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Overview

Sheaves I
Connections I

The Deligne — Simpson Problem I
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Sheaves on P

Sheaves on P!

Fix field k. Projective line P! = Proj k[u, v] has open affine cover

Ut =P — {00} = Speck([s]
U~ =P — {0} = Speck[s]

where s = u/v.
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Sheaves on P

Sheaves on P!

Fix field k. Projective line P! = Proj k[u, v] has open affine cover
Ut =P — {00} = Speck([s]
U~ =P — {0} = Speck[s]

where s = u/v.

A coherent sheaf £ = (E*,E~; ¢) consists of

@ a finitely generated k[s]-module E™
@ a finitely generated k[s~]-module E~
@ a k[s,s ]-isomorphism 0: k[s,s7]® E~ =% k[s,s"|® ET

We call E* the charts and 6 the glue.
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Sheaves on P

Morphisms

A morphism f = (f*,f~): E — F consists of

@ a k[s]-linear map f*: ET — F*
@ a k[s]-linearmap f~: E- — F~
@ fitting into a commutative square

k[s,s7]® E~ —f>k[ss |®F~

16 e

k[s,s"]® ET e, k[s,s"]® F*
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Sheaves on P

Category coh [P

We obtain a k-linear category cohPl. This is furthermore

@ abelian, where

0 E F G 0
is exact provided it is exact on both charts

0 E+ F+ G* 0

@ with finite dimensional homomorphism and extension spaces
@ and is hereditary, so Ext?>(—, —) =0

@ and noetherian, so ascending chains stabilise.
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Sheaves on P

Examples

@ O(m) = (k[s], k[s™]; s™). Indecomposable, endomorphism ring k.
@ In general, for E = (E*;#), have shift E(m) = (E*;s™0).
Note, (E(m))(n) = E(m + n) for all m,n € Z. 7 — Aut(coh P!)
Can identify Hom(E, F) = Hom(E(m), F(m)).
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Sheaves on P

Examples

@ O(m) = (k[s], k[s"]; s™). Indecomposable, endomorphism ring k.
@ In general, for E = (E*;#), have shift E(m) = (E*;s™0).
Note, (E(m))(n) = E(m + n) for all m,n € Z. 7 — Aut(coh P!)
Can identify Hom(E, F) = Hom(E(m), F(m)).
@ Let o € k[u, v] be homogeneous of degree d. Define

ot =o(s,1)€k[s], o =o(l,s7) € k[s]

Multiplication by ¢* on E* gives morphism o: E — E(d).
Get natural transformation o: id — (d). k[u, v] — Zg(coh P!, (1))
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Sheaves on P

Examples

@ Every morphism O — O(d) is uniquely of the form o.
So Hom(O, O(d)) has dimension d + 1.

® Let o € k[u, v] be homogeneous of degree d. Get short exact
sequence

~
()

0—— O(—d) —25 0 S,

where S, = (k[s*]/(c%);id). Note
Sy(m) =2 S, for all m, and

So indecomposable <= ¢ = 7™ with 7 irreducible.
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Sheaves on P

Split torsion pair

@ Sheaf E is locally free if ET both free.
locP! is an exact subcategory.
Every locally free sheaf is uniquely a direct sum of O(m).
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Sheaves on P

Split torsion pair

@ Sheaf E is locally free if ET both free.
locP! is an exact subcategory.
Every locally free sheaf is uniquely a direct sum of O(m).
@ Sheaf E is torsion if ET both torsion.
tor P! is a Serre subcategory. closed under subquots, exts
Every torsion sheaf is uniquely @ Sym, o irreducible.
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Sheaves on P

Split torsion pair

@ Sheaf E is locally free if ET both free.
locP! is an exact subcategory.
Every locally free sheaf is uniquely a direct sum of O(m).

@ Sheaf E is torsion if ET both torsion.
tor P! is a Serre subcategory.
Every torsion sheaf is uniquely @ Sym, o irreducible.

@ Hom(torP!,locP!) = 0 = Ext(loc P!, tor P1).
@ Have functorial short exact sequence

0 EtOI’ E Eloc 0
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Sheaves on P

Torsion sheaves

Take a = (o) € Proj k[u, v]. Have Serre subcategory
tor, P! = add(Sym, m > 1)

It is a uniserial length category with unique simple S, .
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Sheaves on P

Torsion sheaves

Take a = (o) € Proj k[u, v]. Have Serre subcategory
tor, P! = add(Sym, m > 1)
It is a uniserial length category with unique simple S, .

Have decomposition

tor P! = \/ tor, P*
acP

so no homomorphisms or extensions between sheaves supported at distinct
points.
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Sheaves on P

Grothendieck group

The Grothendieck group Ko(cohP!) is Z2, where

[O(m)] = (1,m) and [S,] = (0,dego).

In general write [E] = (rank E, deg E). Note rank E = rank E*.
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Sheaves on P

Grothendieck group

The Grothendieck group Ko(cohP!) is Z2, where

[O(m)] = (1,m) and [S,] = (0,dego).
In general write [E] = (rank E, deg E). Note rank E = rank E*.
The Euler form

{E,F} = dimHom(E, F) — dim Ext'(E, F)

descends to bilinear form on Ko(coh P!)

{(r,d),(r',d)}y =r’' +rd — dr'.
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Sheaves on P

Extensions

Take E € cohP! and F € locP!. A short exact sequence

0 E M F 0

is split on charts, so M* = F= ¢ E*.

(5% 0)

v: kl[s,sT]® F" — k[s,s |® ET.
Write 7, € Ext(F, E) for the extension.

The glue is then of the form

for some
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Sheaves on P

Examples

Up to equivalence, every short exact sequence

0 —— O(—d) > M @] 0

is uniquely of the form M* = k[s¥]? with glue

<1 0d> , yespan{s_,s 2 ... s'79)

v s

The extension

(vmum)t

0 — O(—2m) o(=mp 2 o 0

corresponds to 7 = s~ .
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Sheaves on P

Serre duality

Take E € cohP!, F € locP!, and short exact sequence

0 —— E(-2) M F 0

Let M have charts M* = F* @ E* and glue

<¢ 0 >, v: k[s,sT|® F" — k[s,s |® ET.

Yo 526
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Sheaves on P

Serre duality

Take E € cohP!, F € locP!, and short exact sequence

0 —— E(-2) M F 0

Let M have charts M* = F* @ E* and glue
¢ 0 v:k[s,sT]® FT — k[s,s |® ET
’YQS 5—29 9 . 9 9 .
Given f: E — F, have f*: k[s,s7|® ET — k[s,s"|® FT

so fTy € End(k[s,s"] ® FT) = M,(k[s,s"]), where r = rank F.
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Sheaves on P

Serre duality

Take E € cohP!, F € locP!, and short exact sequence

0 —— E(-2) M F 0

Let M have charts M* = F* @ E* and glue

(j; 5_020> , v:k[s,sT|®@F" — k[s,s |® ET.

Given f: E — F, have f*: k[s,s7|® ET — k[s,s"|® FT

so fTy € End(k[s,s"] ® FT) = M,(k[s,s"]), where r = rank F.

Then tr(fTv) € k[s,s™], and restr(f*v) € k (coefficient of s7).
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Sheaves on P

Serre duality

Obtain pairing

(—,—): Hom(E, F) x Ext(F, E(-2)) — k,
(f,ny) = restr(f‘“y).
for F € locPL.

Theorem

This extends to a bifunctorial and shift invariant perfect pairing
(—,—): Hom(E, F) x Ext(F,E(-2)) — k

on all of coh P!, called the Serre pairing.
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Sheaves on X

Weighted projective lines

A weighted projective line X consists of a set of points ay,...,a, € P!
having weights wy,...,w, € N.

We construct a category coh X sharing many of the nice properties of
coh P!

@ k-linear, hereditary abelian, noetherian

@ finite dimensional homomorphisms and extensions

@ split torsion pair (tor X, loc X)

@ torX =\/,cptor, X uniserial Serre subcategory

® Serre duality

but now tor, X has w; simple objects.
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Sheaves on X

Periodic functors

Fix representatives a; = (0;) € Proj k[u, v]. Set h; = dego;.

Let Z" have standard basis x;. Poset where d > 0 provided d = ), dix;
and d; > 0 for all /.
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Sheaves on X

Periodic functors

Fix representatives a; = (0;) € Proj k[u, v]. Set h; = dego;.

Let Z" have standard basis x;. Poset where d > 0 provided d = ), dix;
and d; > 0 for all /.

A functor £: (Z™)°P — coh P! is given by

@ a sheaf E; € cohP! for all d € Z"
@ a unique morphism ¢4 .: Eqie — E4 for all d,e € Z" with e > 0.
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Sheaves on X

Periodic functors

Fix representatives a; = (0;) € Proj k[u, v]. Set h; = dego;.

Let Z" have standard basis x;. Poset where d > 0 provided d = ), dix;
and d; > 0 for all /.

A functor £: (Z™)°P — coh P! is given by

@ a sheaf E; € cohP! for all d € Z"

@ a unique morphism ¢4 .: Eqie — E4 for all d,e € Z" with e > 0.
Call & periodic with respect to (o, w) if

@ Eg-wx = Ea(hi)

@ Gd—wixi,e = Pd,e as maps Eqye(hi) — Eq(h;)
(&) ¢d7WiXi = 0j: Ed(—h,') — Ed.
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Sheaves on X

Periodic functors

A morphism f: £ — F is a natural transformation of functors.
Call f periodic if fy_,,,. = fq.

Define coh X to be the subcategory of periodic functors with periodic
morphisms. Independent of choice of representatives o;

This is a k-linear abelian category with finite dimensional homomorphism
and extension spaces.
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Sheaves on X

Examples

Take n =1, o € k[u, v] irreducible, degree h, w = 2.
A coherent sheaf £ € coh X is given by

C P B = Ey(—h) 2 B2 By P ELy = Ei(h)
such that ¢109 = 0 = ¢g¢p1 Matrix factorisations

Special case
n=1, o0 = u®+ v? irreducible over k, w = 2.

u v

- — O(—2)?

This is indecomposable with endomorphism ring k[t]/(t? + 1).

O(-1)? %) s ‘) QLR — -~
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Example

n =2, o, 7 irreducible of degree 1, wy =3, wp = 2.

Sh:

eaves on X

A sheaf £ € coh X is a periodic array

~

— Ep(—2) —— Exx(—1) —— Ex(

~

— 5T Bay EA

m— Eo(—].)

1

N

o
. — |

v ~

v ~

19/39



Sheaves on X

Sheaves on X

The definition of coh X is over-specified. The forgetful functor restricting a
sheaf £ to the axes in Z" is fully faithful.

So, just need to specify a sheaf Ey € cohP! and an n-tuple of functors
& 7°P — coh P!, periodic with resepect to (o, w;), satisfying Eio = Eo.

20/39



Sheaves on X

Sheaves on X
The definition of coh X is over-specified. The forgetful functor restricting a
sheaf £ to the axes in Z" is fully faithful.

So, just need to specify a sheaf Ey € cohP! and an n-tuple of functors
& 7°P — coh P!, periodic with resepect to (o, w;), satisfying Eio = Eo.

The advantage is that have all shifts.
For d' € Z" define £(d’) with (£(d’))yd = Eg—ar. Note

E(d)(d") =E&(d" +d")

Also have shift £(c) with (£(c))q = E4(1). Then E(wix;) = E(hjc).
These give shift group

L=2Z"& ZC/(W,'X,‘ — h,'C).

Group homomorphism L — Aut(coh X)
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Sheaves on X

Recollement

Have exact functor

7. cohX — coh P, &€ — K.

Admits exact and fully faithful left and right adjoints, m and m,.

Set w=> ,(wj—1)x; € Z". Then for 0 < d < w have

(W!E),d =E and (W*E)d =E
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Sheaves on X
Recollement

Have exact functor

7. cohX — coh P, &€ — K.

Admits exact and fully faithful left and right adjoints, m and m,.

Set w=> ,(wj—1)x; € Z". Then for 0 < d < w have
(W!E),d =E and (W*E)d =E
Theorem
We have
(mE)(w) = 7.E.
Also for all i > 0 have

Exti(mE, F) = Exth(E,Fy) and Exth(F,m.E) = Exth(Fo, E)
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Sheaves on X

Locally free sheaves

@ Sheaf & is locally free if each E, € locP!.
locX is an exact subcategory.

@ If £ € locX, then rank Ey is constant.

@ An invertible sheaf is a locally free sheaf of rank one.
For example O = Ox = mOp.
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Sheaves on X

Locally free sheaves

@ Sheaf & is locally free if each E, € locP!.
locX is an exact subcategory.

@ If £ € locX, then rank Ey is constant.

@ An invertible sheaf is a locally free sheaf of rank one.
For example O = Ox = mOp.

@ Every locally free sheaf is filtered by invertible sheaves.

® Every invertible sheaf is uniquely O(d) for d € L.
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Sheaves on X

Torsion sheaves

@ Sheaf & is torsion if each E; € tor PL.
tor X is a Serre subcategory.

@ For a € P! have Serre subcategory
tor, X = {& | E4 € tor, Pl}.

It is a uniserial length category.
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Sheaves on X

Torsion sheaves

@ Sheaf & is torsion if each E, € tor P!,
tor X is a Serre subcategory.

@ For a € P! have Serre subcategory
tor, X = {& | E4 € tor, Pl}.

It is a uniserial length category.
@ tor,, X has w; simple objects Sj,

0 —— O((p—1)x;) —— O(pxi) Sip

Otherwise tor, X 22 tor, P!, with unique simple mS,.

@ Have decomposition tor X = \/__p tor, X.
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Sheaves on X

Split torsion pair

Have Hom(tor X, loc X) = 0 = Ext(loc X tor X).

Have functorial short exact sequence

0 — &Eor —— & —— Eoe —— O

The category coh X is hereditary and noetherian.
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Sheaves on X

Examples

Previous example: n=1, 0 = v®> + v?, w = 2.
Have short exact sequence
0 — mO > £ > 17,0 —— 0
pos (0.1 (L0)
2x 0 —— O(-2) % 0(-2)2 —= 0(-2) —— 0
H [C2
x 0 —— 0(-2) Y o1 T o , 0
0 0 y O ©D , 02 LN > 0

25/39



Sheaves on X

Examples

n=1, o of degree h, w = 3.

0 —— O(—x) > O

pos
3x 0 —— O(—2h) —=— O(—h)

2x 0 —— O(—h)

~

<+
o

~

~
o

2
<

~

~

~
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Sheaves on X

Examples

n=1, o of degree h, w = 3.

0 > O

pos

O(—h) > 0 >
|

O(—h) > 0 >
I !

> O > S, >
|
(@) > 0 >
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Sheaves on X

Examples

n=1, o of degree h, w = 3.

0 — O(x) —— O(2x) — Spp —— 0

pos

3x 0 —— O(—h) === O(—h) > 0 > 0
| P

2x 0 —— O(—h) Z O > Sy > 0

X 0O —— (£ 0 > 0 > 0
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Sheaves on X

Grothendieck group

Recall: Every locally free sheaf has a well-defined rank. Every torsion sheaf
has rank zero.

We have Ky(coh X) = Z2+2i(wi=1) where

[€] = (rank &, deg Eg, deg Epy, ).

29/39



Sheaves on X

Grothendieck group

Recall: Every locally free sheaf has a well-defined rank. Every torsion sheaf
has rank zero.

We have Ky(coh X) = Z2+2i(wi=1) where

[€] = (rank &, deg Eg, deg Epy, ).

Alternative basis 0, ey, ejp such that

[€] = (deg Ep)D + dim &,

where
dim & = (rank &)e. + Z 4 (deg Epx; — deg )€
i,p
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Sheaves on X

Euler form

We view dim & as a dimension vector for (valued) quiver

(1,1) «+— (1,2) +— - «— (L,wmy — 1)

o

Q LD o) (22) e — 2w —1)

@J D

(n,1) «— (n,2) «— -+ «— (n,w, — 1)

Theorem

The Euler form {&, F} = dimHom(&, F) — dim Ext(€, F) descends to a
bilinear form on 7.0 & Ko(Q.) given by

{38+X1 b8—|—y} = {X?y}Q* + x:b — ay..

30/39



Sheaves on X

Standard resolution

Recall: restriction to axes is fully faithful.

A morphism f: & — F is completely determined by commutative diagrams

Eo(—hi) Eoy, E, Eo
) PR
Fo(—hi) Fox; Fs; Fo
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Sheaves on X
Standard resolution

Recall: restriction to axes is fully faithful.

A morphism f: & — F is completely determined by commutative diagrams

Eo(—hi) Eoy, E, Eo
) PR
Fo(—hi) Fox; Fs; Fo

Obtain exact sequence

0 —— Homx(&, F) —— Homp(Ey, Fo) ® G},’p Homp(Epx;, Fpx;)

—— @) 4 Home(Eqq, Fig-1)x,)

where 0 < p<w;and 0 < g < w;.
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Sheaves on X

Standard resolution

Can reinterpret this as Hom(—, F) applied to a standard presentation of £.
This is analogous to standard resolution for quiver representations.

Theorem
Have standard presentation

@i,ququ((q_ l)X,') — W!EOEB@,',,,W!EpX,-(PXi) — & —0

Can describe kernel explicitly
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Sheaves on X

Serre duality

Have m E(w) = m.E, so

Extx(F, mE(—2c + w)) = Extx(F, m«E(—2c¢)) = Extp(Fo, E(—2))
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Sheaves on X

Serre duality

Have m E(w) = m.E, so
Eth(]:, 7T!E(—2C + VT/)) = Extx(}', 7T*E(—2C)) = EXt]p(Fo, E(—2))
which by Serre duality for P! is dual to

Homp(E, Fo) = HomX(mE, ./.")
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Sheaves on X

Serre duality

Have m E(w) = m.E, so
Eth(]:, 7T!E(—2C + VT/)) = Extx(}', 7T*E(—2C)) = EXt]p(Fo, E(—2))
which by Serre duality for P! is dual to

Homp(E, Fo) = HomX(mE, ./.")

As coh X is hereditary, apply Homx(F, —) to standard presentation for
E(—2c + w) to get surjection

V: Extp(Fo, Eo(—2)) ® @D Extr(Fox, Epx(—2)) — Exti(F, €(—2c + w)).
)p
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Sheaves on X

Serre duality

Set w = —2c + w in L. Have

Extp(Fo, Eo(—2)) & @; , Exte(Fpx, Epx(—2)) ——» Extx(F,E(w))

Homp(Eo, Fo) ® €, , Homp(Epx;, Fpx) = Homx(E, F)
Theorem
Have bifunctorial and shift invariant perfect pairing
(—,—)x: Homx(&,F) x Extx(F,E(w)) — k

called the Serre pairing, such that

(F, W (10, T ))x = (fo, m0)e + D (Foxi T ) -

i,p
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Motivation

Parabolic sheaves

Take € € locX. Then o;: Eg(—h;) — Ep is injective with cokernel the
fibre Eo[aj] of Ep at a;. Note Ep[a;] = 5] for r = rank €.

Also, k(aj) = End(S,,) is the residue field, and add S,, = mod x(a;).
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Motivation

Parabolic sheaves

Take € € locX. Then o;: Eg(—h;) — Ep is injective with cokernel the
fibre Eo[aj] of Ep at a;. Note Ep[a;] = 5] for r = rank €.

Also, k(aj) = End(S,,) is the residue field, and add S,, = mod x(a;).

Set Vi, to be cokernel of Eo(—h;) — Ep,. Get exact commutative

0—— Eo(—h,‘) pr,- \/,'7p 0
0—— Eo(—h,') EQ \/,'70 0
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Motivation

Parabolic sheaves

Take € € locX. Then o;: Eg(—h;) — Ep is injective with cokernel the
fibre Eo[aj] of Ep at a;. Note Ep[a;] = 5] for r = rank €.

Also, r(aj) = End(S,;) is the residue field, and add S,, = mod k(a;).

Set Vi, to be cokernel of Eo(—h;) — Ep,. Get exact commutative

0—— Eo(—h,‘) pr,- \/,'7p 0
0—— Eo(—h,') Eo \/,'70 0

Yields flag of x(a;)-vector spaces inside fibre Egp[a;]

0= Viw C--- C Vi1 C Vio = Eola]

Call (Eg, V) a parabolic sheaf on P!. Arise naturally in various contexts
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Parabolic sheaves

Have an equivalence of exact categories par P! = loc X. I
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Motivation

Parabolic sheaves

Theorem

Have an equivalence of exact categories parP* = loc X.

Idea of proof
Given (E, V), have

0O—— mE — m,E — F —— 0

with F torsion and Fp,, = Egla;] for 0 < p < w;.
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Motivation
Parabolic sheaves

Theorem

Have an equivalence of exact categories parP* = loc X.

Idea of proof
Given (E, V), have

0O—— mE — m,E — F —— 0

with F torsion and Fp,, = Egla;] for 0 < p < w;.
The flags V' determine torsion subsheaf V C F, so can take pullback

0 —— mE & % > 0

A

0O—— mE — myE —— F —— 0
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Motivation

Tilting sheaves

Theorem
Have torsion sheaves Tj, € tor,, X giving tilting sheaf
T=0(-c)e0aPTp,

i,p

Its endomorphism algebra is a squid (+ relations)

(1,1) — (1,2) — -+ — (1,wg — 1)

D
o Pl Wl 1y L (2,2) — - —s (2w — 1)
~_
%
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Motivation

Hereditary categories

Up to derived equivalence, k-linear, hereditary abelian, noetherian
categories admitting tilting object are

finite | domestic wild

tubular

wild

Horizontal line: mod A for a fin. dim. hereditary algebra A.
Finite if Dynkin. Domestic if affine.

Vertical line: coh X for a weighted projective line X.
Domestic if Q. Dynkin. Tubular if Q. affine.
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Thank you !
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