Bi-Frobenius Algebra structures on quantum complete intersections

Hai Jin

Shang Hai Jiaotong University

2024-8-8

Frobenius algebras

Frobenius Algebra We call a finite dimensional algebra over field *k* is a Frobenius algebra, if there is a left *A*-mod isomorphism

 $A \cong A^* := \text{Hom}_k(A, k)$, or equivently a right *A*-mod isomorphism $A \cong A^*$.

If there is a *A*-bimodule isomorphism $A \cong A^*$, then we say *A* is **symmetric**.

A Frobenius algebra can be represented by a pair (A, ϕ) , where $\phi \in A^*$, $A^* = A \rightarrow \phi$ (\rightarrow is the left action of *A* on A^*); or equivalently, $A^* = \phi - A$ (\leftarrow is the right action). Then ϕ is called a **Frobenius homomorphism** of *A*.

Nakayama automorphism Suppose that (A, ϕ) is a Frobenius algebra. Then exist a unique algebra isomorphism $\mathcal{N}_{\phi}: A \longrightarrow A$ such that

$$
\phi(xy) = \phi(y\mathcal{N}_{\phi}(x)), \ \forall \ x, \ y \in A,
$$

which is called the Nakayama automorphism of \tilde{A} corresponding to ϕ .

Let $\phi' \in A^*$. Then ϕ' is a Frobenius homomorphism $\iff \exists$ invertible element z_1 such that $\phi' = z_1 \rightarrow \phi$; $\iff \exists z_2$ such that $\phi' = \phi \leftharpoonup z_2$. Then $\mathcal{N}_{\phi'} : x \mapsto z_1 \mathcal{N}_{\phi}(x) z_1^{-1}$: and $\mathcal{N}_{\phi'} : x \mapsto z_2$ $\mathcal{N}_{\phi}(z_2xz_2^{-1}).$

Frobenius coalgebra

Suppose that (C, Δ, ε) is a *k*-coalgebra. Using Sweedler notation: $\Delta(c) = \sum c_1 \otimes c_2$. Then C^* = Hom_{*k*}(*C*, *k*) is a *k*-algebra: (*fg*)(*c*) = $\sum f(c_1)g(c_2)$, and *C* is a C^* bimodule. Denote the left action of C^* on C by $f \to c$. Then $f \to c = \sum c_1 f(c_2)$. Similarly, $c \leftarrow f = \sum f(c_1)c_2$.

Frobenius coalgebra We say a finite dimensional coalgebra (C, Δ, ε) is Frobenius, if there is left *C ∗* -mod isomorphism

 $C^* \cong C$, or equivalently, right C^* -mod isomorphism $C^* \cong C$.

Frobenius coalgebra pair (*C, t*) **:** Finite dimensional coalgebra *C* is Frobenius if and only if there is $t \in C$ such that $C = t \leftarrow C^*$; or equivalently, $C = C^* \rightarrow t$.

bi-Frobenius algebras

Definition(Y.Doi, M.Takauchi 2000) Let *A* be a finite dimensional *k*-algebra and *k*-coalgebra. $t \in A$, $\phi \in A^*$, $S: A \longrightarrow A$ is a *k*-linear map defined by

$$
S(a) = \sum \phi(t_1 a) t_2, \quad \forall \ a \in A.
$$

Quadruple (A, ϕ, t, S) , or simply A , is called bi-Frobenius algebra, if it satisfied

- (i) The counit ε : $A \longrightarrow k$ is a algebra map; the unit 1 is a group-like element;
- (ii) (A, ϕ) is a Frobenius algebra; (A, t) is a Frobenius coalgebra;

(iii) *S* an anti-homomorphism of algebra, and an anti-homomorphism of coalgebra (i.e., $\varepsilon \circ S = \varepsilon$, $\Delta(S(a)) = \sum S(a_2) \otimes S(a_1), \ \forall \ a \in A.$

If this is the case, *S* is called the antipode of bi-Frobenius algebra *A*.

Remark (1) *S* is a bijection.

(2) Finite dimensional Hopf algebras are bi-Frobenius algebras; the converse is not true (**however such examples are not easy to get**).

(3) Bi-Frobenius algebras are Hopf if and only if the comultiplication is an algebra map.

(4) Previous works: Y. Doi,M. Takeuchi,M. Haim, D. Simson, Libin. Li, Yinhuo. Zhang, Yanhua. Wang, Zhihua. Wang, Xiao-Wu. Chen, Pu. Zhang *· · ·*

Quantum complete intersections

Suppose that $\mathbf{a} = (a_1, \dots, a_n)$ is an integer vector satisfying $a_i \geq 2$, $n \geq 2$; $\mathbf{q} = (q_{ij})$ is a multiplicatively antisymmetric matrix over k , i.e., a square matrix satisfying $q_{ii} = 1$ and $q_{ij}q_{ji} = 1$ for $1 \leq i, j \leq n$. Then *k*-algebra

$$
A(\mathbf{q},\mathbf{a})=k\langle x_1,\cdots,x_n\rangle/\langle x_i^{a_i}, x_jx_i-q_{ij}x_ix_j, 1\leq i, j\leq n\rangle
$$

is called a **quantum complete intersection**.

When all $a_i = 2$, it is called quantum exterior algebra.

Originate from by Yu. I. Manin, 1987

Reach their present form by L. L. Avramov, V. N. Gasharov, I. V. Peeva, 1997.

Quantum complete intersections

• **Representation type:** (P.A.Bergh - K.Erdmann 2011; C.M.Ringel 1974) The representation of quantum complete intersection $A = A(q, a)$ is tame or wild; and it is tame if and only if $n = 2$ $a_1 = a_2.$

• **Happel's question** (1989): If the Hochschild cohomology groups of a finite dimensional algebra *A* over a field *k* vanish for all sufficiently large *n*, is the global dimension of *A* finite? R.-O Buchweitz, E. L. Green, D. Madsen, Ø. Solberg, 2005 using a quantum exterior algebra

$$
A = k \langle x, y \rangle / \langle x^2, y^2, xy + qyx \rangle
$$

shows negativity (when *q* is not a root of unity) to this question.

• C. M. Ringel - P. Zhang (Algebra & Number Theory, 2020) use a quotient of quantum complete intersection:

$$
k\langle x,y,z\rangle/\langle x^2,~y^2,~z^2,~yz,~xy+qyx,~xz-zx,~zy-zx\rangle
$$

show the independence of the total reflexivity conditions of the Gorenstein projective modules (L. Avramov - A. Martsinkovsky, 2002).

Quantum complete intersections

Notations: Let $V = \{v = (v_1, \dots, v_n) \in \mathbb{N}_0^n \mid v_i \le a_i - 1, 1 \le i \le n\}$. Then

$$
\{x_{\mathbf{v}} := x_1^{v_1} \cdots x_n^{v_n} \mid \mathbf{v} \in V \}
$$

is a *k*-basis of $A(q, a)$. Specially,

$$
x_{a-1} = x_1^{a_1-1} \cdots x_n^{a_n-1}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{Z}^n$, denote $\mathbf{q}^{\langle \mathbf{u} | \mathbf{v} \rangle} = \prod_{1 \leq i < j \leq n} q_{ij}^{u_j v_i}$. Then $x_{\mathbf{u}} x_{\mathbf{v}} = \mathbf{q}^{\langle \mathbf{u} | \mathbf{v} \rangle} x_{\mathbf{u} + \mathbf{v}}$.

Lemma (Bergh 2009) Quantum complete intersections are local Frobenius algebras, *x ∗* a*−*1 is a Frobenius homomorphism, its Nakayama automorphism is

$$
\mathcal{N}_{x_{\mathbf{a}-1}^*}(x_{\mathbf{v}})=\frac{\mathbf{q}^{\langle \mathbf{a}-\mathbf{1}-\mathbf{v}|\mathbf{v}\rangle}}{\mathbf{q}^{\langle \mathbf{v}|\mathbf{a}-\mathbf{1}-\mathbf{v}\rangle}}x_{\mathbf{v}}, \ \forall \ \mathbf{v}\in V.
$$

It is symmetric if and only if $\mathcal{N}_{x^*_{a-1}}$ is identity. We call $\mathcal{N}_{x^*_{a-1}}$ the canonical Nakayama automorphism, denoted by *N*.

Let $h_{\mathbf{v}} = \frac{\mathbf{q} \langle \mathbf{a} - \mathbf{1} - \mathbf{v} | \mathbf{v} \rangle}{\langle \mathbf{v} | \mathbf{a} - \mathbf{1} - \mathbf{v} \rangle}$ $\frac{q^{(2)} - 2 - \frac{1}{r}}{q^{\langle \mathbf{v} | \mathbf{a} - \mathbf{1} - \mathbf{v} \rangle}}$. Then $\mathcal{N}(x_{\mathbf{v}}) = h_{\mathbf{v}} x_{\mathbf{v}}, \forall \mathbf{v} \in V$.

Hopf algebra structures on quantum complete intersections

Main theorem I Let $A = A(q, a) = k\langle x_1, \dots, x_n \rangle / \langle x_i^{a_i}, x_j x_i - q_{ij} x_i x_j, 1 \leq i, j \leq n \rangle$. Then the following statements are equivalent:

- (1) *A* has Hopf algebra structure;
- (2) *A* has bi-algebra structure;
- (3) *A* is commutative, and each a_i is a positive power of *p*, where $p = \text{char } k$ is a prime.

Corollary Quantum exterior algebra $A = k\langle x_1, \dots, x_n \rangle / \langle x_i^2, x_j x_i - q_{ij} x_i x_j, 1 \leq i, j \leq n \rangle$ admits Hopf algebra structure if and only if A is commutative $k\langle x_1,\cdots,x_n\rangle/\langle x_i^2, x_jx_i-x_ix_j, 1 \leq i, j \leq n\rangle$ and $\text{char }k=2$.

Sketch of the proof of Main Theorem I : Kummer's Theorem

(1)⇒ (2) is trivial; Key point of (2) ⇒ (3) is using $\Delta(x_i) = 1 \otimes x_i + x_i \otimes 1 + \text{higher degree terms}$. Then by

$$
\Delta (x_1)^{a_1} = \Delta (x_1^{a_1}) = 0
$$

one gets $\binom{a_1}{m} = 0$, $1 \le m \le a_1 - 1$. This is impossible when char k= 0.

When char $k = p$, we need Kummer's theorem. Suppose p is a prime, n is a non-negative integer. Writing *n* as the expansion in base *p*:

$$
n = n_0 + n_1 p + \cdots + n_r p^r, \ \ 0 \leq n_0, \cdots, n_r \leq p - 1.
$$

For integer $1 \leq m \leq n$, write *m* and $t = n - m$ as the expansion in base *p*, we get m_j and t_j . Let

$$
\epsilon_j = \begin{cases} 1, & \text{if } m_j + t_j \ge p; \\ 0, & \text{else.} \end{cases}
$$

Theorem (E. Kummer, 1852) Suppose that *p* is a prime, *n*, *m* are integers, $0 \le m \le n$, $\nu_p(n)$ be the *p*-adic valuation of *n* (the largest non-negative integer *s* such that p^s divide *n*). Then $\nu_p(\binom{n}{m}) = \sum_{j\geq 0} \epsilon_j.$

Corollary Let *n* be a positive integer and *p* a prime. Assume that $p \mid n$ with $\nu_p(n) = s$. Then $p \nmid {n \choose p^s}.$

Proof Firstly $t = n - p^s = t_s p^s + t_{s+1} p^{s+1} + \cdots + n_{s+r} p^{s+r}$. Then $t_s \neq p-1$ (if not, p^{s+1} will divide *n* = $p^{s} + t$. Then by Kummer's theorem $\nu_{p}(\binom{n}{p^{s}}) = 0$, i.e., $p \nmid \binom{n}{p^{s}}$. □

10 / 23

Sketch of the proof of Main Theorem I : The construction

 $(2) \implies (3)$ (continue): Using this corollary we can deduce that each a_i is a positive power of *p*. Then by $\Delta(x_j x_i) = q_{ij} \Delta(x_i x_j)$, we get $q_{ij} = 1$ for all *i*, *j*.

(3) \Rightarrow (1) We need to give *A* a Hopf algebra structure. Define *k*-linear maps Δ : *A* \rightarrow *A* \otimes *A*, $\varepsilon: A \longrightarrow k$ and $S: A \longrightarrow A$ as follows:

$$
\begin{cases}\n\varepsilon(x_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}}; \\
\Delta(x_{\mathbf{v}}) = \prod_{1 \leq i \leq n} \sum_{0 \leq k \leq v_i} \binom{v_i}{k} x_i^k \otimes x_i^{v_i - k}; \\
S(x_{\mathbf{v}}) = (-1)^{|\mathbf{v}|} x_{\mathbf{v}}, \ \forall \ \mathbf{v} \in V.\n\end{cases}
$$

It can be verified that this is a Hopf algebra structure on *A*.

Remark: Quantum complete intersections are **braided Hopf algebras** when *qij* and *aⁱ* are specially selected. (N. Andruskiewitsch - H. J. Schneider 1998, 2002)

bi-Frobenius quantum complete intersections

As **in most cases** a quantum complete intersection **doesn't** have Hopf algebra structures, we consider its **possible bi-Frobenius algebra structures**, briefly **bi-Frobenius quantum complete intersection**.

Main question: When does a quantum complete intersection become a bi-Frobenius quantum complete intersection?

Proposition Suppose that (A, ϕ, t, S) is a bi-Frobenius algebra structure on $A = A(q, a)$, then

- (1) $\phi = x_{a-1}^* \leftarrow z$, where $z \in A$ is an invertible element.
- (2) $\varepsilon(x_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}}, \quad \forall \mathbf{v} \in V.$
- $t = cx_{n-1}, c \in k \{0\}.$
- (4) $\mathcal{N}^2 = \text{Id}, \text{ i.e., } h_v^2 = 1, \forall v \in V.$
- (5) If *S* is a graded map, then $S^2 = \mathcal{N}$, $S^4 = \text{Id}$.
- (6) If chark = 0, then $\mathcal{N}_{\phi}^2 = \text{Id}, S^4 = \text{Id}.$

Permutation antipode and compatible permutations

Definition Suppose quantum complete intersection $A = A(q, a)$ admits a bi-Frobenius algebra structure (A, ϕ, t, S) . Its antipode *S* is called **permutation antipode**, if there exists a permutation π of *V*, and $c_v \in k$, $\forall v \in V$, such that

$$
S(x_{\mathbf{v}}) = c_{\mathbf{v}} x_{\pi(\mathbf{v})}, \ \forall \ \mathbf{v} \in V.
$$

All bi-Frobenius quantum complete intersections founded so far have **permutation antipodes.**

Proposition If all $a_i \geq 3$, $q_{ij} \neq 1$, and the antipode *S* of bi-Frobenius quantum complete intersection $A = A(q, a)$ is a graded map, then *S* is a permutation antipode.

Definition Permutation $\pi \in S_n$ is called a **compatible permutation** of quantum complete intersection $A(\mathbf{q}, \mathbf{a})$, if

$$
a_{\pi(i)} = a_i
$$
, $q_{\pi(i)\pi(j)} = q_{ji}$, $1 \leq i, j \leq n$.

Proposition The antipode *S* of a bi-Frobenius quantum complete intersection is a permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ and $c_i \in k$, $1 \leq i \leq n$, such that $S(x_i) = c_i x_{\pi(i)}, \quad 1 \leq i \leq n.$

Main question: When does a quantum complete intersection become a bi-Frobenius quantum intersection with permutation antipode?

Necessity

Proposition Suppose that $A = A(q, a)$ is a bi-Frobenius algebra with permutation antipode (S, π) . Then

(1)
$$
S(x_{a-1}) = x_{a-1}; \quad \pi(a-1) = a-1; \quad \pi^2 = \text{Id};
$$
 S is a graded map, $S^2 = \mathcal{N}$ and $S^4 = \text{Id}.$

(2) *π* induce an compatible permutation, still denoted by *π*, satisfies

$$
\pi(\mathbf{v})=(v_{\pi^{-1}(1)},\cdots,v_{\pi^{-1}(n)}),\quad x_{\pi(\mathbf{v})}=x_1^{v_{\pi^{-1}(1)}}\cdots x_n^{v_{\pi^{-1}(n)}},\ \forall\ \mathbf{v}\in V;
$$

 $S(x_i) = c_i x_{\pi(i)}$, where each $c_i \in k$, satisfies

$$
c_i c_{\pi(i)} = h_{\mathbf{e}_i}, \ \forall \ 1 \leq i \leq n; \qquad q_{\pi} \prod_{1 \leq i \leq n} c_i^{a_i - 1} = 1
$$

where
$$
q_{\pi} = \prod_{1 \leq j < k \leq n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k) | \pi(\mathbf{e}_j) \rangle})^{(a_k - 1)(a_j - 1)}.
$$

bi-Frobenius quantum complete intersection with permutation antipode

Main Theorem 2 Quantum complete intersection $A = A(q, a)$ admits a bi-Frobenius algebra structure with permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ and $c_i \in k$, $1 \leq i \leq n$, such that

$$
\pi^2 = \mathrm{Id}, \qquad c_i c_{\pi(i)} = h_{\mathbf{e}_i}, \qquad q_{\pi} \prod_{1 \leq i \leq n} c_i^{a_i - 1} = 1.
$$

If this is th case, (*A, x ∗* a*−*1 *, x*a*−*1*, S*) is a bi-Frobenius algebra; counit, comultiplication and antipode:

$$
\left\{\begin{array}{l} \varepsilon(x_{\operatorname{v}})=\delta_{\operatorname{v},0} \ \ \text{for} \ \ \mathbf{v}\in V;\\[2mm] \Delta(1_A)=1_A\otimes 1_A;\\[2mm] \Delta(x_{\operatorname{v}})=1_A\otimes x_{\operatorname{v}}+x_{\operatorname{v}}\otimes 1_A \ \ \text{for} \ \ \mathbf{v}\in V-\{\mathbf{0},\mathbf{a}-\mathbf{1}\};\\[2mm] \Delta(x_{\operatorname{a}-\mathbf{1}})=\sum\limits_{v\in V}g_{\operatorname{a}-\mathbf{1}-\mathbf{v},\pi(v)}\ x_{\operatorname{a}-\mathbf{1}-\mathbf{v}}\otimes x_{\pi(v)};\\[2mm] S(x_{\operatorname{v}})=\prod\limits_{1\leq i\leq n}c_i^{v_i}\prod\limits_{1\leq j
$$

where

$$
g_{\mathbf{a}-\mathbf{1}-\mathbf{v},\pi(\mathbf{v})} = \frac{1}{\mathbf{q}^{\langle \mathbf{a}-\mathbf{1}-\mathbf{v}|\mathbf{v}\rangle}} \prod_{1\leq i\leq n} c_i^{v_i} \prod_{1\leq j < k \leq n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k)|\pi(\mathbf{e}_j)\rangle})^{v_j v_k}, \ \forall \ \mathbf{v} \in V.
$$

Specifically, $S(x_i) = c_i x_{\pi(i)}, 1 \leq i \leq n$.

Corollaries

Corollary Suppose that chark = 2. Then $A = A(q, a)$ admits a bi-Frobenius algebra structure with permutation antipode if and only if there is compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}, \mathcal{N}^2 = \text{Id}.$

Corollary Suppose that $A = A(q, a)$ is symmetric. Then *A* admits a bi-Frobenius algebra structure with permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$.

Suppose that *A* is a bi-Frobenius algebra with permutation antipode. Follows propositions before, $h_{e_i}^2 = 1$, $1 \leq i \leq n$; then by Main Theorem 2, there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$. Hence, define index sets

$$
I = \{i \mid 1 \le i \le n, \ \pi(i) = i\}, \ \ J = \{i \mid 1 \le i \le n, \ \pi(i) \ne i\}.
$$

Suppose that *A* is a bi-Frobenius algebra with permutation antipode. Follows propositions before, $h_{e_i}^2 = 1$, $1 \leq i \leq n$; then by Main Theorem 2, there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$. Hence, define index sets

$$
I = \{i \mid 1 \le i \le n, \ \pi(i) = i\}, \ \ J = \{i \mid 1 \le i \le n, \ \pi(i) \ne i\}.
$$

By considering the parity of a_i and $h_{e_i} = \pm 1$, define index sets:

$$
I_1 = \{i \in I \mid h_{\mathbf{e}_i} = 1, a_i \text{ is even}\}, \qquad J_1 = \{i \in J \mid h_{\mathbf{e}_i} = 1, a_i \text{ is even}\},
$$

\n
$$
I_2 = \{i \in I \mid h_{\mathbf{e}_i} = 1, a_i \text{ is odd}\}, \qquad J_2 = \{i \in J \mid h_{\mathbf{e}_i} = 1, a_i \text{ is odd}\},
$$

\n
$$
I_3 = \{i \in I \mid h_{\mathbf{e}_i} = -1, a_i \text{ is even}\}, \qquad J_3 = \{i \in J \mid h_{\mathbf{e}_i} = -1, a_i \text{ is even}\},
$$

\n
$$
I_4 = \{i \in I \mid h_{\mathbf{e}_i} = -1, a_i \text{ is odd}\}, \qquad J_4 = \{i \in J \mid h_{\mathbf{e}_i} = -1, a_i \text{ is odd}\}.
$$

When $\text{char } k \neq 2$, these sets have no intersection. Denote the number of elements in set I by $|I|$.

Intrinsic characterization

Main theorem 3 Suppose that char $k \neq 2$ and $\sqrt{-1} \in k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \text{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \text{Id}$, such that $|I_1| + |I_3| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Intrinsic characterization

Main theorem 3 Suppose that char $k \neq 2$ and $\sqrt{-1} \in k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \text{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \text{Id}$, such that $|I_1| + |I_3| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Main theorem 4 Suppose that char $k \neq 2$ and $\sqrt{-1} \notin k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \text{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \text{Id}$, such that:

 $|I_3| + |I_4| = 0;$ (2) $|I_1| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Example 1: symmetric

Let
$$
\mathbf{a} = (2, 2, 2), \mathbf{q} = \begin{pmatrix} 1 & b & \frac{1}{b} \\ \frac{1}{b} & 1 & b \\ b & \frac{1}{b} & 1 \end{pmatrix}
$$
, where $0 \neq b \in k$. Then $A = k \langle x_1, x_2, x_3 \rangle / \langle x_1^2, x_2^2, x_3^2, x_2x_1 - bx_1x_2, x_3x_1 - \frac{1}{b}x_1x_3, x_3x_2 - bx_2x_3 \rangle$,
\n $V = \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\}$,
\n $h_{\mathbf{e}_1} = h_{\mathbf{e}_2} = h_{\mathbf{e}_3} = 1$. Thus A is symmetric. Let $\pi = (2, 3) \in S_3$. Then $q_{\pi(i)\pi(j)} = q_{ji}$, $1 \leq i, j \leq 3$.
\nLet $c_1 = c_2 = c_3 = 1$. Define

$$
\begin{cases}\n\varepsilon(x_{v}) = \delta_{v,0} \text{ for all } v \in V; \\
\Delta(1) = 1 \otimes 1; \\
\Delta(x_{v}) = 1 \otimes x_{v} + x_{v} \otimes 1, \quad \forall v \in V - \{(0,0,0), (1,1,1)\}, \\
\Delta(x_{1}x_{2}x_{3}) = 1 \otimes x_{1}x_{2}x_{3} + x_{1}x_{2}x_{3} \otimes 1 \\
&+ x_{2}x_{3} \otimes x_{1} + \frac{1}{b}x_{1}x_{3} \otimes x_{3} + x_{1}x_{2} \otimes x_{2} \\
&+ \frac{1}{b}x_{3} \otimes x_{1}x_{3} + x_{2} \otimes x_{1}x_{2} + x_{1} \otimes x_{2}x_{3}; \\
S(1) = 1; \quad S(x_{1}) = x_{1}; \quad S(x_{2}) = x_{3}; \quad S(x_{3}) = x_{2}; \\
S(x_{1}x_{2}) = \frac{1}{b}x_{1}x_{3}; \quad S(x_{1}x_{3}) = bx_{1}x_{2}; \quad S(x_{2}x_{3}) = x_{2}x_{3}; \\
S(x_{1}x_{2}x_{3}) = x_{1}x_{2}x_{3}.\n\end{cases}
$$

By the Main theorem, $(A, (x_1x_2x_3)^*, x_1x_2x_3, S)$ is a bi-Frobenius algebra with permutation antipode. $21 / 23$

Example 2: non-symmetric

Let
$$
\mathbf{a} = (2, 2, 2), \mathbf{q} = \begin{pmatrix} 1 & b & \frac{1}{b} \\ \frac{1}{b} & 1 & -b \\ b & -\frac{1}{b} & 1 \end{pmatrix}
$$
, where $0 \neq b \in k$. Then $A = k(x_1, x_2, x_3) / (x_1^2, x_2^2, x_3^2, x_2x_1 - bx_1x_2, x_3x_1 - b_1x_2, x_3x_1 - b_2x_2 + b_3x_3 + b_4x_2 + b_5x_3 + c_6x_4 + c_7x_4 + c_8x_5 + c_9x_6 + c_9x_7 + c_1x_8 + c_1x_9 + c_2x_0 + c_3x_1 + c_4x_2 + c_6x_3 + c_7x_4 + c_9x_5 + c_1x_4 + c_1x_5 + c_1x_6 + c_1x_7 + c_2x_8 + c_1x_9 + c_2x_0 + c_3x_1 + c_4x_2 + c_3x_3 + c_4x_4 + c_5x_2 + c_6x_3 + c_7x_4 + c_8x_5 + c_9x_6 + c_1x_7 + c_2x_8 + c_3x_9 + c_1x_9 + c_2x_0 + c_3x_1 + c_4x_2 + c_5x_3 + c_6x_4 + c_7x_4 + c_9x_5 + c_1x_6 + c_1x_7 + c_2x_8 + c_3x_9 + c_1x_9 + c_2x_0 + c_3x_1 + c_4x_2 + c_3x_3 + c_4x_4 + c_5x_4 + c_6x_5 + c_7x_4 + c_8x_5 + c_9x_6 + c_1x_7 + c_1x_8 + c_1x_9 + c_1x_9 + c_1x_9 + c_2x_9 + c_3x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_2x_9 + c_3x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_2x_9 + c_3x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_1x_9 + c_2x_9 + c_3x_9 + c_$

 $\frac{1}{b}x_1x_3, x_3x_2 + bx_2x_3,$

 $V = \{ (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1) \},$

 $h_{e_1} = 1$, $h_{e_2} = h_{e_3} = -1$. Thus *A* is not symmetric. Let $\pi = (2, 3) \in S_3$, $c_1 = -1$, $c_2 = c_3 = \sqrt{-1}$. Then $q_{\pi(i)\pi(j)} = q_{ji}$, $1 \leq i, j \leq 3$,

$$
\begin{aligned} & c_1\,c_{\pi\,(1)}=c_1^2=\mathit{h}\mathsf{e}_1=1,\quad c_2\,c_{\pi\,(2)}=c_3\,c_{\pi\,(3)}=c_2\,c_3=\mathit{h}\mathsf{e}_2=\mathit{h}\mathsf{e}_3=-1\\ & \prod_{1\leq j < k \leq n}(\mathsf{q}^{\langle\pi\,(\mathsf{e}_k)\,\vert\,\pi\,(\mathsf{e}_j)\rangle})^{\langle\,a_{k}-1)(a_{j}-1\,\rangle}= \mathsf{q}^{\langle\pi\,(\mathsf{e}_2)\,\vert\,\pi\,(\mathsf{e}_1)\rangle}\mathsf{q}^{\langle\,\pi\,(\mathsf{e}_3)\,\vert\,\pi\,(\mathsf{e}_1)\,\rangle}\mathsf{q}^{\langle\,\pi\,(\mathsf{e}_3)\,\vert\,\pi\,(\mathsf{e}_2)\,\rangle}=1. \end{aligned}
$$

By the main theorem, (*A,* (*x*1*x*2*x*3) *[∗], ^x*1*x*2*x*3*, ^S*) is a bi-Frobenius algebra with permutation antipode, where

$$
\left\{ \begin{aligned} &\varepsilon(x_{\text{V}}) = \delta_{\text{V},0} \ \ \text{for all} \ \ \text{v} \in V; \\ &\Delta(1) = 1 \otimes 1; \\ &\Delta(x_{\text{V}}) = 1 \otimes x_{\text{V}} + x_{\text{V}} \otimes 1, \ \ \forall \ \ \text{v} \in V - \{(0,0,0),(1,1,1)\}; \\ &\Delta(x_{1}x_{2}x_{3}) = 1 \otimes x_{1}x_{2}x_{3} + x_{1}x_{2}x_{3} \otimes 1 \\ &\quad - x_{2}x_{3} \otimes x_{1} - \frac{\sqrt{-1}}{b}x_{1}x_{3} \otimes x_{3} + \sqrt{-1}x_{1}x_{2} \otimes x_{2} \\ &\quad + \frac{\sqrt{-1}}{b}x_{3} \otimes x_{1}x_{3} - \sqrt{-1}x_{2} \otimes x_{1}x_{2} - x_{1} \otimes x_{2}x_{3}; \\ &S(1) = 1; \ \ S(x_{1}) = -x_{1}; \ \ S(x_{2}) = \sqrt{-1}x_{3}; \ \ S(x_{3}) = \sqrt{-1}x_{2}; \\ &S(x_{1}x_{2}) = -\frac{\sqrt{-1}}{b}x_{1}x_{3}; \ \ S(x_{1}x_{3}) = -b\sqrt{-1}x_{1}x_{2}; \ \ S(x_{2}x_{3}) = -x_{2}x_{3}; \\ &S(x_{1}x_{2}x_{3}) = x_{1}x_{2}x_{3}. \end{aligned} \right.
$$

Thank you !