Bi-Frobenius Algebra structures on quantum complete intersections

Hai Jin

Shang Hai Jiaotong University

2024 - 8 - 8

Frobenius algebras

Frobenius Algebra We call a finite dimensional algebra over field k is a Frobenius algebra, if there is a left A-mod isomorphism

 $A \cong A^* := \operatorname{Hom}_k(A, k)$, or equivently a right A-mod isomorphism $A \cong A^*$.

If there is a A-bimodule isomorphism $A \cong A^*$, then we say A is symmetric.

A Frobenius algebra can be represented by a pair (A, ϕ) , where $\phi \in A^*$, $A^* = A \rightarrow \phi$ $(\rightarrow$ is the left action of A on A^*); or equivalently, $A^* = \phi \leftarrow A$ (\leftarrow is the right action). Then ϕ is called a **Frobenius homomorphism** of A.

Nakayama automorphism Suppose that (A, ϕ) is a Frobenius algebra. Then exist a unique algebra isomorphism $\mathcal{N}_{\phi} : A \longrightarrow A$ such that

$$\phi(xy) = \phi(y\mathcal{N}_{\phi}(x)), \ \forall \ x, \ y \in A,$$

which is called the Nakayama automorphism of A corresponding to ϕ .

Let $\phi' \in A^*$. Then ϕ' is a Frobenius homomorphism $\iff \exists$ invertible element z_1 such that $\phi' = z_1 \rightharpoonup \phi$; $\iff \exists z_2$ such that $\phi' = \phi \leftarrow z_2$. Then $\mathcal{N}_{\phi'} : x \mapsto z_1 \mathcal{N}_{\phi}(x) z_1^{-1}$: and $\mathcal{N}_{\phi'} : x \mapsto \mathcal{N}_{\phi}(z_2 x z_2^{-1})$.

Frobenius coalgebra

Suppose that (C, Δ, ε) is a k-coalgebra. Using Sweedler notation: $\Delta(c) = \sum c_1 \otimes c_2$. Then $C^* = \operatorname{Hom}_k(C, k)$ is a k-algebra: $(fg)(c) = \sum f(c_1)g(c_2)$, and C is a C^* bimodule. Denote the left action of C^* on C by $f \rightarrow c$. Then $f \rightarrow c = \sum c_1 f(c_2)$. Similarly, $c \leftarrow f = \sum f(c_1)c_2$.

Frobenius coalgebra We say a finite dimensional coalgebra (C, Δ, ε) is Frobenius, if there is left C^* -mod isomorphism

 $C^* \cong C$, or equivalently, right C^* -mod isomorphism $C^* \cong C$.

Frobenius coalgebra pair (C, t): Finite dimensional coalgebra C is Frobenius if and only if there is $t \in C$ such that $C = t \leftarrow C^*$; or equivalently, $C = C^* \rightharpoonup t$.

bi-Frobenius algebras

Definition(Y.Doi, M.Takauchi 2000) Let A be a finite dimensional k-algebra and k-coalgebra. $t \in A, \phi \in A^*, S: A \longrightarrow A$ is a k-linear map defined by

$$S(a) = \sum \phi(t_1 a) t_2, \quad \forall \ a \in A$$

Quadruple (A, ϕ, t, S) , or simply A, is called bi-Frobenius algebra, if it satisfied

(i) The counit $\varepsilon: A \longrightarrow k$ is a algebra map; the unit 1 is a group-like element;

(ii) (A, ϕ) is a Frobenius algebra; (A, t) is a Frobenius coalgebra;

(iii) S an anti-homomorphism of algebra, and an anti-homomorphism of coalgebra (i.e., $\varepsilon \circ S = \varepsilon$, $\Delta(S(a)) = \sum S(a_2) \otimes S(a_1), \forall a \in A$).

If this is the case, S is called the antipode of bi-Frobenius algebra A.

Remark (1) S is a bijection.

(2) Finite dimensional Hopf algebras are bi-Frobenius algebras; the converse is not true (however such examples are not easy to get).

(3) Bi-Frobenius algebras are Hopf if and only if the comultiplication is an algebra map.

(4) Previous works: Y. Doi, M. Takeuchi, M. Haim, D. Simson, Libin. Li, Yinhuo. Zhang, Yanhua. Wang, Zhihua. Wang, Xiao-Wu. Chen, Pu. Zhang · · ·

Quantum complete intersections

Suppose that $\mathbf{a} = (a_1, \dots, a_n)$ is an integer vector satisfying $a_i \ge 2, n \ge 2$; $\mathbf{q} = (q_{ij})$ is a multiplicatively antisymmetric matrix over k, i.e., a square matrix satisfying $q_{ii} = 1$ and $q_{ij}q_{ji} = 1$ for $1 \le i, j \le n$. Then k-algebra

$$A(\mathbf{q}, \mathbf{a}) = k \langle x_1, \cdots, x_n \rangle / \langle x_i^{a_i}, x_j x_i - q_{ij} x_i x_j, 1 \le i, j \le n \rangle$$

is called a quantum complete intersection.

When all $a_i = 2$, it is called quantum exterior algebra.

Originate from by Yu. I. Manin, 1987

Reach their present form by L. L. Avramov, V. N. Gasharov, I. V. Peeva, 1997.

Quantum complete intersections

• Representation type: (P.A.Bergh - K.Erdmann 2011; C.M.Ringel 1974) The representation of quantum complete intersection $A = A(\mathbf{q}, \mathbf{a})$ is tame or wild; and it is tame if and only if $n = 2 = a_1 = a_2$.

• Happel's question (1989): If the Hochschild cohomology groups of a finite dimensional algebra A over a field k vanish for all sufficiently large n, is the global dimension of A finite? R.-O Buchweitz, E. L. Green, D. Madsen, Ø. Solberg, 2005 using a quantum exterior algebra

$$A = k\langle x, y \rangle / \langle x^2, y^2, xy + qyx \rangle$$

shows negativity (when q is not a root of unity) to this question.

• C. M. Ringel - P. Zhang (Algebra & Number Theory, 2020) use a quotient of quantum complete intersection:

$$k\langle x,y,z\rangle/\langle x^2, y^2, z^2, yz, xy+qyx, xz-zx, zy-zx\rangle$$

show the independence of the total reflexivity conditions of the Gorenstein projective modules (L. Avramov - A. Martsinkovsky, 2002).

Quantum complete intersections

Notations: Let $V = \{ \mathbf{v} = (v_1, \cdots, v_n) \in \mathbb{N}_0^n \mid v_i \leq a_i - 1, 1 \leq i \leq n \}$. Then

$$\{x_{\mathbf{v}} := x_1^{v_1} \cdots x_n^{v_n} \mid \mathbf{v} \in V\}$$

is a k-basis of $A(\mathbf{q}, \mathbf{a})$. Specially,

$$x_{\mathbf{a}-1} = x_1^{a_1-1} \cdots x_n^{a_n-1}$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{Z}^n$, denote $\mathbf{q}^{\langle \mathbf{u} | \mathbf{v} \rangle} = \prod_{1 \leq i < j \leq n} q_{ij}^{u_j v_i}$. Then $x_{\mathbf{u}} x_{\mathbf{v}} = \mathbf{q}^{\langle \mathbf{u} | \mathbf{v} \rangle} x_{\mathbf{u}+\mathbf{v}}$.

Lemma (Bergh 2009) Quantum complete intersections are local Frobenius algebras, x_{a-1}^* is a Frobenius homomorphism, its Nakayama automorphism is

$$\mathcal{N}_{x^*_{\mathbf{a}-1}}(x_{\mathbf{v}}) = rac{\mathbf{q}^{\langle \mathbf{a}-1-\mathbf{v}|\mathbf{v}
angle}}{\mathbf{q}^{\langle \mathbf{v}|\mathbf{a}-1-\mathbf{v}
angle}} x_{\mathbf{v}}, \ \forall \ \mathbf{v} \in \ V.$$

It is symmetric if and only if $\mathcal{N}_{x^*_{\mathbf{a}-1}}$ is identity. We call $\mathcal{N}_{x^*_{\mathbf{a}-1}}$ the canonical Nakayama automorphism, denoted by \mathcal{N} .

Let $h_{\mathbf{v}} = \frac{q^{\langle \mathbf{a}-1-\mathbf{v} \mid \mathbf{v} \rangle}}{q^{\langle \mathbf{v} \mid \mathbf{a}-1-\mathbf{v} \rangle}}$. Then $\mathcal{N}(x_{\mathbf{v}}) = h_{\mathbf{v}}x_{\mathbf{v}}, \quad \forall \ \mathbf{v} \in V$.

Hopf algebra structures on quantum complete intersections

Main theorem I Let $A = A(\mathbf{q}, \mathbf{a}) = k\langle x_1, \cdots, x_n \rangle / \langle x_i^{a_i}, x_j x_i - q_{ij} x_i x_j, 1 \le i, j \le n \rangle$. Then the following statements are equivalent:

- (1) A has Hopf algebra structure;
- (2) A has bi-algebra structure;
- (3) A is commutative, and each a_i is a positive power of p, where p = chark is a prime.

Corollary Quantum exterior algebra $A = k\langle x_1, \dots, x_n \rangle / \langle x_i^2, x_j x_i - q_{ij} x_i x_j, 1 \le i, j \le n \rangle$ admits Hopf algebra structure if and only if A is commutative $k\langle x_1, \dots, x_n \rangle / \langle x_i^2, x_j x_i - x_i x_j, 1 \le i, j \le n \rangle$ and chark = 2.

Sketch of the proof of Main Theorem I : Kummer's Theorem

(1) \implies (2) is trivial; Key point of (2) \implies (3) is using $\Delta(x_i) = 1 \otimes x_i + x_i \otimes 1 + higher degree terms. Then by$

$$\Delta(x_1)^{a_1} = \Delta(x_1^{a_1}) = 0$$

one gets $\binom{a_1}{m} = 0$, $1 \le m \le a_1 - 1$. This is impossible when char k = 0.

When char k = p, we need Kummer's theorem. Suppose p is a prime, n is a non-negative integer. Writing n as the expansion in base p:

$$n = n_0 + n_1 p + \dots + n_r p^r, \quad 0 \le n_0, \dots, n_r \le p - 1.$$

For integer $1 \le m \le n$, write m and t = n - m as the expansion in base p, we get m_j and t_j . Let

$$\epsilon_j = \begin{cases} 1, & \text{if } m_j + t_j \ge p; \\ 0, & \text{else.} \end{cases}$$

Theorem (E. Kummer, 1852) Suppose that p is a prime, n, m are integers, $0 \le m \le n, \nu_p(n)$ be the *p*-adic valuation of n (the largest non-negative integer s such that p^s divide n). Then $\nu_p(\binom{n}{m}) = \sum_{i>0} \epsilon_{j}$.

Corollary Let *n* be a positive integer and *p* a prime. Assume that $p \mid n$ with $\nu_p(n) = s$. Then $p \nmid \binom{n}{p^s}$.

Proof Firstly $t = n - p^s = t_s p^s + t_{s+1} p^{s+1} + \dots + n_{s+r} p^{s+r}$. Then $t_s \neq p-1$ (if not, p^{s+1} will divide $n = p^s + t$). Then by Kummer's theorem $\nu_p(\binom{n}{p^s}) = 0$, i.e., $p \nmid \binom{n}{p^s}$.

10/23

Sketch of the proof of Main Theorem I : The construction

(2) \implies (3) (continue): Using this corollary we can deduce that each a_i is a positive power of p. Then by $\Delta(x_j x_i) = q_{ij} \Delta(x_i x_j)$, we get $q_{ij} = 1$ for all i, j.

(3) \implies (1) We need to give A a Hopf algebra structure. Define k-linear maps $\Delta : A \longrightarrow A \otimes A$, $\varepsilon : A \longrightarrow k$ and $S : A \longrightarrow A$ as follows:

$$\begin{aligned} \varepsilon(x_{\mathbf{v}}) &= \delta_{\mathbf{v},0}; \\ \Delta(x_{\mathbf{v}}) &= \prod_{1 \le i \le n} \sum_{0 \le k \le v_i} {v_i \choose k} x_i^k \otimes x_i^{v_i - k}; \\ S(x_{\mathbf{v}}) &= (-1)^{|\mathbf{v}|} x_{\mathbf{v}}, \ \forall \ \mathbf{v} \in V. \end{aligned}$$

It can be verified that this is a Hopf algebra structure on A.

Remark: Quantum complete intersections are **braided Hopf algebras** when q_{ij} and a_i are specially selected. (N. Andruskiewitsch - H. J. Schneider 1998, 2002)

bi-Frobenius quantum complete intersections

As in most cases a quantum complete intersection **doesn't** have Hopf algebra structures, we consider its **possible bi-Frobenius algebra structures**, briefly **bi-Frobenius quantum complete** intersection.

Main question: When does a quantum complete intersection become a bi-Frobenius quantum complete intersection?

Proposition Suppose that (A, ϕ, t, S) is a bi-Frobenius algebra structure on $A = A(\mathbf{q}, \mathbf{a})$, then

- (1) $\phi = x_{\mathbf{a}-1}^* \leftarrow z$, where $z \in A$ is an invertible element.
- (2) $\varepsilon(x_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}}, \quad \forall \mathbf{v} \in V.$
- (3) $t = cx_{a-1}, c \in k \{0\}.$
- (4) $\mathcal{N}^2 = \text{Id}, \text{ i.e.}, h_{\mathbf{v}}^2 = 1, \forall \mathbf{v} \in V.$
- (5) If S is a graded map, then $S^2 = \mathcal{N}, S^4 = \text{Id}.$
- (6) If $\operatorname{char} k = 0$, then $\mathcal{N}_{\phi}^2 = \operatorname{Id}, S^4 = \operatorname{Id}.$

Permutation antipode and compatible permutations

Definition Suppose quantum complete intersection $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure (A, ϕ, t, S) . Its antipode S is called **permutation antipode**, if there exists a permutation π of V, and $c_{\mathbf{v}} \in k$, $\forall \mathbf{v} \in V$, such that

$$S(x_{\mathbf{v}}) = c_{\mathbf{v}} x_{\pi(\mathbf{v})}, \ \forall \ \mathbf{v} \in V.$$

All bi-Frobenius quantum complete intersections founded so far have permutation antipodes.

Proposition If all $a_i \ge 3$, $q_{ij} \ne 1$, and the antipode S of bi-Frobenius quantum complete intersection $A = A(\mathbf{q}, \mathbf{a})$ is a graded map, then S is a permutation antipode.

Definition Permutation $\pi \in S_n$ is called a **compatible permutation** of quantum complete intersection $A(\mathbf{q}, \mathbf{a})$, if

$$a_{\pi(i)} = a_i, \quad q_{\pi(i)\pi(j)} = q_{ji}, \quad 1 \le i, j \le n.$$

Proposition The antipode S of a bi-Frobenius quantum complete intersection is a permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ and $c_i \in k$, $1 \leq i \leq n$, such that $S(x_i) = c_i x_{\pi(i)}, \quad 1 \leq i \leq n$.

Main question: When does a quantum complete intersection become a bi-Frobenius quantum intersection with permutation antipode?

Necessity

Proposition Suppose that $A = A(\mathbf{q}, \mathbf{a})$ is a bi-Frobenius algebra with permutation antipode (S, π) . Then

(1)
$$S(x_{a-1}) = x_{a-1}; \quad \pi(a-1) = a-1; \quad \pi^2 = Id; \quad S \text{ is a graded map}, \quad S^2 = \mathcal{N} \text{ and } S^4 = Id.$$

(2) π induce an compatible permutation, still denoted by π , satisfies

$$\pi(\mathbf{v}) = (v_{\pi^{-1}(1)}, \cdots, v_{\pi^{-1}(n)}), \quad x_{\pi(\mathbf{v})} = x_1^{v_{\pi^{-1}(1)}} \cdots x_n^{v_{\pi^{-1}(n)}}, \quad \forall \ \mathbf{v} \in V;$$

 $S(x_i) = c_i x_{\pi(i)}$, where each $c_i \in k$, satisfies

$$c_i c_{\pi(i)} = h_{\mathbf{e}_i}, \ \forall \ 1 \le i \le n; \qquad q_{\pi} \prod_{1 \le i \le n} c_i^{a_i - 1} = 1$$

where $q_{\pi} = \prod_{1 \le i \le n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k) | \pi(\mathbf{e}_j) \rangle})^{(a_k - 1)(a_j - 1)}.$

bi-Frobenius quantum complete intersection with permutation antipode

Main Theorem 2 Quantum complete intersection $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ and $c_i \in k, 1 \leq i \leq n$, such that

$$\pi^2 = \text{Id}, \qquad c_i c_{\pi(i)} = h_{\mathbf{e}_i}, \qquad q_{\pi} \prod_{1 \le i \le n} c_i^{a_i - 1} = 1.$$

If this is the case, $(A, x_{a-1}^*, x_{a-1}, S)$ is a bi-Frobenius algebra; counit, comultiplication and antipode:

$$\begin{cases} \varepsilon(\mathbf{x}_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}} \quad \text{for } \mathbf{v} \in V; \\ \Delta(1_A) = 1_A \otimes 1_A; \\ \Delta(\mathbf{x}_{\mathbf{v}}) = 1_A \otimes \mathbf{x}_{\mathbf{v}} + \mathbf{x}_{\mathbf{v}} \otimes 1_A \quad \text{for } \mathbf{v} \in V - \{\mathbf{0}, \mathbf{a} - 1\}; \\ \Delta(\mathbf{x}_{\mathbf{a}-1}) = \sum_{\mathbf{v} \in V} g_{\mathbf{a}-1-\mathbf{v},\pi(\mathbf{v})} x_{\mathbf{a}-1-\mathbf{v}} \otimes x_{\pi(\mathbf{v})}; \\ S(\mathbf{x}_{\mathbf{v}}) = \prod_{1 \le i \le n} c_i^{v_i} \prod_{1 \le j < k \le n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k) | \pi(\mathbf{e}_j) \rangle})^{v_j v_k} x_{\pi(\mathbf{v})}, \ \forall \ \mathbf{v} \in V. \end{cases}$$

where

$$g_{\mathbf{a}-\mathbf{1}-\mathbf{v},\pi(\mathbf{v})} = \frac{1}{\mathbf{q}^{\langle \mathbf{a}-\mathbf{1}-\mathbf{v}|\mathbf{v}\rangle}} \prod_{1 \le i \le n} c_i^{v_i} \prod_{1 \le j < k \le n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k) \mid \pi(\mathbf{e}_j) \rangle})^{v_j v_k}, \ \forall \ \mathbf{v} \in V.$$

Specifically, $S(x_i) = c_i x_{\pi(i)}, 1 \le i \le n$.

Corollaries

Corollary Suppose that $\operatorname{char} k = 2$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if there is compatible permutation $\pi \in S_n$ such that $\pi^2 = \operatorname{Id}$, $\mathcal{N}^2 = \operatorname{Id}$.

Corollary Suppose that $A = A(\mathbf{q}, \mathbf{a})$ is symmetric. Then A admits a bi-Frobenius algebra structure with permutation antipode if and only if there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$. Suppose that A is a bi-Frobenius algebra with permutation antipode. Follows propositions before, $h_{\mathbf{e}_i}^2 = 1$, $1 \leq i \leq n$; then by Main Theorem 2, there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$. Hence, define index sets

$$I = \{i \mid 1 \le i \le n, \ \pi(i) = i\}, \ J = \{i \mid 1 \le i \le n, \ \pi(i) \neq i\}.$$

Suppose that A is a bi-Frobenius algebra with permutation antipode. Follows propositions before, $h_{\mathbf{e}_i}^2 = 1$, $1 \leq i \leq n$; then by Main Theorem 2, there is a compatible permutation $\pi \in S_n$ such that $\pi^2 = \text{Id}$. Hence, define index sets

$$I = \{i \mid 1 \le i \le n, \ \pi(i) = i\}, \ J = \{i \mid 1 \le i \le n, \ \pi(i) \neq i\}.$$

By considering the parity of a_i and $h_{\mathbf{e}_i} = \pm 1$, define index sets:

$$\begin{split} &I_1 = \{i \in I \mid h_{\mathbf{e}_i} = 1, \ a_i \ \text{is even}\}, \qquad J_1 = \{i \in J \mid h_{\mathbf{e}_i} = 1, \ a_i \ \text{is even}\}, \\ &I_2 = \{i \in I \mid h_{\mathbf{e}_i} = 1, \ a_i \ \text{is odd}\}, \qquad J_2 = \{i \in J \mid h_{\mathbf{e}_i} = 1, \ a_i \ \text{is odd}\}, \\ &I_3 = \{i \in I \mid h_{\mathbf{e}_i} = -1, \ a_i \ \text{is even}\}, \qquad J_3 = \{i \in J \mid h_{\mathbf{e}_i} = -1, \ a_i \ \text{is even}\}, \\ &I_4 = \{i \in I \mid h_{\mathbf{e}_i} = -1, \ a_i \ \text{is odd}\}, \qquad J_4 = \{i \in J \mid h_{\mathbf{e}_i} = -1, \ a_i \ \text{is odd}\}. \end{split}$$

When char $k \neq 2$, these sets have no intersection. Denote the number of elements in set I by |I|.

Intrinsic characterization

Main theorem 3 Suppose that $\operatorname{char} k \neq 2$ and $\sqrt{-1} \in k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \operatorname{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \operatorname{Id}$, such that $|I_1| + |I_3| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Intrinsic characterization

Main theorem 3 Suppose that $\operatorname{char} k \neq 2$ and $\sqrt{-1} \in k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \operatorname{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \operatorname{Id}$, such that $|I_1| + |I_3| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Main theorem 4 Suppose that $\operatorname{char} k \neq 2$ and $\sqrt{-1} \notin k$. Then $A = A(\mathbf{q}, \mathbf{a})$ admits a bi-Frobenius algebra structure with permutation antipode if and only if $\mathcal{N}^2 = \operatorname{Id}$, and there is compatible permutation $\pi \in S_n$ satisfying $\pi^2 = \operatorname{Id}$, such that:

(1) $|I_3| + |I_4| = 0;$ (2) $|I_1| \neq 0$ or $\frac{|J_3|}{2}$ is even.

Example 1: symmetric

Let
$$\mathbf{a} = (2, 2, 2), \ \mathbf{q} = \begin{pmatrix} 1 & b & \frac{1}{b} \\ \frac{1}{b} & 1 & b \\ b & \frac{1}{b} & 1 \end{pmatrix}$$
, where $0 \neq b \in k$. Then $A = k\langle x_1, x_2, x_3 \rangle / \langle x_1^2, x_2^2, x_3^2, x_2x_1 - bx_1x_2, x_3x_1 - \frac{1}{b}x_1x_3, x_3x_2 - bx_2x_3 \rangle$,
 $V = \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\},$
 $h_{\mathbf{e}_1} = h_{\mathbf{e}_2} = h_{\mathbf{e}_3} = 1$. Thus A is symmetric. Let $\pi = (2, 3) \in S_3$. Then $q_{\pi(i)\pi(j)} = q_{ji}, 1 \leq i, j \leq 3$.
Let $c_1 = c_2 = c_3 = 1$. Define

$$\begin{cases} \varepsilon(x_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}} \text{ for all } \mathbf{v} \in V; \\ \Delta(1) = 1 \otimes 1; \\ \Delta(x_{\mathbf{v}}) = 1 \otimes x_{\mathbf{v}} + x_{\mathbf{v}} \otimes 1, \quad \forall \ \mathbf{v} \in V - \{(0,0,0), (1,1,1)\}, \\ \Delta(x_1 x_2 x_3) = 1 \otimes x_1 x_2 x_3 + x_1 x_2 x_3 \otimes 1 \\ & + x_2 x_3 \otimes x_1 + \frac{1}{b} x_1 x_3 \otimes x_3 + x_1 x_2 \otimes x_2 \\ & + \frac{1}{b} x_3 \otimes x_1 x_3 + x_2 \otimes x_1 x_2 + x_1 \otimes x_2 x_3; \\ S(1) = 1; \quad S(x_1) = x_1; \quad S(x_2) = x_3; \quad S(x_3) = x_2; \\ S(x_1 x_2) = \frac{1}{b} x_1 x_3; \quad S(x_1 x_3) = b x_1 x_2; \quad S(x_2 x_3) = x_2 x_3; \\ S(x_1 x_2 x_3) = x_1 x_2 x_3. \end{cases}$$

By the Main theorem, $(A, (x_1x_2x_3)^*, x_1x_2x_3, S)$ is a bi-Frobenius algebra with permutation antipode.

Example 2: non-symmetric

Let
$$\mathbf{a} = (2, 2, 2), \ \mathbf{q} = \begin{pmatrix} 1 & b & \frac{1}{b} \\ \frac{1}{b} & 1 & -b \\ b & -\frac{1}{b} & 1 \end{pmatrix}, \ \text{where} \ \ 0 \neq b \in k. \ \text{Then} \ A = k\langle x_1, \ x_2, \ x_3 \rangle / \langle x_1^2, \ x_2^2, \ x_3^2, \ x_2x_1 - bx_1x_2, \ x_3x_1 - bx_1x_2 \rangle$$

 $\frac{1}{b}x_1x_3, x_3x_2 + bx_2x_3\rangle,$

 $V = \{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)\},\$

 $h_{\mathbf{e}_1} = 1$, $h_{\mathbf{e}_2} = h_{\mathbf{e}_3} = -1$. Thus A is not symmetric. Let $\pi = (2,3) \in S_3$, $c_1 = -1$, $c_2 = c_3 = \sqrt{-1}$. Then $q_{\pi(i)\pi(j)} = q_{ji}$, $1 \le i, j \le 3$,

$$\begin{split} c_1 c_{\pi(1)} &= c_1^2 = h_{\mathbf{e}_1} = 1, \quad c_2 c_{\pi(2)} = c_3 c_{\pi(3)} = c_2 c_3 = h_{\mathbf{e}_2} = h_{\mathbf{e}_3} = -1 \\ \prod_{1 \leq j < k \leq n} (\mathbf{q}^{\langle \pi(\mathbf{e}_k) | \pi(\mathbf{e}_j) \rangle})^{(a_k - 1)(a_j - 1)} &= \mathbf{q}^{\langle \pi(\mathbf{e}_2) | \pi(\mathbf{e}_1) \rangle} \mathbf{q}^{\langle \pi(\mathbf{e}_3) | \pi(\mathbf{e}_1) \rangle} \mathbf{q}^{\langle \pi(\mathbf{e}_3) | \pi(\mathbf{e}_2) \rangle} = 1 \end{split}$$

By the main theorem, $(A, (x_1x_2x_3)^*, x_1x_2x_3, S)$ is a bi-Frobenius algebra with permutation antipode, where

$$\begin{cases} \varepsilon(x_{\mathbf{v}}) = \delta_{\mathbf{v},\mathbf{0}} \quad \text{for all } \mathbf{v} \in V; \\ \Delta(1) = 1 \otimes 1; \\ \Delta(x_{\mathbf{v}}) = 1 \otimes x_{\mathbf{v}} + x_{\mathbf{v}} \otimes 1, \quad \forall \ \mathbf{v} \in V - \{(0, 0, 0), (1, 1, 1)\}; \\ \Delta(x_1 x_2 x_3) = 1 \otimes x_1 x_2 x_3 + x_1 x_2 x_3 \otimes 1 \\ & - x_2 x_3 \otimes x_1 - \frac{\sqrt{-1}}{b} x_1 x_3 \otimes x_3 + \sqrt{-1} x_1 x_2 \otimes x_2 \\ & + \frac{\sqrt{-1}}{b} x_3 \otimes x_1 x_3 - \sqrt{-1} x_2 \otimes x_1 x_2 - x_1 \otimes x_2 x_3; \\ S(1) = 1; \quad S(x_1) = -x_1; \quad S(x_2) = \sqrt{-1} x_3; \quad S(x_3) = \sqrt{-1} x_2; \\ S(x_1 x_2) = -\frac{\sqrt{-1}}{b} x_1 x_3; \quad S(x_1 x_3) = -b\sqrt{-1} x_1 x_2; \quad S(x_2 x_3) = -x_2 x_3 \\ S(x_1 x_2 x_3) = x_1 x_2 x_3. \end{cases}$$

Thank you !