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Motivations

Theorem (Bridgeland-Smith)
Let D be the Calabi-Yau 3 triangulated categories associated with a
marked surface (S,M). There is an isomorphism of complex
manifolds/orbifolds

Stab◦(D)/Aut◦(D) ∼= Quad♡(S,M)

Aim: Understand the topology/fundamental groupoid of
Stab◦(D)/Aut◦(D) via moduli space of (GMN) meromorphic quadratic
differentials on Riemann surface.
Recent developments: [Haiden-Katzarkov- Kontsevich],
[King-Qiu],[Barbieri- Möller-Qiu-So], [Christ-Haiden-Qiu],[Qiu24].
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Quadratic differentials

Definition
Let S be a Riemann surface. A meromorphic quadratic differential ϕ on S
is a meromorphic section of the line bundle ω⊗2

S , where ωS is the canonical
bundle of S. In a local coordinate z on S, we have that

ϕ = ψ(z)dz⊗2

where ψ(z) is a meromorphic function.

Example
A differential on Riemann sphere P1,

(az2 + bz + c)
z2(z − 1)2 dz2, a, c ∈ C∗

there are 3 double poles at 0, 1,∞ and 2 zeros.
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The moduli space

Remark
Two quadratic differentials ϕ1, ϕ2 on surfaces S1 and S2 are equivalent if
there is a biholomorphism f : S1 → S2 such that f ∗ (ϕ2) = ϕ1.

For Riemann surfaces of genus g, we denote the moduli space (under
equivalence of quadratic differentials) quadratic differentials by Qg. There
is a stratification of Qg by the orders of zeros and poles

Qg =
∪

Qg(k1, . . . , km,−l1, . . .− ln)

subject to
∑

ki −
∑

lj = 4g − 4.
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Some strata (z2 − a)dz2
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Horizontal foliation of quadratic differentials

Definition
The horizontal trajectories of ϕ on S is arc of S \ (Z(ϕ) ∪ P(ϕ)) defined by

ℑ
∫ z √

ϕ(z)dz = constant

In general, to determine a horizontal trajectory of a quadratic differential
through some point is to solve the differential equation

ϕ(z(t))z′(t)2 > 0, or z′(t) =
√
ϕ(z)

|
√
ϕ(z)|2

.
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Local foliations/trajectories
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The global trajectories

Figure: The trajectories of ϕ(z) = (z2−z+1)2

z4(z−1)2 dz2

A.Alvarez-Parrilla etc.
On the geometry, flows and visualization of singular complex analytic
vector fields on Riemann surfaces, (arXiv:1811.04157)
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The global trajectories

The global trajectory of a quadratic differential ϕ is given by one of the
following[Strebel, Bridgeland-Smith]:
(1) saddle trajectories tend zeros of ϕ in both directions;
(2) separating trajectories tend a zero or simple pole and the other to a

pole in Pol≥2(ϕ);
(3) generic trajectories tend a pole in Pol≥2(ϕ) in both directions;
(4) closed trajectories are simple closed curves in S◦.
(5) divergent trajectories are recurrent in at least one direction.
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GMN differentials

Definition (Bridgeland-Smith)
A GMN(Gaiotto-Moore-Neitzke) differential (S, ϕ) is a meromorphic
quadratic differential ϕ on S such that
(1) ϕ has simple zeros,
(2) ϕ has at least one pole,
(3) ϕ has at least one finite critical point.

Example
The quadratic differential ϕ1(z) = (z−1)(z+1)

z2 dz⊗2 is a GMN differential on
Riemann sphere. But the differential ϕ2(z) = (z−1)2

z dz⊗2 is not a GMN
differential, since z = 1 is a double zero.
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Moduli spaces of GMN differentials

A collection of orders of poles is called a polar type.

Definition (Brigeland-Smith)
Given a connected compact Riemann surface S of genus g and a polar type
m = {mi}, there is a moduli space Quad(g,m)

{[S, ϕ] | ϕ GMN differential with polar type m},

where [S, ϕ] is the equivalence-class of (S, ϕ).
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Marked surfaces and triangulation

Example
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Trajectories and triangulations

Example
The differential (z3 + uz + v)dz2 on Riemann sphere has 3 zeros (counting
multiplicity) and a pole of order 7 at ∞.

a b c d
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Framed quadratic differentials

Definition
An (S,M)-framed quadratic differential (X, ϕ, f) is a Riemann surface X
with GMN differential ϕ, equipped with a diffeomorphism f : S → Xϕ,
where Xϕ is the associated smooth marked surface of (X, ϕ), preserving
the marked points and punctures.

FQuad(S,M) is the space of equivalent classes of (S,M)-framed quadratic
differentials.

Theorem(Bridgeland-Smith, King-Qiu, Allegretti)
The space FQuad(S,M) is a complex manifold.
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Differentials associated with marked surfaces

Remark
The quadratic differentials in FQuad(S,M) can have different polar types.
Because there are different choices, simple pole or double pole, at each
puncture.

FQuad(S,M) =
∪
(g,m)

FQuad(g,m)

where g = g(S) and mi ∈ {1, 2} for each puncture and mi is 2 plus the
number of marked points on a boundary. If there are no punctures, then

FQuad(S,M) = FQuad(g,m)
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Quad( ) and FQuad( )

Remark
Quad( ) ∼= {(z3 + az + b)dz2 | 4a2 + 27b3 ̸= 0}/Z5.

Note that MCG( ) = Z5.

FQuad( ) ∼= {(z3 + az + b)dz2 | 4a2 + 27b3 ̸= 0}.
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Stratification of FQuad(S,M)

Let rϕ be the the number of divergent trajectories , sϕ the number of
saddle trajectories, and tϕ the number of separating trajectories,
rϕ + 2sϕ + tϕ = k := 3|Zer(ϕ)|. Define subsets

Bl = {ϕ ∈ FQuad(g,m) | tϕ ≥ k − l}

Bridgeland-Smith

The subsets Bl ⊂ FQuad(g,m) form an increasing chain of dense open
subsets

B0 = B1 ⊂ B2 ⊂ · · · ⊂ Bk = FQuad(g,m) ⊂ FQuad(S,M).

Define Fp = Bp \ Bp−1 for p ≥ 1 and F0 = B0, then

FQuad(g,m) =
⊔

Fp.
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An example of Fquad(S,M)
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Figure: Differentials z−a
z2 dz2 in FQuad(0, {2, 3})
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A flip of ordinary triangles
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Figure: Two flips (some orientation on walls)
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Flips of self-folded trianlge
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Figure: a pop
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Pop-n-flip groupoid

Definition
The pop-n-flip graph of (S,M) is an oriented graph whose vertices are
triangulations of (S,M) and whose arrows are the forward flips and pops
between triangulations. We denote by PFG(S,M) the pop-flip graph of
(S,M).
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The pop-n-flip groupoid of a marked surface

Definition
Given a marked surface (S,M), the pop-n-flip groupoid PFG(S,M) of
(S,M) is the quotient of the path groupoid of PFG(S,M) by the following
relations:

1 Square relations x2 = y2.
2 Pentagon relations x2 = y3.
3 Dumbbell relations x2y = yx2.
4 Hexagon relations aeb = cfd.
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The relations in the groupoid
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The cell structure

The open subset B0 is the disjoint union of the cells U(T) for
T ∈ PFG(S,M),

B0 =
⊔

T∈PFG(S,M)

U(T),

the subset U(T) consists of differentials in B0 ⊆ FQuad(S,M) which have
the triangulation T on (S,M).
The periods of the saddle classes corresponding to the edges γ give the
coordinate (uγ)γ∈T, and

U(T) ∼= Hn,

where H is the strict upper half plane and n = |T|.
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An example of cell structure
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Figure: the flip and pop in FQuad±(S,M)
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The embedding in FQuad(S,M)

Lemma
There is a canonical embedding

ρS : PFG(S,M) → FQuad(S,M)

whose image is dual to B2(S). More precisely, the embedding is unique up
to homotopy, satisfying

for each triangulation T ∈ PFG(S), the point ρS(T) is in U(T),
for each flip µ : T → T♯

γ , the path ρS(µ) is in
U(T) ∪ ∂♯γU(T) ∪ U(T♯

γ), connecting ρS(T) to ρS(T♯
γ) and

intersecting ∂♯γU(T) at exactly one point.
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Different groupoids

The inclusions B2 ⊆ B4 ⊆ FQuad(S,M) induce maps between their
fundamental goupoids

ι4 : Π1(B4) → Π1(FQuad(S,M)),

and
ι
(2)
4 : Π1(B2) → Π1(B4).

Note that the path groupoid of PFG(S,M) is equivalent to the
fundamental groupoid Π1(B2).

Lemma (after Bridgeland-Smith)
The embedding ρS induce a surjective map

η : Π1(B2) → PFG(S,M)).
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The main result

Theorem(King-Qiu-H)
There is an equivalence between pop-n-flip groupoid PFG(S,M) and
groupoid Π1B4.

Theorem (need to prove)
There is an equivalence of groupoids Π1 FQuad(S,M) ∼= PFG(S,M).
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The groupoid of FQuad( )

Example

FQuad( ) = {ϕ(z) = (z3−3vz+2u)dz2 | u2−v3 ̸= 0}, (p, q) = (u/v, u2/v3)
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Thank You!
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