Groupoids from moduli space of quadratic differentials on Riemann surfaces

Han Zhe

Henan University

ICRA XXI. Shanghai Jiaotong University 2024.7.31-8.9

Motivations

Theorem (Bridgeland-Smith)

Let D be the Calabi-Yau 3 triangulated categories associated with a marked surface (**S***,* **M**). There is an isomorphism of complex manifolds/orbifolds

 $\mathsf{Stab}^\circ(\mathcal{D})/\mathsf{Aut}^\circ(\mathcal{D})\cong \mathsf{Quad}_\heartsuit(\mathsf{S}, \mathsf{M})$

Aim: Understand the topology/fundamental groupoid of Stab*◦* (*D*)*/* Aut*◦* (*D*) via moduli space of (GMN) meromorphic quadratic differentials on Riemann surface. Recent developments: [Haiden-Katzarkov- Kontsevich],

[King-Qiu],[Barbieri- Möller-Qiu-So], [Christ-Haiden-Qiu],[Qiu24].

Quadratic differentials

Definition

Let *S* be a Riemann surface. A *meromorphic quadratic differential ϕ* on *S* is a meromorphic section of the line bundle $\omega_S^{\otimes 2}$, where $\omega_{\mathcal{S}}$ is the canonical bundle of *S*. In a local coordinate *z* on *S*, we have that

 $\phi = \psi(z) dz^{\otimes 2}$

where *ψ*(*z*) is a meromorphic function.

Example

A differential on Riemann sphere $\mathbb{P}^1,$

$$
\frac{(az^2+bz+c)}{z^2(z-1)^2}dz^2, a, c \in \mathbb{C}^*
$$

there are 3 double poles at $0, 1, \infty$ and 2 zeros.

The moduli space

Remark

Two quadratic differentials ϕ_1, ϕ_2 on surfaces S_1 and S_2 are equivalent if there is a biholomorphism $f: S_1 \to S_2$ such that $f * (\phi_2) = \phi_1$.

For Riemann surfaces of genus g, we denote the moduli space (under equivalence of quadratic differentials) quadratic differentials by *Qg.* There is a stratification of \mathcal{Q}_g by the orders of zeros and poles

$$
\mathcal{Q}_g=\bigcup \mathcal{Q}_g(k_1,\ldots,k_m,-l_1,\ldots-l_n)
$$

subject to $\sum k_i - \sum l_j = 4g - 4$.

Some strata $(z^2 - a)dz^2$

Horizontal foliation of quadratic differentials

Definition

The horizontal trajectories of ϕ on *S* is arc of $S \setminus (Z(\phi) \cup P(\phi))$ defined by

$$
\Im \int^z \sqrt{\phi(z)} dz = constant
$$

In general, to determine a horizontal trajectory of a quadratic differential through some point is to solve the differential equation

$$
\phi(z(t))z'(t)^2>0, \text{ or } z'(t)=\frac{\overline{\sqrt{\phi(z)}}}{|\sqrt{\phi(z)}|^2}.
$$

Local foliations/trajectories

The global trajectories

Figure: The trajectories of $\phi(z) = \frac{(z^2 - z + 1)^2}{z^4(z-1)^2}$ *z* ⁴(*z−*1) ² *dz*²

A.Alvarez-Parrilla etc.

On the geometry, flows and visualization of singular complex analytic vector fields on Riemann surfaces, (arXiv:1811.04157)

Han Zhe (Henu) **Groupoid Groupoid 6 / 30**

The global trajectories

The global trajectory of a quadratic differential *ϕ* is given by one of the following[Strebel, Bridgeland-Smith]:

- (1) *saddle trajectories* tend zeros of ϕ in both directions;
- (2) *separating trajectories* tend a zero or simple pole and the other to a pole in *Pol≥*2(*ϕ*);
- (3) *generic trajectories* tend a pole in *Pol≥*2(*ϕ*) in both directions;
- (4) *closed trajectories* are simple closed curves in S° .
- (5) *divergent trajectories* are recurrent in at least one direction.

GMN differentials

Definition (Bridgeland-Smith)

A *GMN(Gaiotto-Moore-Neitzke) differential* (*S, ϕ*) is a meromorphic quadratic differential *ϕ* on *S* such that

- (1) ϕ has simple zeros,
- (2) ϕ has at least one pole,
- (3) *ϕ* has at least one finite critical point.

Example

The quadratic differential $\phi_1(z)=\frac{(z-1)(z+1)}{z^2}dz^{\otimes 2}$ is a GMN differential on Riemann sphere. But the differential $\phi_2(z) = \frac{(z-1)^2}{z}$ *z dz⊗*² is not a GMN differential, since $z = 1$ is a double zero.

Moduli spaces of GMN differentials

A collection of orders of poles is called a polar type.

Definition (Brigeland-Smith)

Given a connected compact Riemann surface *S* of genus *g* and a polar type $\mathbf{m} = \{m_i\}$, there is a moduli space Quad(g , **m**)

 $\{[S, \phi] | \phi \text{ GMN differential with polar type } \mathbf{m}\},$

where $[S, \phi]$ is the equivalence-class of (S, ϕ) .

Marked surfaces and triangulation

Trajectories and triangulations

Example

The differential $(z^3 + \textit{uz} + \textit{v})dz^2$ on Riemann sphere has 3 zeros (counting multiplicity) and a pole of order 7 at *∞*.

Framed quadratic differentials

Definition

An (**S***,* **M**)-*framed quadratic differential* (*X, ϕ, f*) is a Riemann surface *X* with GMN differential ϕ , equipped with a diffeomorphism $f\colon\mathbf{S}\to\mathsf{X}^\phi,$ where X^ϕ is the associated smooth marked surface of (X,ϕ) , preserving the marked points and punctures.

FQuad(**S***,* **M**) is the space of equivalent classes of (**S***,* **M**)-framed quadratic differentials.

Theorem(Bridgeland-Smith, King-Qiu, Allegretti)

The space FQuad(**S***,* **M**) is a complex manifold.

KORK@RKERKER E 1990

Differentials associated with marked surfaces

Remark

The quadratic differentials in FQuad(**S***,* **M**) can have different polar types. Because there are different choices, simple pole or double pole, at each puncture.

$$
\mathsf{FQuad}(\mathbf{S}, \mathbf{M}) = \bigcup_{(g, \mathbf{m})} \mathsf{FQuad}(g, \mathbf{m})
$$

where $g = g(\mathsf{S})$ and $m_i \in \{1,2\}$ for each puncture and m_i is 2 plus the number of marked points on a boundary. If there are no punctures, then

$$
FQuad(S, M) = FQuad(g, m)
$$

$Quad(\bullet)$ and $FQuad(\bullet)$

Remark

Quad(●) ≈ {
$$
(z^3 + az + b)dz^2 | 4a^2 + 27b^3 \neq 0
$$
}/ℤ₅.

Note that $MCG(\bullet) = \mathbb{Z}_5$.

 $\mathsf{FQuad}(\bullet) \cong \{(z^3 + az + b)dz^2 \mid 4a^2 + 27b^3 \neq 0\}.$

Stratification of FQuad(**S***,* **M**)

Let r_{ϕ} be the the number of divergent trajectories, s_{ϕ} the number of saddle trajectories, and *t^ϕ* the number of separating trajectories, $r_{\phi} + 2s_{\phi} + t_{\phi} = k := 3|Zer(\phi)|$. Define subsets

$$
B_I = \{ \phi \in \mathsf{FQuad}(g, \mathbf{m}) \mid t_{\phi} \geq k - l \}
$$

Bridgeland-Smith

Han Zhe (Henu)

The subsets *B^l ⊂* FQuad(*g,* **m**) form an increasing chain of dense open subsets

$$
B_0=B_1\subset B_2\subset\cdots\subset B_k=\mathsf{FQuad}(g,\mathbf{m})\subset \mathsf{FQuad}(\mathbf{S},\mathbf{M}).
$$

Define $F_p = B_p \setminus B_{p-1}$ for $p \ge 1$ and $F_0 = B_0$, then

 $\mathsf{FQuad}(g, \mathbf{m}) = | \ |F_p.$

An example of *Fquad*(**S***,* **M**)

Figure: Differentials *^z−^a z* ² *dz*² in FQuad(0*, {*2*,* 3*}*)

A flip of ordinary triangles

Figure: Two flips (some orientation on walls)

Flips of self-folded trianlge

Figure: a pop

Pop-n-flip groupoid

Definition

The *pop-n-flip graph* of (**S***,* **M**) is an oriented graph whose vertices are triangulations of (**S***,* **M**) and whose arrows are the forward flips and pops between triangulations. We denote by PFG(**S***,* **M**) the pop-flip graph of (**S***,* **M**).

The pop-n-flip groupoid of a marked surface

Definition

Given a marked surface (**S***,* **M**), the *pop-n-flip groupoid PFG*(**S***,* **M**) of (**S***,* **M**) is the quotient of the path groupoid of PFG(**S***,* **M**) by the following relations:

- **3** Square relations $x^2 = y^2$.
- **2** Pentagon relations $x^2 = y^3$.
- **3** Dumbbell relations $x^2y = yx^2$.
- ⁴ Hexagon relations *aeb* = *cfd*.

The relations in the groupoid

The cell structure

The open subset B_0 is the disjoint union of the cells $U(T)$ for **T** *∈* PFG(**S***,* **M**),

$$
\mathcal{B}_0 = \bigsqcup_{\textbf{T} \in PFG(\textbf{S},\textbf{M})} \mathcal{U}(\textbf{T}),
$$

the subset $U(T)$ consists of differentials in $B_0 \subseteq FQuad(S, M)$ which have the triangulation **T** on (**S***,* **M**).

The periods of the saddle classes corresponding to the edges *γ* give the coordinate (*uγ*)*γ∈***T**, and

$$
U(T) \cong \mathbb{H}^n,
$$

where \mathbb{H} is the strict upper half plane and $n = |T|$.

An example of cell structure

The embedding in FQuad(**S***,* **M**)

Han Zhe (Henu) **Communist Communist Comm**

Lemma

There is a canonical embedding

 ρ **s** : PFG(**S***,* **M**) \rightarrow FQuad(**S***,* **M**)

whose image is dual to $B_2(S)$. More precisely, the embedding is unique up to homotopy, satisfying

- for each triangulation **T** *∈* PFG(**S**), the point *ρ***S**(T) is in U(**T**),
- for each flip $\mu\colon \mathbf{T}\to \mathbf{T}^\sharp_\gamma$, the path $\rho_{\mathbf{S}}(\mu)$ is in $\mathrm{U}(\mathrm{T}) \ \cup \ \partial_\gamma^\sharp \mathrm{U}(\mathsf{T}) \ \cup \ \mathrm{U}(\mathsf{T}^\sharp_\gamma)$, connecting $\rho_\mathsf{S}(\mathrm{T})$ to $\rho_\mathsf{S}(\mathsf{T}^\sharp_\gamma)$ and intersecting $\partial_\gamma^\sharp \mathrm{U}(\mathrm{T})$ at exactly one point.

Different groupoids

The inclusions *B*² *⊆ B*⁴ *⊆* FQuad(**S***,* **M**) induce maps between their fundamental goupoids

$$
\iota_4\colon \Pi_1(B_4)\to \Pi_1(\mathsf{FQuad}(\mathsf{S},\mathsf{M})),
$$

and

$$
\iota_4^{(2)}\colon \Pi_1(B_2)\to \Pi_1(B_4).
$$

Note that the path groupoid of PFG(**S***,* **M**) is equivalent to the fundamental groupoid $\Pi_1(B_2)$.

Lemma (after Bridgeland-Smith) The embedding ρ **s** induce a surjective map $\eta: \Pi_1(B_2) \to \mathcal{PFG}(S,M)$).

The main result

Theorem(King-Qiu-H)

There is an equivalence between pop-n-flip groupoid *PFG*(**S***,* **M**) and groupoid Π1*B*4.

Theorem (need to prove)

There is an equivalence of groupoids Π_1 FQuad(S *, M*) \cong $\mathcal{PFG}(S, M)$.

The groupoid of $FQuad(\bullet)$

Thank You!