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F:

a field

a unitary (associative) ring

the center of R

the ring of nxn matrices over R

the matrix units of M,(R)

the Jordan block 7LI,,—|—Z;’;11 eiit1 with A € R

diag(Jnl(lnl)a Tt 7Jni(2‘”i)7 Tt 7Jns()'ns))
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Introduction

a Centralized matrix rings

o Frobenius extensions
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Introduction: centralized matrix ring

Definition
For A€ M,(R), we define the centralized matrix ring of A by

Sn(A,R) := {B € My(R)|AB = BA}.

Examples

o
—
A

o Let A= [O 0} then S,(A,R) = Rx R is a trivial extension of R by

R.

o Let A=, Jn,(A) be a Jordan matrix with J, (1) € Ms_;11(F), then
Sn(A,F) is isomorphic to the algebra given by the quiver with
relations (Xi, Zhang, 2021):

ﬁl BZ Bs—2 Bs—l
e=——Se=—Se - --e=—se=—<e B, 10, 1=0,0;B=Pi_10 1.
1 o 2 o Ols—2 Os_1 S

v
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0 0 0 1
00 --- 10
o Llet A= . . . .| then
10 --- 00
Su(A,R) = {B € Ma(R)|bj = bns1ini2j,1 < .j < n}
is the centrosymmetric matrix algebra which have significant

applications in Markov processes, engineering problems and quantum
physics (Datta, Morgera 1989; Weaver, 1985).

2 b a b c
In particular, S2(A,R) = [b a] and S3(A,R)=|d e d
c b a
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Introduction: Frobenius extension

@ An extension of rings R/S is Frobenius if 3E € Homs_s(R,S), x;,
Yi€ Rst. VreR

YixiE(yir)=r=Y,;E(rx)yi.
(E,xi,y;) is called a Frobenius system of the extension.
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Introduction: Frobenius extension

@ An extension of rings R/S is Frobenius if 3E € Homs_s(R,S), x;,
Yi€ Rst. VreR

YixiE(yir)=r=Y,;E(rx)yi.
(E,xi,y;) is called a Frobenius system of the extension.

@ Moreover, R/S is s separable Frobenius extension if 3d € R such that
dS = Sd,Z,-x,-dy,- =1.

v

Example (Kadison, 1999)

e R/F is a Frobenius extension with R a Frobenius F-algebra.

e ZG/ZH is a Frobenius extension with H a subgroup of G.

@ The G-Galois extension is a separable Frobenius extension.
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Introduction: Motivation

Theorem (Xi, et al)
® M,(R)/Sh(A,R) is a separable Frobenius extension with

0 0 01
0 0 10
A=
10 --- 0O
@ If R has no zero-divisors and A € M,(R) is similar to a Jordan-block
matrix with all eigenvalues in Z(R), then M,(R)/S,(A,R) is a
separable Frobenius extension.

e For any A€ M,(F), Mn(F)/Sn(A,F) is always a separable Frobenius
extension.
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Introduction: Motivation

In fact, R can be identified with the subring of M,(R) consisting of the
"scalar matrices".

@ Mp(R)/Sh(A,R) and S,(A,R)/R are separable Frobenius extensions
with A= [8 (1)] [Xi, Zhang,2020 and Kanzaki, 1981].

o Let S be the subalgebra of M,(FF) with F-basis consisting of the
idempotents and matrix units: e; = e11 + €44, & = e + €33, €21,
€31, €41, €12,€43. Then My(F)/S is a separable Frobenius extension,
but S/F is not a Frobenius extension [Kadison, 1999].
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Introduction: Motivation

Is Sh(A,R)/R always a separable Frobenius extension (short for "sF")?

sF(Kanzaki1981)

/

Muy(R) +— sF

Sh(AR) «—7
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Main result

Theorem (Wang-Zhu)

Let R be an algebra over an integral domain K and

J =D Jn.(Ai) a Jordan matrix in M,(R) with eigenvalues
Ai € K. Then

o Sp(J,R)/R is a Frobenius extension if and only if
ni = n; for A; = A;.

o Ifany k€ {1,---  n} is a unit, then S,(J,R)/R is a
separable Frobenius extension if and only if nj =1 for
any i.
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Sketch of the proof

To complete the proof, we introduce the notation J(km,n) = Z?;lk € itk to
simplify the calculation.

Q S,(Jn(A),R)/R is a Frobenius extension with
n—1 .
E : Sa(Jn(R),R) = Ryvia Y ri-Jiy oy v a1,
i=0

Xi=Jj

(o @nd Yi=J0 (i =0,1,...,n—1).

(nn)
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Sketch of the proof

To complete the proof, we introduce the notation J(m ) = Z?;lk € itk to
simplify the calculation.

Q S,(Jn(A),R)/R is a Frobenius extension with
ES(J(l)R)—>RV|aZr, n) P o1,

Xi = J(nn) and Y,-:J("nj:)—i(i:0’1’“",,_1)_

Q Let J =@ Jpn,(Ai), then S,(J,R)/R is a Frobenius extension if nj = n;
for A; = A;.In fact,

Sk(4,R) = My /n;(Sn;(In; (1), R)) if J =D Jn;(A);
Sk(J,R) = D(Sn;(In;(4)), R)) if J =D Jy;(A;) with different 4;.
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Sketch of the proof

@ If the Jordan matrix J has different size Jordan blocks with same
eigenvalues. S,(J,R)/R is not a Frobenius extension.
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Sketch of the proof

@ If the Jordan matrix J has different size Jordan blocks with same
eigenvalues. S,(J,R)/R is not a Frobenius extension. For example,

0] aJ(z2 3)
set J=h(A)PJ3(A), then A= | € Ss5(4,R).
0 b,

Assume that there is a Frobenius system (E, X;, Y;) with
Xi = [xi(k,1)] and Y; = [yi(k,])]. By A=Y, E(AX;)Yi, we have an
equation since a, b are arbitrary

E(J3)
E(JR3)

a contradiction.

- [Zixi(5,5)yi(1,5), Lixi(5.5)yi(3,5)] = [(1) ﬂ ’
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Example
Let R be real number field and

0 01 0 01 0 1
A=|0 1 0[,B=|0 0 0 €M3(R),C:[_l O]GI\/IQ(R).
-1 0 2 -1 0 2
Then
1 10
@ S,(A,R)/R is not a Frobenius extension since A~ |0 1 O0f.
0 01
1 10
e S,(b,R)/R is a Frobenius extension since B~ |0 1 0].
0 0O

0 —i|’

@ S,(c,R)/R is a separable Frobenius extension since C ~ [I 0]
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Applications: Frobenius algebras

Follows from the main Theorem, we obtain a family of Frobenius algebras.

Corollary

Let F be the algebraic closure of IF. Assume that A is similar to @; Jn,(4:)
in M,(F) with A; € F. Then

o S5,(A,F) is a Frobenius algebra if and only if n; = n; for 4; = A;.

@ S,(A,F) is a separable Frobenius algebra if and only if n; =1 for any i.

Corollary

Let IF be an algebraically closed field. Then a matrix A € M,(F) is
diagonalizable if and only if S,(A,FF) is a separable Frobenius algebra.
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Applications: Homological invariants

Inspired by [Xi, 2021] and [Zhao, 2024], we can obtain some extensions of
rings with homological invariants by the main result.

In further, we want to get more Homological invariants.
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Applications: Homological invariants

Let 0+ Rgr —lop— -+ — 1, — --- be a minimal injective resolution of Rg.

Definition

@ Aring R is (resp. right quasi) k-Gorenstein if the right flat dimension
of I, is less than or equal to n (resp. n+1) for any 0 < n < k [Huang,
1999].

@ The dominant dimension of R, which is denoted by resp. v-)
domdim(R), is by definition the minimal number n such that /, is not
(resp. v-stably) projective [Xi, 2021].

Corollary
Let J =& Js be a Jordan-block matrix in M,(R).
e S,(J,R) is (right quasi) k-Gorenstein if and only if R so is.
@ Let R be an Artin algebra, then
(v-) domdim(S,(J, R))=(v-) domdim(R).

= = = <t

| A\
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Thank you for your attention!
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