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Frobenius algebras

Frobenius Algebra We call a finite dimensional algebra over field k is a Frobenius algebra, if
there is a left A-mod isomorphism

A=~ A" := Homy(A, k), or equivently a right A-mod isomorphism A =~ A™.
If there is a A-bimodule isomorphism A = A*, then we say A is symmetric.
A Frobenius algebra can be represented by a pair (A, ¢), where ¢ € A", A* = A — ¢ (— is the

left action of A on A*); or equivalently, A* = ¢ «— A (+ is the right action). Then ¢ is called a
Frobenius homomorphism of A.

Nakayama automorphism Suppose that (A, ¢) is a Frobenius algebra. Then exist a unique
algebra isomorphism Ny : A — A such that

d(zy) = p(yNy(2)), V2, y € A,
which is called the Nakayama automorphism of A corresponding to ¢.
Let ¢/ € A*. Then ¢’ is a Frobenius homomorphism <= 3 invertible element 2; such that
¢ = z1 — ¢; < 3 20 such that ¢’ = ¢ ~ 23. Then Ny oz Z1N¢(I)Z;1: and Ny : z—

N¢(22:EZ2_1).
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Frobenius coalgebra

Suppose that (C, A, €) is a k-coalgebra. Using Sweedler notation: A(c¢) = > ¢1 ® c2. Then
C* = Homy(C, k) is a k-algebra: (fg)(c) = Y f(c1)g(c2), and Cis a C* bimodule. Denote the left
action of C* on Cby f— c¢. Then f— c¢=3" c1f(c2). Similarly, ¢ f= 3" f(c1)ca.

Frobenius coalgebra We say a finite dimensional coalgebra (C, A, €) is Frobenius, if there is
left C*-mod isomorphism

C* =~ C, or equivalently, right C*-mod isomorphism C* = C.

Frobenius coalgebra pair (C, t) : Finite dimensional coalgebra C is Frobenius if and only if

there is t € C such that C =t + C*; or equivalently, C= C" — t.
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bi-Frobenius algebras

Definition(Y.Doi, M.Takauchi 2000) Let A be a finite dimensional k-algebra and k-coalgebra.
te A, g€ A", S: A — Ais a k-linear map defined by

S(a) =Y ¢(ta)ts, Yac A
Quadruple (A, ¢, t, S), or simply A, is called bi-Frobenius algebra, if it satisfied
(i) The counit € : A — k is a algebra map; the unit 1 is a group-like element;
(ii) (A, ¢) is a Frobenius algebra; (A, t) is a Frobenius coalgebra;

(iii) S an anti-homomorphism of algebra, and an anti-homomorphism of coalgebra (i.e., e 0 S = ¢,

A(S(a)) = 3 S(a2) ® S(a1), ¥V a € A).
If this is the case, S is called the antipode of bi-Frobenius algebra A.

Remark (1) Sis a bijection.

(2) Finite dimensional Hopf algebras are bi-Frobenius algebras; the converse is not true (however
such examples are not easy to get).

(3) Bi-Frobenius algebras are Hopf if and only if the comultiplication is an algebra map.

(4) Previous works: Y. Doi,M. Takeuchi,M. Haim, D. Simson, Libin. Li, Yinhuo. Zhang, Yanhua.
Wang, Zhihua. Wang, Xiao-Wu. Chen, Pu. Zhang - --
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Quantum complete intersections

Suppose that a = (a1,---,an) is an integer vector satisfying a; > 2, n > 2; q = (gy) is
a multiplicatively antisymmetric matrix over k, i.e., a square matrix satisfying ¢; = 1 and
qijqj; = 1 for 1 <4, j < n. Then k-algebra

A(q,a) = Kz, -+, @) /{27, zjzs — qymizg, 1 < i, j< n)
is called a quantum complete intersection.

When all a; = 2, it is called quantum exterior algebra.

Originate from by Yu. I. Manin, 1987

Reach their present form by L. L. Avramov, V. N. Gasharov, I. V. Peeva, 1997.
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Quantum complete intersections

e Representation type: (P.A.Bergh - K.Erdmann 2011; C.M.Ringel 1974) The representation of
quantum complete intersection A = A(q,a) is tame or wild; and it is tame if and only if n = 2 =

a;p = az.

e Happel’s question (1989): If the Hochschild cohomology groups of a finite dimensional algebra
A over a field k vanish for all sufficiently large n, is the global dimension of A finite?
R.-O Buchweitz, E. L. Green, D. Madsen, . Solberg, 2005 using a quantum exterior algebra

A= k(z,y)/(2”, y*, 2y + qya)
shows negativity (when ¢ is not a root of unity) to this question.
e C. M. Ringel - P. Zhang (Algebra & Number Theory, 2020) use a quotient of quantum complete

intersection:
2 2 2
Kz, y,2)/(z", y°, 27, yz, Y+ qyz, 2 — 23, 2y — 21)

show the independence of the total reflexivity conditions of the Gorenstein projective modules (L.

Avramov - A. Martsinkovsky, 2002).
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Quantum complete intersections

Notations: Let V={v=(vi,---,v,) €Nj | v;<a;—1, 1 <i<n}. Then

(o =al ol [ve V)
is a k-basis of A(q,a). Specially,

Taci = xiblfl . 3?:”71
For any u,v € Z", denote ¢*I" = T[] q:.;.jw. Then zyzy = ¢V Tty
1<i<j<n

Lemma (Bergh 2009) Quantum complete intersections are local Frobenius algebras, z,_, is a Frobe-
nius homomorphism, its Nakayama automorphism is
q(:1717v|v)

Rrr—— Vve V.

NI:—I (2v) = qlv

It is symmetric if and only if MV = L is identity. We call N« L the canonical Nakayama automorphism,
a— a—
denoted by N.

ga—1=vlv)

Lcth,,:m. Then N (zy) = hyzy, Vv € V.
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Hopf algebra structures on quantum complete

intersections

Main theorem I Let A = A(q,a) = k(zq,- - ,xTL)/(x;.”, zjz; — qiziwi, 1 < 4, j < m). Then the
following statements are equivalent:

(1) A has Hopf algebra structure;
(2) A has bi-algebra structure;

(3) A is commutative, and each a; is a positive power of p, where p = chark is a prime.
Corollary Quantum exterior algebra A = k(z1, - - ,zn)/<z?, zjz; — gz, 1 < 4, j < n) admits

Hopf algebra structure if and only if A is commutative k(z1, - - - ,zn)/<z?, vz — xwy, 1 <4, j < n)

and chark = 2.
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Sketch of the proof of Main Theorem I : Kummer’s

Theorem

(1)= (2) is trivial; Key point of (2) = (3) is using A(z;) = 1 ® x; + 2; ® 1 + higher degree terms.
Then by

Az)"™ = A(z}") =0
one gets (2) =0, 1 <m < a; — 1. This is impossible when char k= 0.
When char k= p, we need Kummer’s theorem. Suppose p is a prime, n is a non-negative integer.
Writing n as the expansion in base p:

n=mno+mp+---+np, 0<ng, - ,n <p-1
For integer 1 < m < n, write m and ¢t = n — m as the expansion in base p, we get m; and t;. Let
{1, if m; +t; > p;
€5 = )

0, else.

Theorem (E. Kummer, 1852) Suppose that p is a prime, n, m are integers, 0 < m < n, v,(n)
be the p-adic valuation of n (the largest non-negative integer s such that p° divide m). Then

Vp((Z)) =2 &

j=0
Corollary Let n be a positive integer and p a prime. Assume that p | n with v,(n) = s. Then
Pt ()

Proof Firstly t = n—p° = t,p°+ ts+1ps+1 +-+ ns+,-ps+r. Then t; # p—1 (if not, p*T1 will divide
n = p°+ t). Then by Kummer’s theorem u,,((z')';)) =0,ie, pt (p"s) ]
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Sketch of the proof of Main Theorem I : The

construction

(2) = (3) (continue): Using this corollary we can deduce that each a; is a positive power of p.
Then by A(zjz;) = q5A(wz)), we get gy = 1 for all 4, 4.

(3)= (1) We need to give A a Hopf algebra structure. Define k-linear maps A : A — A ® A,
e:A— kand S: A — A as follows:

e(zy) = dv,03

. i—k
Azy) = 9] @z
1<i<n0<k<n;

S(zy) = (—1)Vay, Vve V.

It can be verified that this is a Hopf algebra structure on A.

Remark: Quantum complete intersections are braided Hopf algebras when g;; and a; are spe-

cially selected. (N. Andruskiewitsch - H. J. Schneider 1998, 2002)
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bi-Frobenius quantum complete intersections

As in most cases a quantum complete intersection doesn’t have Hopf algebra structures, we con-
sider its possible bi-Frobenius algebra structures, briefly bi-Frobenius quantum complete
intersection.

Main question: When does a quantum complete intersection become a bi-Frobenius quantum

complete intersection?

Proposition Suppose that (A, ¢, t, S) is a bi-Frobenius algebra structure on A = A(q, a), then

1)
(2)
(3)
4)
(5)

(6)

¢ = x;_, < z where z € A is an invertible element.
e(zy) = by, VVEV.

t= cxa_1, c€ k—{0}.

N? =1d,ie, h2=1, VvE V.

If Sis a graded map, then $? = N, $* =1d.

If chark = 0, then N2 =1d, $* =Id.
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rmutation antipode and compatible permutations

Definition Suppose quantum complete intersection A = A(q,a) admits a bi-Frobenius algebra
structure (A, ¢, t, S). Its antipode S'is called permutation antipode, if there exists a permutation
7 of V,and ¢y € k, Vv € V, such that

S(zy) = CvTr(v)s Vve V.
All bi-Frobenius quantum complete intersections founded so far have permutation antipodes.

Proposition Ifall a; > 3, ¢ # 1, and the antipode S of bi-Frobenius quantum complete intersection

A = A(q,a) is a graded map, then S is a permutation antipode.

Definition Permutation w € S, is called a compatible permutation of quantum complete inter-
section A(q,a), if
Qr(iy = Qs Ae(n() = Gi» 1< 45< n

Proposition The antipode S of a bi-Frobenius quantum complete intersection is a permutation
antipode if and only if there is a compatible permutation m € S,, and ¢; € k, 1 < ¢ < n, such that
S(Zl) = ciz,r(l-), 1 S ’LS n.

Main question: When does a quantum complete intersection become a bi-Frobenius quantum

intersection with permutation antipode?
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Proposition Suppose that A = A(q,a) is a bi-Frobenius algebra with permutation antipode (S, 7).
Then

(1) S(2a—1) = 2a—1; w(a—1)=a—1; 72 =1Id; Sis a graded map, S? =N and S* = Id.
(2) 7 induce an compatible permutation, still denoted by , satisfies

O B

ﬂ—(v):(vﬂ——l(ly"' ;'Uﬂ-—l(n))y Tr(v) = Ty vvevy

S(2i) = ci%Tr(), where each c¢; € k, satisfies
. i—1
CiCr(i) = hey, V1< i< m G H e =1

1<i<n

where gr = I (q(ﬂ(ek)\ﬂ(ej»)(%*1)(@]'*1)_
1<j<k<n
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bi-Frobenius quantum complete intersection with

permutation antipode

Main Theorem 2 Quantum complete intersection A = A(q,a) admits a bi-Frobenius algebra
structure with permutation antipode if and only if there is a compatible permutation = € S, and
ci € k, 1 <4< n,such that

2 i—1
m =1d, CiCr(i) = he, an H i =1
1<i<n

If this is th case, (A, x_;, @a—1, S) is a bi-Frobenius algebra; counit, comultiplication and antipode:

e(ay) = dy,o for ve VvV
A(la) =14 ® 1a;
Alzy) =14 Qazy + 2y ® 14 for ve V—{0,a—1};
A(Taey) = nggaqfv,w(v) Ta1 v ® Tr(v);
Sa)= TI ¢ I (@ @RIyt ), Vve V.
1<i<n = 1<j<k<n
where

1 v
— I l vi l I (m(eg) | m(ej)) yvjv,
Ja—1—v,m(v) = q<a—1—v|v) c; (q k ' ) kY ve V.
1<i<n  1<j<k<n

Specifically, S(zi) = ciTr(s,1 < i < n.
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Corollaries

Corollary Suppose that chark = 2. Then A = A(q,a) admits a bi-Frobenius
algebra structure with permutation antipode if and only if there is compatible
permutation 7 € S,, such that 72 = Id, N2 = Id.

Corollary Suppose that A = A(q,a) is symmetric. Then A admits a bi-
Frobenius algebra structure with permutation antipode if and only if there is a

compatible permutation 7 € S,, such that 72 = Id.
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Intrinsic characterization

Suppose that A is a bi-Frobenius algebra with permutation antipode. Follows

propositions before, hgl_ =1, 1 < i < n; then by Main Theorem 2, there is a

compatible permutation 7 € S, such that 72 = Id. Hence, define index sets
I={i|1<i<mn n())=1d}, J={i|1<i<mn, (i)}
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Intrinsic characterization

Suppose that A is a bi-Frobenius algebra with permutation antipode. Follows

propositions before, hgl_ =1, 1 < i < n; then by Main Theorem 2, there is a

compatible permutation 7 € S, such that 72 = Id. Hence, define index sets
I={i|1<i<mn n())=1d}, J={i|1<i<mn, (i)}

By considering the parity of a; and he, = £1, define index sets:
L ={icI|h,=1, a; iseven}, Jy={i€ J|h, =1, a;iseven},
L={iel]|hy,=1, a; is odd}, Jo={i€ J| h, =1, a; is odd},
L={iel|hy,=-1, a; iseven}, Js={i€ J| hy, =—1, a; is even},
Li={iel|h,=-1, a; isodd}, Ja={i€ J|he,=—1, a; is odd}.

When chark # 2, these sets have no intersection. Denote the number of elements
in set I by [1].
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Intrinsic characterization

Main theorem 3 Suppose that chark # 2 and /=1 € k. Then A = A(q,a)
admits a bi-Frobenius algebra structure with permutation antipode if and only
if N2 = Id, and there is compatible permutation 7 € S, satisfying 72 = Id, such
that || + |I5] # 0 or % is even.
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Intrinsic characterization

Main theorem 3 Suppose that chark # 2 and /=1 € k. Then A = A(q,a)
admits a bi-Frobenius algebra structure with permutation antipode if and only
if N2 = Id, and there is compatible permutation 7 € S, satisfying 72 = Id, such
that || + |I5] # 0 or % is even.

Main theorem 4 Suppose that chark # 2 and v/—1 ¢ k. Then A = A(q,a)
admits a bi-Frobenius algebra structure with permutation antipode if and only
if N2 = Id, and there is compatible permutation w € S, satisfying 72 = Id, such
that:

(1) ] + [1a] = 0;
(2) || #0or % is even.
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Example 1: symmetric

o o=

Let a = (2,2,2), q = , where 0 # b € k. Then A = k(ml,zz,m)/(zf, zg, zg, ToT) —

[
o

1
1
bxyxp, T3T1 — FET1T3, T3T2 — brax3),

vV ={(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)},

hey = hey = heg = 1. Thus A is symmetric. Let 7 = (2,3) € S3. Then ¢(jyx;) = @i, 1 < 4,5 < 3.
Let ¢; = ¢o = ¢3 = 1. Define

e(ay) = by, forall veV

A1) =1 1;

Alzy) =1Qazy+2,®1, V ve V—-{(0,0,0),(1,1,1)},
A(z17223) = 1 ® 212273 + 212273 @ 1

1
+ 2273 @ T1 + EIIIS ® x3 + 1122 Q T2

1
+ 38 @ z1x3 + T2 @ T122 + 1 @ T223;3
S(1)=1; S(z1) =z1; S(z2) = a3; S(x3) = 223
1
S(z122) = Zmln; S(z1x3) = bzrze; S(z2w3) = T35

S(z1m223) = T1T2T3.

By the Main theorem, (A, (z1z273)", @1z2z3, S) is a bi-Frobenius algebra with permutation an-
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Example 2: non-symmetric

b}
Let a = (2,2,2), q = 1 —b |, where 0 # b€ k Then A = k(z1, z3, w3)/(s7, 23, 13, sz — brjzy, w371 —
_1

b

- o= =

Fa1w3, wgan + bagaz),
v = {(0,0,0),(1,0,0),(0,1,0),(0,0,1), (1, 1,0), (1,0, 1), (0,1,1), (1,1, 1) },

hey = 1, hey = heg = —1. Thus A is not symmetric. Let @ = (2,3) € S3, ¢ = —1, cg = c3 = v/—1. Then
In(i)yw(G) = Gir 1 <i,j< 3,
€1Cn(1) = c% = hel =1, €2€n(2) = €3Cxr(3) = €203 = he2 = he3 = -1
(¢ R Im () (ap—1)(aj=1) _ (7 (ex)|m(e1)) g(mlez)lm(e1)) o(mleg)Imlen)) — 1.
1<j<k<n

By the main theorem, (A, (zjzo23)*, zqa0z3, S) is a bi-Frobenius algebra with permutation antipode, where
e(ay) = 8y forall veV;

A1) =1®1;

Alzy) =1Qay +2y®1, V ve V—{(0,0,0),(1,1,1)};

A(ryrgrg) = 1 @ xyagrg + zy2023 @ 1

— @213 ® 71 — r103 @ 23 + v —lzjrp ® 02

=1
+ 23 ® 2123 — /—1lag @ zyap — v @ 79735
S(1) =1; S(z1) = —z1; S(wa) = V/—1lzg; S(zg) = v/—lag;

—1
z1eg; S(zpz3) = —bV/ —lzzp; S(ag73) = —3273;

S(zyag) = —

S(z17933) = 513973
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Thank you !
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