Frobenius extensions about centralized matrix rings

Haiyan Zhu

Zhejiang University of Technology

hyzhu@zjut.edu.cn

August 8, 2024 ICRA 21 @ Shanghai, China

> Joint work with Qikai Wang

Notations

 \mathbb{F} : a field

R, S: a unitary (associative) ring

Z(R): the center of R

 $M_n(R)$: the ring of $n \times n$ matrices over R

 $e_{i,j}$: the matrix units of $M_n(R)$

 $J_n(\lambda)$: the Jordan block $\lambda I_n + \sum_{i=1}^{n-1} e_{i,i+1}$ with $\lambda \in R$

 $\bigoplus_{i} J_{n_{i}}(\lambda_{n_{i}}): \quad \textit{diag}(J_{n_{1}}(\lambda_{n_{1}}), \cdots, J_{n_{i}}(\lambda_{n_{i}}), \cdots, J_{n_{s}}(\lambda_{n_{s}}))$

Introduction

Centralized matrix rings

Frobenius extensions

Introduction: centralized matrix ring

Definition

For $A \in M_n(R)$, we define the centralized matrix ring of A by

$$S_n(A,R) := \{B \in M_n(R) | AB = BA\}.$$

Examples

- Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $S_n(A, R) = R \ltimes R$ is a trivial extension of R by R.
- Let $A = \bigoplus_i J_{n_i}(\lambda)$ be a Jordan matrix with $J_{n_i}(\lambda) \in M_{s-i+1}(\mathbb{F})$, then $S_n(A,\mathbb{F})$ is isomorphic to the algebra given by the quiver with relations (Xi, Zhang, 2021):

$$\bullet \xrightarrow{\beta_1} \bullet \xrightarrow{\beta_2} \bullet \cdots \bullet \xrightarrow{\beta_{s-2}} \bullet \xrightarrow{\beta_{s-1}} \bullet \xrightarrow{\beta_{s-1}} \bullet , \beta_{s-1}\alpha_{s-1} = 0, \alpha_i\beta_i = \beta_{i-1}\alpha_{i-1}.$$

Haiyan Zhu (ZJUT) Frobenius extension August 8

4/19

Examples

• Let
$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$
, then

$$S_n(A,R) = \{B \in M_n(R) | b_{ij} = b_{n+1i,n+1j}, 1 \le i, j \le n\}$$

is the centrosymmetric matrix algebra which have significant applications in Markov processes, engineering problems and quantum physics (Datta, Morgera 1989; Weaver, 1985).

In particular,
$$S_2(A,R) = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
 and $S_3(A,R) = \begin{bmatrix} a & b & c \\ d & e & d \\ c & b & a \end{bmatrix}$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Introduction: Frobenius extension

Definition

• An extension of rings R/S is Frobenius if $\exists E \in \text{Hom}_{S-S}(R,S)$, x_i , $y_i \in R$ s.t. $\forall r \in R$

$$\sum_{i} x_{i} E(y_{i} r) = r = \sum_{i} E(r x_{i}) y_{i}.$$

 (E, x_i, y_i) is called a Frobenius system of the extension.

Introduction: Frobenius extension

Definition

• An extension of rings R/S is Frobenius if $\exists E \in \text{Hom}_{S-S}(R,S)$, x_i , $y_i \in R$ s.t. $\forall r \in R$

$$\sum_{i} x_{i} E(y_{i} r) = r = \sum_{i} E(r x_{i}) y_{i}.$$

 (E, x_i, y_i) is called a Frobenius system of the extension.

• Moreover, R/S is s separable Frobenius extension if $\exists d \in R$ such that $dS = Sd, \sum_i x_i dy_i = 1$.

Example (Kadison, 1999)

- ullet R/\mathbb{F} is a Frobenius extension with R a Frobenius \mathbb{F} -algebra.
- $\mathbb{Z}G/\mathbb{Z}H$ is a Frobenius extension with H a subgroup of G.
- The *G*-Galois extension is a separable Frobenius extension.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ○

Introduction: Motivation

Theorem (Xi, et al)

• $M_n(R)/S_n(A,R)$ is a separable Frobenius extension with

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

- If R has no zero-divisors and $A \in M_n(R)$ is similar to a Jordan-block matrix with all eigenvalues in Z(R), then $M_n(R)/S_n(A,R)$ is a separable Frobenius extension.
- For any $A \in M_n(\mathbb{F})$, $M_n(\mathbb{F})/S_n(A,\mathbb{F})$ is always a separable Frobenius extension.

Introduction: Motivation

In fact, R can be identified with the subring of $M_n(R)$ consisting of the "scalar matrices".

- $M_n(R)/S_n(A,R)$ and $S_n(A,R)/R$ are separable Frobenius extensions with $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ [Xi, Zhang,2020 and Kanzaki, 1981].
- Let S be the subalgebra of $M_4(\mathbb{F})$ with \mathbb{F} -basis consisting of the idempotents and matrix units: $e_1=e_{11}+e_{44}, e_2=e_{22}+e_{33}, e_{21},$ $e_{31}, e_{41}, e_{42}, e_{43}$. Then $M_4(\mathbb{F})/S$ is a separable Frobenius extension, but S/\mathbb{F} is not a Frobenius extension [Kadison, 1999].

Introduction: Motivation

Question

Is $S_n(A,R)/R$ always a separable Frobenius extension (short for "sF")?

Main result

Theorem (Wang-Zhu)

Let R be an algebra over an integral domain \mathbb{K} and $J = \bigoplus J_{n_i}(\lambda_i)$ a Jordan matrix in $M_n(R)$ with eigenvalues $\lambda_i \in \mathbb{K}$. Then

- $S_n(J,R)/R$ is a Frobenius extension if and only if $n_i = n_j$ for $\lambda_i = \lambda_j$.
- If any $k \in \{1, \dots, n\}$ is a unit, then $S_n(J, R)/R$ is a separable Frobenius extension if and only if $n_i = 1$ for any i.

To complete the proof, we introduce the notation $J_{(m,n)}^k = \sum_{i=1}^{n-k} e_{i,i+k}$ to simplify the calculation.

1 $S_n(J_n(\lambda),R)/R$ is a Frobenius extension with

$$E: S_n(J_n(\lambda), R) \to R, \operatorname{via} \sum_{i=0}^{n-1} r_i \cdot J^i_{(n,n)} \mapsto r_{n-1},$$

$$X_i = J^i_{(n,n)}$$
 and $Y_i = J^{n-1-i}_{(n,n)}(i=0,1,\ldots,n-1).$

Haiyan Zhu (ZJUT)

To complete the proof, we introduce the notation $J_{(m,n)}^k = \sum_{i=1}^{n-k} e_{i,i+k}$ to simplify the calculation.

1 $S_n(J_n(\lambda), R)/R$ is a Frobenius extension with

$$E: S_n(J_n(\lambda), R) \to R, \operatorname{via} \sum_{i=0}^{n-1} r_i \cdot J^i_{(n,n)} \mapsto r_{n-1},$$

$$X_i = J^i_{(n,n)}$$
 and $Y_i = J^{n-1-i}_{(n,n)}(i = 0, 1, ..., n-1).$

② Let $J = \bigoplus J_{n_i}(\lambda_i)$, then $S_n(J,R)/R$ is a Frobenius extension if $n_i = n_j$ for $\lambda_i = \lambda_j$. In fact,

$$S_k(J,R) = M_{k/n_j}(S_{n_j}(J_{n_j}(\lambda),R))$$
 if $J = \bigoplus J_{n_j}(\lambda)$;

$$S_k(J,R)=\bigoplus (S_{n_j}(J_{n_j}(\lambda_j),R))$$
 if $J=\bigoplus J_{n_j}(\lambda_j)$ with different λ_j .

Haiyan Zhu (ZJUT)

If the Jordan matrix J has different size Jordan blocks with same eigenvalues. $S_n(J,R)/R$ is not a Frobenius extension.

Haiyan Zhu (ZJUT)

If the Jordan matrix J has different size Jordan blocks with same eigenvalues. $S_n(J,R)/R$ is not a Frobenius extension. For example,

set
$$J = J_2(\lambda) \bigoplus J_3(\lambda)$$
, then $A = \begin{bmatrix} O & aJ_{(2,3)}^2 \\ O & bJ_{(3,3)}^3 \end{bmatrix} \in S_5(J,R)$.

Assume that there is a Frobenius system (E, X_i, Y_i) with $X_i = [x_i(k, l)]$ and $Y_i = [y_i(k, l)]$. By $A = \sum_i E(AX_i)Y_i$, we have an equation since a, b are arbitrary

$$\begin{bmatrix} E(J_{(2,3)}^2) \\ E(J_{(3,3)}^2) \end{bmatrix} \cdot \left[\sum_i x_i(5,5) y_i(1,5), \ \sum_i x_i(5,5) y_i(3,5) \right] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

a contradiction.

◄□▶◀∰▶◀불▶◀불▶ 불 虳٩(

12 / 19

Haiyan Zhu (ZJUT) Frobenius extension August 8, 2024

Example

Let $\mathbb R$ be real number field and

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 2 \end{bmatrix} \in M_3(\mathbb{R}), C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in M_2(\mathbb{R}).$$

Then

- $S_n(A,\mathbb{R})/\mathbb{R}$ is not a Frobenius extension since $A \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- $ullet S_n(b,\mathbb{R})/\mathbb{R}$ is a Frobenius extension since $B \sim egin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- $S_n(c,\mathbb{R})/\mathbb{R}$ is a separable Frobenius extension since $C \sim \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Applications: Frobenius algebras

Follows from the main Theorem, we obtain a family of Frobenius algebras.

Corollary

Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F} . Assume that A is similar to $\bigoplus_i J_{n_i}(\lambda_i)$ in $M_n(\overline{\mathbb{F}})$ with $\lambda_i \in \overline{\mathbb{F}}$. Then

- $S_n(A,\mathbb{F})$ is a Frobenius algebra if and only if $n_i=n_j$ for $\lambda_i=\lambda_j$.
- $S_n(A,\mathbb{F})$ is a separable Frobenius algebra if and only if $n_i=1$ for any i.

Corollary

Let \mathbb{F} be an algebraically closed field. Then a matrix $A \in M_n(\mathbb{F})$ is diagonalizable if and only if $S_n(A,\mathbb{F})$ is a separable Frobenius algebra.

Applications: Homological invariants

Inspired by [Xi, 2021] and [Zhao, 2024], we can obtain some extensions of rings with homological invariants by the main result.

In further, we want to get more Homological invariants.

Applications: Homological invariants

Let $0 \to R_R \to I_0 \to \cdots \to I_n \to \cdots$ be a minimal injective resolution of R_R .

Definition

- A ring R is (resp. right quasi) k-Gorenstein if the right flat dimension of I_n is less than or equal to n (resp. n+1) for any $0 \le n \le k$ [Huang, 1999].
- The dominant dimension of R, which is denoted by resp. v-) domdim(R), is by definition the minimal number n such that I_n is not (resp. v-stably) projective [Xi, 2021].

Corollary

Let $J = \bigoplus J_s$ be a Jordan-block matrix in $M_n(R)$.

- $S_n(J,R)$ is (right quasi) k-Gorenstein if and only if R so is.
- Let R be an Artin algebra, then

$$(v-)$$
 domdim $(S_n(J,R))=(v-)$ domdim (R) .

References

L. Datta, S.D. Morgera, On the reducibility of centrosymmetric matricesapplications in engineering problems, Circuits Systems Signal Process. 8 (1) (1989) 71-96.

Z.Y. Huang, W^t -approximation representations over quasi k-Gorenstein algebras, Sci. China Ser. A42 (1999) 945-956.

L. Kadison. New examples of Frobenius extensions, volume 14 of University Lecture Series. AmericanMathematical Society, Providence, RI, 1999.

T. Kanzaki. A note on Witt groups for a Frobenius extension with involution. J. Pure Appl. Algebra,22 (3) (1981) 249-252.

Y. Kitamura. A characterization of a trivial extension which is a Frohenius one. Arch. Math 34 (1980) 111-113.

J.R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (10) (1985) 711-717.

C.C. Xi. Frobenius bimodules and flat-dominant dimensions. Sci. China Math. 64 (2021) 33-44.

References

C.C. Xi, S.J. Yin. Centralizer matrix algebras and symmetric polynomials of partitions. J. Algebra 609 (2022) 688-717.

C.C. Xi, S.J. Yin. Cellularity of centrosymmetric matrix algebras and Frobenius extensions.Linear Algebra Appl., 590 (2020) 317-329.

C.C. Xi, J.B. Zhang. Structure of centralizer matrix algebras. Linear Algebra Appl., 622 (2021) 215-249.

Z.B. Zhao. k-torsionfree modules and Frobenius extensions. J. Algebra 646 (2024) 49-65.

Thank you for your attention!