $\theta$  the **glue**.

#### Morphisms

A morphism  $f = (f^+, f^-) \colon E \to F$  consists of

- 1) a k[s]-linear map  $f^+ \colon E^+ \to F^+$
- ② a  $k[s^-]$ -linear map  $f^-: E^- \to F^-$
- ③ fitting into a commutative square

# Category $\operatorname{coh} \mathbb{P}^1$

We obtain a k-linear category coh  $\mathbb{P}^1$ . This is furthermore

abelian, where

$$0 \longrightarrow E \longrightarrow F \longrightarrow G \longrightarrow 0$$

is exact provided it is exact on both charts

$$0 \longrightarrow E^{\pm} \longrightarrow F^{\pm} \longrightarrow G^{\pm} \longrightarrow 0$$

2 with finite dimensional homomorphism and extension spaces

- (3) and is hereditary, so  $Ext^2(-,-) \equiv 0$
- ④ and noetherian, so ascending chains stabilise.

- **(**)  $\mathcal{O}(m) = (k[s], k[s^-]; s^m)$ . Indecomposable, endomorphism ring k.
- ② In general, for  $E = (E^{\pm}; \theta)$ , have shift  $E(m) = (E^{\pm}; s^m \theta)$ . Note, (E(m))(n) = E(m+n) for all  $m, n \in \mathbb{Z}$ .  $\mathbb{Z} \to \operatorname{Aut}(\operatorname{coh} \mathbb{P}^1)$ Can identify  $\operatorname{Hom}(E, F) = \operatorname{Hom}(E(m), F(m))$ .

- **(**)  $\mathcal{O}(m) = (k[s], k[s^-]; s^m)$ . Indecomposable, endomorphism ring k.
- 2 In general, for E = (E<sup>±</sup>; θ), have shift E(m) = (E<sup>±</sup>; s<sup>m</sup>θ).
  Note, (E(m))(n) = E(m + n) for all m, n ∈ Z. Z → Aut(coh P<sup>1</sup>)
  Can identify Hom(E, F) = Hom(E(m), F(m)).

3 Let  $\sigma \in k[u, v]$  be homogeneous of degree d. Define

$$\sigma^+=\sigma(s,1)\in k[s], \quad \sigma^-=\sigma(1,s^-)\in k[s^-]$$

Multiplication by  $\sigma^{\pm}$  on  $E^{\pm}$  gives morphism  $\sigma \colon E \to E(d)$ . Get natural transformation  $\sigma \colon id \to (d)$ .  $k[u, v] \to Z_{gr}(\operatorname{coh} \mathbb{P}^1, (1))$ 

- ④ Every morphism O → O(d) is uniquely of the form σ.
   So Hom(O, O(d)) has dimension d + 1.
- ⑤ Let σ ∈ k[u, v] be homogeneous of degree d. Get short exact sequence

$$0 \longrightarrow \mathcal{O}(-d) \stackrel{\sigma}{\longrightarrow} \mathcal{O} \longrightarrow S_{\sigma} \longrightarrow 0$$

where  $S_{\sigma} = (k[s^{\pm}]/(\sigma^{\pm}); id)$ . Note  $S_{\sigma}(m) \cong S_{\sigma}$  for all m, and  $S_{\sigma}$  indecomposable  $\iff \sigma = \tau^{m}$  with  $\tau$  irreducible.

#### **1** Sheaf *E* is **locally free** if $E^{\pm}$ both free.

loc  $\mathbb{P}^1$  is an exact subcategory. Every locally free sheaf is uniquely a direct sum of  $\mathcal{O}(m)$ .

 Sheaf E is locally free if E<sup>±</sup> both free. loc P<sup>1</sup> is an exact subcategory. Every locally free sheaf is uniquely a direct sum of O(m).
 Sheaf E is torsion if E<sup>±</sup> both torsion.

> tor  $\mathbb{P}^1$  is a Serre subcategory. closed under subquots, exts Every torsion sheaf is uniquely  $\bigoplus S_{\sigma^m}$ ,  $\sigma$  irreducible.

 Sheaf E is locally free if E<sup>±</sup> both free. loc P<sup>1</sup> is an exact subcategory. Every locally free sheaf is uniquely a direct sum of O(m).
 Sheaf E is torsion if E<sup>±</sup> both torsion. tor P<sup>1</sup> is a Serre subcategory. Every torsion sheaf is uniquely ⊕ S<sub>σ<sup>m</sup></sub>, σ irreducible.

- 3 Hom $(\operatorname{tor} \mathbb{P}^1, \operatorname{loc} \mathbb{P}^1) = 0 = \operatorname{Ext}(\operatorname{loc} \mathbb{P}^1, \operatorname{tor} \mathbb{P}^1).$
- ④ Have functorial short exact sequence

$$0 \longrightarrow E_{\mathsf{tor}} \longrightarrow E \longrightarrow E_{\mathsf{loc}} \longrightarrow 0$$

#### Torsion sheaves

Take  $a = (\sigma) \in \operatorname{Proj} k[u, v]$ . Have Serre subcategory  $\operatorname{tor}_a \mathbb{P}^1 = \operatorname{add}(S_{\sigma^m}, m \geq 1)$ 

It is a uniserial length category with unique simple  $S_{\sigma}$ .

#### Torsion sheaves

Take  $a = (\sigma) \in \operatorname{Proj} k[u, v]$ . Have Serre subcategory

$$\operatorname{tor}_{a} \mathbb{P}^{1} = \operatorname{add}(S_{\sigma^{m}}, m \geq 1)$$

It is a uniserial length category with unique simple  $S_{\sigma}$ .

Have decomposition

tor 
$$\mathbb{P}^1 = igvee_{a \in \mathbb{P}} \operatorname{tor}_a \mathbb{P}^1$$

so no homomorphisms or extensions between sheaves supported at distinct points.

#### Grothendieck group

The **Grothendieck group**  $K_0(\operatorname{coh} \mathbb{P}^1)$  is  $\mathbb{Z}^2$ , where

$$[\mathcal{O}(m)] = (1,m) \quad \text{and} \quad [S_{\sigma}] = (0,\deg\sigma).$$

In general write  $[E] = (\operatorname{rank} E, \deg E)$ . Note  $\operatorname{rank} E = \operatorname{rank} E^{\pm}$ .

## Grothendieck group

The **Grothendieck group**  $K_0(\operatorname{coh} \mathbb{P}^1)$  is  $\mathbb{Z}^2$ , where

$$[\mathcal{O}(m)] = (1,m) \quad \text{and} \quad [S_{\sigma}] = (0,\deg\sigma).$$

In general write  $[E] = (\operatorname{rank} E, \deg E)$ . Note  $\operatorname{rank} E = \operatorname{rank} E^{\pm}$ .

#### The Euler form

$${E,F} = \dim \operatorname{Hom}(E,F) - \dim \operatorname{Ext}^{1}(E,F)$$

descends to bilinear form on  $K_0(\operatorname{coh} \mathbb{P}^1)$ 

$$\{(r,d),(r',d')\} = rr' + rd' - dr'.$$

#### Extensions

Take  $E \in \operatorname{coh} \mathbb{P}^1$  and  $F \in \operatorname{loc} \mathbb{P}^1$ . A short exact sequence

$$0 \longrightarrow E \longrightarrow M \longrightarrow F \longrightarrow 0$$

is split on charts, so  $M^{\pm} = F^{\pm} \oplus E^{\pm}$ .

The glue is then of the form

$$\begin{pmatrix} \phi & \mathbf{0} \\ \gamma \phi & \theta \end{pmatrix}$$

for some

$$\gamma \colon k[s,s^-] \otimes F^+ \to k[s,s^-] \otimes E^+.$$

Write  $\eta_{\gamma} \in \text{Ext}(F, E)$  for the extension.

Up to equivalence, every short exact sequence

$$0 \longrightarrow \mathcal{O}(-d) \longrightarrow M \longrightarrow \mathcal{O} \longrightarrow 0$$

is uniquely of the form  $M^{\pm} = k[s^{\pm}]^2$  with glue

$$egin{pmatrix} 1 & 0 \ \gamma & s^{-d} \end{pmatrix}, \quad \gamma \in {\sf span}\{s^-,s^{-2},\ldots,s^{1-d}\}.$$

The extension

$$0 \longrightarrow \mathcal{O}(-2m) \xrightarrow{(v^m, u^m)^t} \mathcal{O}(-m)^2 \xrightarrow{(u^m, -v^m)} \mathcal{O} \longrightarrow 0$$

corresponds to  $\gamma = s^{-m}$ .

Take  $E\in {
m coh}\,{\mathbb P}^1$ ,  $F\in {
m loc}\,{\mathbb P}^1$ , and short exact sequence

$$0 \longrightarrow E(-2) \longrightarrow M \longrightarrow F \longrightarrow 0$$

Let *M* have charts  $M^{\pm} = F^{\pm} \oplus E^{\pm}$  and glue

$$\begin{pmatrix} \phi & 0 \\ \gamma \phi & s^{-2}\theta \end{pmatrix}, \quad \gamma \colon k[s,s^{-}] \otimes F^{+} \to k[s,s^{-}] \otimes E^{+}.$$

Take  $E \in \operatorname{coh} \mathbb{P}^1$ ,  $F \in \operatorname{loc} \mathbb{P}^1$ , and short exact sequence

$$0 \longrightarrow E(-2) \longrightarrow M \longrightarrow F \longrightarrow 0$$

Let M have charts  $M^{\pm} = F^{\pm} \oplus E^{\pm}$  and glue

$$\begin{pmatrix} \phi & 0 \\ \gamma \phi & s^{-2}\theta \end{pmatrix}, \quad \gamma \colon k[s,s^{-}] \otimes F^{+} \to k[s,s^{-}] \otimes E^{+}.$$

Given  $f: E \to F$ , have  $f^+: k[s, s^-] \otimes E^+ \to k[s, s^-] \otimes F^+$ so  $f^+\gamma \in \operatorname{End}(k[s, s^-] \otimes F^+) \cong M_r(k[s, s^-])$ , where  $r = \operatorname{rank} F$ .

Take  $E \in \operatorname{coh} \mathbb{P}^1$ ,  $F \in \operatorname{loc} \mathbb{P}^1$ , and short exact sequence

$$0 \longrightarrow E(-2) \longrightarrow M \longrightarrow F \longrightarrow 0$$

Let *M* have charts  $M^{\pm} = F^{\pm} \oplus E^{\pm}$  and glue

$$\begin{pmatrix} \phi & 0 \\ \gamma \phi & s^{-2}\theta \end{pmatrix}, \quad \gamma \colon k[s,s^{-}] \otimes F^{+} \to k[s,s^{-}] \otimes E^{+}.$$

Given  $f: E \to F$ , have  $f^+: k[s, s^-] \otimes E^+ \to k[s, s^-] \otimes F^+$ 

so  $f^+\gamma \in \operatorname{End}(k[s,s^-] \otimes F^+) \cong M_r(k[s,s^-])$ , where  $r = \operatorname{rank} F$ . Then  $\operatorname{tr}(f^+\gamma) \in k[s,s^-]$ , and  $\operatorname{restr}(f^+\gamma) \in k$  (coefficient of  $s^-$ ).

Obtain pairing

$$\langle -, - \rangle \colon \operatorname{Hom}(E, F) \times \operatorname{Ext}(F, E(-2)) \to k,$$
  
 $\langle f, \eta_{\gamma} \rangle = \operatorname{restr}(f^+\gamma).$ 

for  $F \in \text{loc } \mathbb{P}^1$ .

Theorem

This extends to a bifunctorial and shift invariant perfect pairing

 $\langle -, - \rangle \colon \mathsf{Hom}(E, F) \times \mathsf{Ext}(F, E(-2)) \to k$ 

on all of  $\operatorname{coh} \mathbb{P}^1$ , called the **Serre pairing**.

# Weighted projective lines

A weighted projective line X consists of a set of points  $a_1, \ldots, a_n \in \mathbb{P}^1$  having weights  $w_1, \ldots, w_n \in \mathbb{N}$ .

We construct a category  $\mathsf{coh}\,\mathbb{X}$  sharing many of the nice properties of  $\mathsf{coh}\,\mathbb{P}^1$ 

- 1 k-linear, hereditary abelian, noetherian
- 2 finite dimensional homomorphisms and extensions
- 3 split torsion pair (tor X, loc X)
- 4 tor  $\mathbb{X} = \bigvee_{a \in \mathbb{P}} \operatorname{tor}_a \mathbb{X}$  uniserial Serre subcategory
- 5 Serre duality

but now  $tor_{a_i} \mathbb{X}$  has  $w_i$  simple objects.

Fix representatives  $a_i = (\sigma_i) \in \operatorname{Proj} k[u, v]$ . Set  $h_i = \deg \sigma_i$ .

Let  $\mathbb{Z}^n$  have standard basis  $x_i$ . Poset where  $d \ge 0$  provided  $d = \sum_i d_i x_i$  and  $d_i \ge 0$  for all *i*.

Fix representatives  $a_i = (\sigma_i) \in \operatorname{Proj} k[u, v]$ . Set  $h_i = \deg \sigma_i$ .

Let  $\mathbb{Z}^n$  have standard basis  $x_i$ . Poset where  $d \ge 0$  provided  $d = \sum_i d_i x_i$  and  $d_i \ge 0$  for all *i*.

A functor  $\mathcal{E} \colon (\mathbb{Z}^n)^{\mathsf{op}} \to \mathsf{coh}\,\mathbb{P}^1$  is given by

**1** a sheaf 
$$E_d \in \operatorname{coh} \mathbb{P}^1$$
 for all  $d \in \mathbb{Z}^n$ 

② a unique morphism  $\phi_{d,e} \colon E_{d+e} \to E_d$  for all  $d, e \in \mathbb{Z}^n$  with  $e \ge 0$ .

Fix representatives  $a_i = (\sigma_i) \in \operatorname{Proj} k[u, v]$ . Set  $h_i = \deg \sigma_i$ .

Let  $\mathbb{Z}^n$  have standard basis  $x_i$ . Poset where  $d \ge 0$  provided  $d = \sum_i d_i x_i$  and  $d_i \ge 0$  for all *i*.

A functor  $\mathcal{E} \colon (\mathbb{Z}^n)^{\mathsf{op}} \to \mathsf{coh}\,\mathbb{P}^1$  is given by

1) a sheaf 
$$E_d \in \operatorname{coh} \mathbb{P}^1$$
 for all  $d \in \mathbb{Z}^n$ 

② a unique morphism  $\phi_{d,e} \colon E_{d+e} \to E_d$  for all  $d, e \in \mathbb{Z}^n$  with  $e \ge 0$ .

Call  $\mathcal{E}$  **periodic** with respect to  $(\sigma, w)$  if

1 
$$E_{d-w_i \times_i} = E_d(h_i)$$
  
2  $\phi_{d-w_i \times_i, e} = \phi_{d, e}$  as maps  $E_{d+e}(h_i) \rightarrow E_d(h_i)$   
3  $\phi_{d, w_i \times_i} = \sigma_i \colon E_d(-h_i) \rightarrow E_d.$ 

- A morphism  $f: \mathcal{E} \to \mathcal{F}$  is a natural transformation of functors.
- Call f periodic if  $f_{d-w_ix_i} = f_d$ .

Define  $\operatorname{coh} X$  to be the subcategory of periodic functors with periodic morphisms. Independent of choice of representatives  $\sigma_i$ 

This is a k-linear abelian category with finite dimensional homomorphism and extension spaces.

Take n = 1,  $\sigma \in k[u, v]$  irreducible, degree h, w = 2. A coherent sheaf  $\mathcal{E} \in \operatorname{coh} X$  is given by

$$\cdots \xrightarrow{\phi_0} E_2 = E_0(-h) \xrightarrow{\phi_1} E_1 \xrightarrow{\phi_0} E_0 \xrightarrow{\phi_1} E_{-1} = E_1(h) \xrightarrow{\phi_0} \cdots$$

such that  $\phi_1\phi_0 = \sigma = \phi_0\phi_1$  Matrix factorisations

#### Special case

$$n = 1$$
,  $\sigma = u^2 + v^2$  irreducible over k,  $w = 2$ .

$$\cdots \longrightarrow \mathcal{O}(-2)^2 \xrightarrow{\begin{pmatrix} u & v \\ -v & u \end{pmatrix}} \mathcal{O}(-1)^2 \xrightarrow{\begin{pmatrix} u & -v \\ v & u \end{pmatrix}} \mathcal{O}^2 \xrightarrow{\begin{pmatrix} u & v \\ -v & u \end{pmatrix}} \mathcal{O}(1)^2 \longrightarrow \cdots$$

This is indecomposable with endomorphism ring  $k[t]/(t^2+1)$ .

n = 2,  $\sigma, \tau$  irreducible of degree 1,  $w_1 = 3$ ,  $w_2 = 2$ . A sheaf  $\mathcal{E} \in \operatorname{coh} \mathbb{X}$  is a periodic array



### Sheaves on $\ensuremath{\mathbb{X}}$

The definition of  $\operatorname{coh} X$  is over-specified. The forgetful functor restricting a sheaf  $\mathcal{E}$  to the axes in  $\mathbb{Z}^n$  is fully faithful.

So, just need to specify a sheaf  $E_0 \in \operatorname{coh} \mathbb{P}^1$  and an *n*-tuple of functors  $\mathcal{E}_i \colon \mathbb{Z}^{\operatorname{op}} \to \operatorname{coh} \mathbb{P}^1$ , periodic with resepect to  $(\sigma_i, w_i)$ , satisfying  $E_{i,0} = E_0$ .

#### Sheaves on $\ensuremath{\mathbb{X}}$

The definition of  $\operatorname{coh} X$  is over-specified. The forgetful functor restricting a sheaf  $\mathcal{E}$  to the axes in  $\mathbb{Z}^n$  is fully faithful.

So, just need to specify a sheaf  $E_0 \in \operatorname{coh} \mathbb{P}^1$  and an *n*-tuple of functors  $\mathcal{E}_i \colon \mathbb{Z}^{\operatorname{op}} \to \operatorname{coh} \mathbb{P}^1$ , periodic with resepect to  $(\sigma_i, w_i)$ , satisfying  $E_{i,0} = E_0$ . The advantage is that have all **shifts**.

For  $d' \in \mathbb{Z}^n$  define  $\mathcal{E}(d')$  with  $(\mathcal{E}(d'))_d = E_{d-d'}$ . Note

$$\mathcal{E}(d')(d'') = \mathcal{E}(d' + d'')$$

Also have shift  $\mathcal{E}(c)$  with  $(\mathcal{E}(c))_d = E_d(1)$ . Then  $\mathcal{E}(w_i x_i) = \mathcal{E}(h_i c)$ . These give **shift group** 

$$\mathbb{L} = \mathbb{Z}^n \oplus \mathbb{Z}c/(w_i x_i - h_i c).$$

Group homomorphism  $\mathbb{L} \to \operatorname{Aut}(\operatorname{coh} \mathbb{X})$ 

## Recollement

Have exact functor

$$\pi \colon \operatorname{coh} \mathbb{X} \to \operatorname{coh} \mathbb{P}^1, \quad \mathcal{E} \mapsto E_0.$$

Admits exact and fully faithful left and right adjoints,  $\pi_1$  and  $\pi_*$ . Set  $\bar{w} = \sum_i (w_i - 1) x_i \in \mathbb{Z}^n$ . Then for  $0 \le d \le \bar{w}$  have

$$(\pi_! E)_{-d} = E$$
 and  $(\pi_* E)_d = E$ 

## Recollement

Have exact functor

$$\pi \colon \operatorname{coh} \mathbb{X} \to \operatorname{coh} \mathbb{P}^1, \quad \mathcal{E} \mapsto E_0.$$

Admits exact and fully faithful left and right adjoints,  $\pi_1$  and  $\pi_*$ . Set  $\bar{w} = \sum_i (w_i - 1) x_i \in \mathbb{Z}^n$ . Then for  $0 \le d \le \bar{w}$  have

$$(\pi_! E)_{-d} = E$$
 and  $(\pi_* E)_d = E$ 

Theorem

We have

$$(\pi_! E)(\bar{w}) = \pi_* E.$$

Also for all  $i \ge 0$  have

 $\operatorname{Ext}^{i}_{\mathbb{X}}(\pi_{!}E,\mathcal{F})\cong\operatorname{Ext}^{i}_{\mathbb{P}}(E,F_{0})$  and  $\operatorname{Ext}^{i}_{\mathbb{X}}(\mathcal{F},\pi_{*}E)\cong\operatorname{Ext}^{i}_{\mathbb{P}}(F_{0},E)$ 

#### Locally free sheaves

- Sheaf *E* is locally free if each *E<sub>d</sub>* ∈ loc P<sup>1</sup>. loc X is an exact subcategory.
- ② If  $\mathcal{E} \in \text{loc } \mathbb{X}$ , then rank  $E_d$  is constant.
- 3 An invertible sheaf is a locally free sheaf of rank one. For example O = O<sub>X</sub> = π<sub>1</sub>O<sub>P</sub>.

#### Locally free sheaves

- Sheaf *E* is locally free if each *E<sub>d</sub>* ∈ loc P<sup>1</sup>. loc X is an exact subcategory.
- ② If  $\mathcal{E} \in \text{loc } \mathbb{X}$ , then rank  $E_d$  is constant.
- 3 An invertible sheaf is a locally free sheaf of rank one. For example O = O<sub>X</sub> = π<sub>1</sub>O<sub>P</sub>.
- ④ Every locally free sheaf is filtered by invertible sheaves.
- **5** Every invertible sheaf is uniquely  $\mathcal{O}(d)$  for  $d \in \mathbb{L}$ .

#### Torsion sheaves

 Sheaf *E* is torsion if each *E<sub>d</sub>* ∈ tor ℙ<sup>1</sup>. tor X is a Serre subcategory.
 For *a* ∈ ℙ<sup>1</sup> have Serre subcategory

$$\operatorname{tor}_{a} \mathbb{X} = \{ \mathcal{E} \mid E_{d} \in \operatorname{tor}_{a} \mathbb{P}^{1} \}.$$

It is a uniserial length category.

#### Torsion sheaves

■ Sheaf  $\mathcal{E}$  is **torsion** if each  $E_d \in \text{tor } \mathbb{P}^1$ . tor X is a Serre subcategory.

**2** For  $a \in \mathbb{P}^1$  have Serre subcategory

$$\operatorname{tor}_{a} \mathbb{X} = \{ \mathcal{E} \mid E_{d} \in \operatorname{tor}_{a} \mathbb{P}^{1} \}.$$

It is a uniserial length category.

3 tor<sub>*a<sub>i</sub>* X has *w<sub>i</sub>* simple objects *S<sub>ip</sub>*</sub>

$$0 \longrightarrow \mathcal{O}((p-1)x_i) \longrightarrow \mathcal{O}(px_i) \longrightarrow S_{ip} \longrightarrow 0$$

Otherwise tor<sub>a</sub>  $\mathbb{X} \cong$  tor<sub>a</sub>  $\mathbb{P}^1$ , with unique simple  $\pi_! S_a$ .

4 Have decomposition tor  $\mathbb{X} = \bigvee_{a \in \mathbb{P}} \operatorname{tor}_{a} \mathbb{X}$ .

Have  $Hom(tor \mathbb{X}, Ioc \mathbb{X}) = 0 = Ext(Ioc \mathbb{X}, tor \mathbb{X}).$ 

Have functorial short exact sequence

$$0 \longrightarrow \mathcal{E}_{tor} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}_{loc} \longrightarrow 0$$

The category  $\operatorname{coh} X$  is **hereditary** and **noetherian**.









# Grothendieck group

Recall: Every locally free sheaf has a well-defined rank. Every torsion sheaf has rank zero.

We have  $K_0(\operatorname{coh} \mathbb{X}) = \mathbb{Z}^{2+\sum_i (w_i-1)}$ , where

 $[\mathcal{E}] = (\operatorname{rank} \mathcal{E}, \deg E_0, \deg E_{\rho x_i}).$ 

# Grothendieck group

Recall: Every locally free sheaf has a well-defined rank. Every torsion sheaf has rank zero.

We have  $K_0(\operatorname{coh} \mathbb{X}) = \mathbb{Z}^{2+\sum_i (w_i-1)}$ , where

 $[\mathcal{E}] = (\operatorname{rank} \mathcal{E}, \deg E_0, \deg E_{px_i}).$ 

Alternative basis  $\partial$ ,  $e_*$ ,  $e_{ip}$  such that

$$[\mathcal{E}] = (\deg E_0)\partial + \underline{\dim} \mathcal{E},$$

where

$$\underline{\dim}\,\mathcal{E} = (\operatorname{\mathsf{rank}}\,\mathcal{E})e_* + \sum_{i,p} \tfrac{1}{h_i} \big(\deg E_{\rho x_i} - \deg E_{w_i x_i}\big)e_{ip}$$

# Euler form

We view  $\underline{\dim} \mathcal{E}$  as a dimension vector for (valued) quiver

$$Q_* \qquad \begin{array}{c} (1,1) \leftarrow (1,2) \leftarrow \cdots \leftarrow (1,w_1-1) \\ (h_2,1) \leftarrow (2,2) \leftarrow \cdots \leftarrow (2,w_2-1) \\ (n,1) \leftarrow (n,2) \leftarrow \cdots \leftarrow (n,w_n-1) \end{array}$$

#### Theorem

The Euler form  $\{\mathcal{E}, \mathcal{F}\} = \dim \operatorname{Hom}(\mathcal{E}, \mathcal{F}) - \dim \operatorname{Ext}(\mathcal{E}, \mathcal{F})$  descends to a bilinear form on  $\mathbb{Z}\partial \oplus K_0(Q_*)$  given by

$$\{a\partial + x, b\partial + y\} = \{x, y\}_{Q_*} + x_*b - ay_*.$$

## Standard resolution

Recall: restriction to axes is fully faithful.

A morphism  $f: \mathcal{E} \to \mathcal{F}$  is completely determined by commutative diagrams



## Standard resolution

Recall: restriction to axes is fully faithful.

A morphism  $f: \mathcal{E} \to \mathcal{F}$  is completely determined by commutative diagrams



Obtain exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{X}}(\mathcal{E}, \mathcal{F}) \longrightarrow \operatorname{Hom}_{\mathbb{P}}(E_0, F_0) \oplus \bigoplus_{i,p} \operatorname{Hom}_{\mathbb{P}}(E_{px_i}, F_{px_i})$$
$$\longrightarrow \bigoplus_{i,q} \operatorname{Hom}_{\mathbb{P}}(E_{qx_i}, F_{(q-1)x_i})$$

where  $0 and <math>0 \le q < w_i$ .

# Standard resolution

Can reinterpret this as  $Hom(-, \mathcal{F})$  applied to a standard presentation of  $\mathcal{E}$ . This is analogous to standard resolution for quiver representations.

Theorem

Have standard presentation

$$\bigoplus_{i,q} \pi_! E_{qx_i}((q-1)x_i) \longrightarrow \pi_! E_0 \oplus \bigoplus_{i,p} \pi_! E_{px_i}(px_i) \longrightarrow \mathcal{E} \longrightarrow 0$$

Can describe kernel explicitly

Have  $\pi_! E(\bar{w}) = \pi_* E$ , so

 $\mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{!}E(-2c + \bar{w})) = \mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{*}E(-2c)) \cong \mathsf{Ext}_{\mathbb{P}}(F_{0}, E(-2))$ 

Have  $\pi_! E(\bar{w}) = \pi_* E$ , so

 $\mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{!}E(-2c + \bar{w})) = \mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{*}E(-2c)) \cong \mathsf{Ext}_{\mathbb{P}}(F_{0}, E(-2))$ 

which by Serre duality for  $\mathbb{P}^1$  is dual to

 $\operatorname{Hom}_{\mathbb{P}}(E, F_0) \cong \operatorname{Hom}_{\mathbb{X}}(\pi_! E, \mathcal{F}).$ 

Have  $\pi_! E(\bar{w}) = \pi_* E$ , so

 $\mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{!}E(-2c + \bar{w})) = \mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \pi_{*}E(-2c)) \cong \mathsf{Ext}_{\mathbb{P}}(F_{0}, E(-2))$ 

which by Serre duality for  $\mathbb{P}^1$  is dual to

$$\operatorname{Hom}_{\mathbb{P}}(E, F_0) \cong \operatorname{Hom}_{\mathbb{X}}(\pi_! E, \mathcal{F}).$$

As coh X is hereditary, apply  $\text{Hom}_X(\mathcal{F}, -)$  to standard presentation for  $\mathcal{E}(-2c + \bar{w})$  to get surjection

$$\Psi\colon \operatorname{Ext}_{\mathbb{P}}(F_0, E_0(-2)) \oplus \bigoplus_{i,p} \operatorname{Ext}_{\mathbb{P}}(F_{p_{X_i}}, E_{p_{X_i}}(-2)) \twoheadrightarrow \operatorname{Ext}^1_{\mathbb{X}}(\mathcal{F}, \mathcal{E}(-2c + \bar{w})).$$

Set  $\omega = -2c + \bar{w}$  in  $\mathbb{L}$ . Have

$$\mathsf{Ext}_{\mathbb{P}}(F_0, E_0(-2)) \oplus \bigoplus_{i,p} \mathsf{Ext}_{\mathbb{P}}(F_{p_{X_i}}, E_{p_{X_i}}(-2)) \xrightarrow{\Psi} \mathsf{Ext}_{\mathbb{X}}(\mathcal{F}, \mathcal{E}(\omega))$$

$$\mathsf{Hom}_{\mathbb{P}}(E_0,F_0)\oplus \bigoplus_{i,p}\mathsf{Hom}_{\mathbb{P}}(E_{\rho_{X_i}},F_{\rho_{X_i}}) \longleftrightarrow \mathsf{Hom}_{\mathbb{X}}(\mathcal{E},\mathcal{F})$$

#### Theorem

Have bifunctorial and shift invariant perfect pairing

$$\langle -, - \rangle_{\mathbb{X}} \colon \operatorname{Hom}_{\mathbb{X}}(\mathcal{E}, \mathcal{F}) \times \operatorname{Ext}_{\mathbb{X}}(\mathcal{F}, \mathcal{E}(\omega)) \to k$$

called the Serre pairing, such that

$$\langle f, \Psi(\eta_0, \eta_{px_i}) \rangle_{\mathbb{X}} = \langle f_0, \eta_0 \rangle_{\mathbb{P}} + \sum_{i, p} \langle f_{px_i}, \eta_{px_i} \rangle_{\mathbb{P}}.$$

Take  $\mathcal{E} \in \text{loc } \mathbb{X}$ . Then  $\sigma_i \colon E_0(-h_i) \to E_0$  is injective with cokernel the fibre  $E_0[a_i]$  of  $E_0$  at  $a_i$ . Note  $E_0[a_i] \cong S_{a_i}^r$  for  $r = \text{rank } \mathcal{E}$ .

Also,  $\kappa(a_i) = \operatorname{End}(S_{a_i})$  is the residue field, and  $\operatorname{add} S_{a_i} \cong \operatorname{mod} \kappa(a_i)$ .

Take  $\mathcal{E} \in \text{loc } \mathbb{X}$ . Then  $\sigma_i \colon E_0(-h_i) \to E_0$  is injective with cokernel the fibre  $E_0[a_i]$  of  $E_0$  at  $a_i$ . Note  $E_0[a_i] \cong S_{a_i}^r$  for  $r = \text{rank } \mathcal{E}$ .

Also,  $\kappa(a_i) = \operatorname{End}(S_{a_i})$  is the residue field, and  $\operatorname{add} S_{a_i} \cong \operatorname{mod} \kappa(a_i)$ . Set  $V_{i,p}$  to be cokernel of  $E_0(-h_i) \rightarrow E_{px_i}$ . Get exact commutative



Take  $\mathcal{E} \in \text{loc } \mathbb{X}$ . Then  $\sigma_i \colon E_0(-h_i) \to E_0$  is injective with cokernel the fibre  $E_0[a_i]$  of  $E_0$  at  $a_i$ . Note  $E_0[a_i] \cong S_{a_i}^r$  for  $r = \text{rank } \mathcal{E}$ .

Also,  $\kappa(a_i) = \operatorname{End}(S_{a_i})$  is the residue field, and  $\operatorname{add} S_{a_i} \cong \operatorname{mod} \kappa(a_i)$ . Set  $V_{i,p}$  to be cokernel of  $E_0(-h_i) \rightarrow E_{px_i}$ . Get exact commutative

Yields flag of  $\kappa(a_i)$ -vector spaces inside fibre  $E_0[a_i]$ 

$$0 = V_{i,w_i} \subseteq \cdots \subseteq V_{i,1} \subseteq V_{i,0} = E_0[a_i]$$

Call  $(E_0, V)$  a parabolic sheaf on  $\mathbb{P}^1$ . Arise naturally in various contexts

#### Theorem

Have an equivalence of exact categories par  $\mathbb{P}^1 \cong \operatorname{loc} \mathbb{X}$ .

Theorem

Have an equivalence of exact categories par  $\mathbb{P}^1 \cong \operatorname{loc} \mathbb{X}$ .

Idea of proof

Given (E, V), have

$$0 \longrightarrow \pi_! E \longrightarrow \pi_* E \longrightarrow \mathcal{F} \longrightarrow 0$$

with  $\mathcal{F}$  torsion and  $F_{px_i} = E_0[a_i]$  for 0 .

Theorem

Have an equivalence of exact categories par  $\mathbb{P}^1 \cong \operatorname{loc} \mathbb{X}$ .

Idea of proof

Given (E, V), have

$$0 \longrightarrow \pi_! E \longrightarrow \pi_* E \longrightarrow \mathcal{F} \longrightarrow 0$$

with  $\mathcal{F}$  torsion and  $F_{px_i} = E_0[a_i]$  for 0 .The flags <math>V determine torsion subsheaf  $\mathcal{V} \subseteq \mathcal{F}$ , so can take pullback

$$\begin{array}{cccc} 0 & \longrightarrow & \pi_{!}E & \longrightarrow & \mathcal{E} & \longrightarrow & \mathcal{V} & \longrightarrow & 0 \\ & & & & & & \downarrow & & \\ 0 & \longrightarrow & \pi_{!}E & \longrightarrow & \pi_{*}E & \longrightarrow & \mathcal{F} & \longrightarrow & 0 \end{array}$$

# Tilting sheaves

#### Theorem

Have torsion sheaves  $\mathcal{T}_{ip} \in tor_{a_i} \mathbb{X}$  giving tilting sheaf

$$\mathcal{T} = \mathcal{O}(-c) \oplus \mathcal{O} \oplus igoplus_{i,p} \mathcal{T}_{ip}$$

Its endomorphism algebra is a squid (+ relations)

$$(1,1) \longrightarrow (1,2) \longrightarrow \cdots \longrightarrow (1,w_{1}-1)$$

$$\circ \underbrace{\xrightarrow{(m,1)}}_{(h_{2},1)} (2,1) \longrightarrow (2,2) \longrightarrow \cdots \longrightarrow (2,w_{2}-1)$$

$$(n,1) \longrightarrow (n,2) \longrightarrow \cdots \longrightarrow (n,w_{n}-1)$$

# Hereditary categories

Up to derived equivalence, k-linear, hereditary abelian, noetherian categories admitting tilting object are

| finite | domestic | wild |
|--------|----------|------|
|        | tubular  |      |
|        | wild     |      |

Horizontal line: mod  $\Lambda$  for a fin. dim. hereditary algebra  $\Lambda$ .

Finite if Dynkin. Domestic if affine.

Vertical line:  $\operatorname{coh} \mathbb{X}$  for a weighted projective line  $\mathbb{X}$ .

Domestic if  $Q_*$  Dynkin. Tubular if  $Q_*$  affine.

# Thank you !