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Part I: Computing TorA∗ (k, k) and Ext∗A(k, k) via projective
resolutions

Let k be a field.
Let A = T (V )/(R) be an algebra, where V is a vector space,

T (V ) = k⊕ V ⊕ · · · ⊕ V⊗n ⊗ · · ·

is the tensor algebra generated by V . Then k is a simple A-module.

Problem

Compute TorA∗ (k, k) and Ext∗A(k, k).

Answer

Find a (minimal) projective resolution P∗ → k → 0 of k as A-modules
then

TorA∗ (k, k) = H∗(k⊗A P∗), Ext∗A(k, k) = H∗(HomA(P∗, k)).



Part I: Reconstruction problem

Problem (Reconstruction problem)

Can we reconstruct A from the Ext∗A(k, k) or Tor
A
∗ (k, k)?

Answer

Yes, but with the A∞-algebra structure on Ext∗A(k, k) or the
A∞-coalgebra structure on TorA∗ (k, k)



Part I: From associative algebras to A∞-algebras

Definition

A (nonunital) associative k-algebra is a pair (A, µ), where A is a
k-vector space,

µ : A⊗ A → A, a⊗b 7→ a · b = ab

is a linear map, called multiplication, which satisfy the associativity
axiom:

(ab)c = a(bc)

or equivalently,
(µ⊗idA)µ = (idA⊗µ)µ

A graded algebra is a graded space A = ⊕n∈ZAn endowed with an
associative product such that Ap · Aq ⊆ Ap+q,∀p, q ∈ Z.
A differential graded algebra is a graded algebra A = ⊕n∈ZAn

equipped with a square zero linear map d : A → A of degree −1
subject to

d(ab) = d(a)b + (−1)|a|ad(b),

for any a, b ∈ A homogeneous, where |a| denotes the degree of a.



Part I: From associative algebras to A∞-algebras

Definition (Stasheff 1963)

An A∞-algebra structure on a graded space V consists a family of
operators {mn}n⩾1 with mn : V⊗n → V , |mn| = n − 2, and the family
{mn}n⩾1 satisfies the following Stasheff identities:∑

i+j+k=n,i,k≥0,j≥1

(−1)i+jkmi+1+k ◦ (Id⊗i⊗mj⊗Id⊗k) = 0,∀n ⩾ 1.

Example

n = 1, m1 ◦m1 = 0 with |m1| = −1, i.e. m1 is a differential;

n = 2, m1 ◦m2 = m2 ◦ (Id⊗m1 +m1⊗Id), i.e. m1 is a derivation
with respect to the multiplication m2;

n = 3, m2 ◦ (m2⊗Id)−m2 ◦ (Id⊗m2) =
−
(
m1 ◦m3 +m3 ◦ (m1⊗Id⊗2 + Id⊗m1⊗Id+m1⊗Id⊗2)

)
, i.e. m2 is

associative up to homotopy.

J. D. Stasheff, Homotopy associativity of H -spaces. I, II. Trans.
Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963) 293-312.



Part I: A∞-algebras via bar construction
Let A = k1A ⊕ A be an augmented differential graded algebra. Its bar
construction B(A) is defined to be the tensor coalgebra

T c(sA) = k⊕ sA⊕ (sA)⊗2 ⊕ · · ·

via the deconcartenation coproduct

∆(sa1 ⊗ · · · ⊗ san) =
n∑

i=0

(sa1 ⊗ · · · ⊗ sai )⊗ (sai+1 ⊗ · · · ⊗ san)

The differential dA of A induces a differential d1 on B(A) via

d1([a1|a2| · · · |an]) =
n∑

i=1

±[a1| · · · |dA(ai )| · · · |an].

The product µA : A⊗2 → A on A also induces a differential d2 on B(A)
via

d2([a1|a2| · · · |an]) =
n∑

i=1

±[a1| · · · |µA(ai ⊗ ai+1)| · · · |an].

Now (B(A), d = d1 + d2) is a (coaugmented) differential graded
(conilpotent cofree) coalgebra.



Part I: A∞-algebras via bar construction

Theorem

A graded vector space A is an A∞-algebra iff B(A) is a (coaugmented)
differential graded (conilpotent cofree) coalgebra via its canonical
coalgebra structure.

mn : A⊗n → A ↔ dn : (sA)⊗n → sA



Part I: From coalgebras to A∞-coalgebras

Definition

A noncounital coalgebra is a pair (C ,∆) where C is a vector space,
∆ : C → C⊗C is a linear map, called the comultiplication which satisfies
the coassociativity axion

(∆⊗ idC ) ◦∆ = (idC ⊗∆) ◦∆

or equivalently there exists a commutative diagram

C⊗C⊗C C⊗C
IdC⊗∆oo

C⊗C

∆⊗IdC

OO

C

∆

OO

∆
oo

.

We can also define graded coalgebras, differential graded coalgebras etc.
An A∞-coalgebra structure on a graded space V consists a family of
higher comultiplications ∆n : V → V⊗n, |∆n| = n − 2 subject to
coStasheff identities.



Part I: From coalgebras to A∞-coalgebras

Let C = k1C ⊕ C be a coaugmented differential graded coalgebra. Its
cobar construction Ω(C ) is defined to be the tensor algebra T (s−1C )
with concatenation product.
We shall write an element of Ω(A) as ⟨a1|a2| · · · |an⟩ ∈ (s−1A)⊗n for
a1, · · · , an ∈ A.
The differential dC of C induces a differential d1 on Ω(C ) via

d1(⟨c1| · · · |cn⟩) =
n∑

i=1

(−1)i+|c1|+···+|ci−1|⟨c1| · · · |dC (ci )| · · · |cn⟩.

The coproduct ∆C induced induces a differential d2 on Ω(C ) via

d2(⟨c1| · · · |cn⟩) =
n∑

i=1

(−1)i+|c1|+···+|ci−1|+|ci(1)|⟨c1| · · · |ci(1)|ci(2)| · · · |cn⟩.

The augmented differential graded free algebra (Ω(C ), d = d1 + d2) is
called the cobar construction of the coaugmented differential graded
coalgebra C .



Part I: A∞-coalgebras via cobar construction

Theorem

A graded vector space C is an A∞-coalgebra iff Ω(C ) is an (augmented)
differential graded (free) algebra via its canonical algebra structure.

∆n : V → V⊗n ↔ dn : s−1V → (s−1V )⊗n



Part I: Computing A∞-structures via homotopy transfer
theory

Theorem (Kadeishivili)

Let A be a a differential graded algebra. Then its homology H∗(A) has
an A∞-algebra structure which can be computed via homotopy transfer
theory

H∗(A)
//
Aoo bb

Theorem

Let C be a a differential graded algebra. Then its homology H∗(C ) has
an A∞-coalgebra structure which can be computed via homotopy transfer
theory

H∗(C )
//
Coo bb



Part I: Computing A∞-structures via homotopy transfer
theory

Problem

Compute the A∞-structure on Ext∗A(k, k) and TorA∗ (k, k).

Answer

Form the bicomplex HomA(P∗,P∗) and take its total complex, still
denoted by HomA(P∗,P∗). We have

Ext∗A(k, k) = H∗(HomA(P∗,P∗)).

Moreover, we have a deformation retract:

Ext∗A(k, k)
i //

HomA(P∗,P∗)
p

oo hbb

Observe that HomA(P∗,P∗) is a differential graded algebra. Via
homotopy transfer theory, one gets an A∞-algebra structure on
Ext∗A(k, k).
Similarly, one gets an A∞-coalgebra structure on TorA∗ (k, k).



Part I: Computing A∞-structures via homotopy transfer
theory

Problem (Reconstruction problem)

Can we reconstruct A from the Ext∗A(k, k) or Tor
A
∗ (k, k)?

Answer

Under certain conditions of finiteness and minimality, there is a sequence
of quasi-isomorphism of differential graded algebras

Ω(TorA∗ (k, k)) → Ω(B(A)) → A.

In this case, Ω(TorA∗ (k, k)) is a minimal model of A.



Part I: Minimal models in Algebra

Definition

A cofibrant resolution (resp. a minimal model) of A is a
quasi-isomorphism of differential graded algebras

(T (V ′), d) → A

(resp. subject to a certain minimality condition).
Equivalently, A cofibrant resolution (resp. a minimal model) of A is an
A∞-coalgebra A¡ = s−1V ′ such that Ω(A¡) is quasi-isomorphic to A
(resp. subject to a certain minimality condition).

Definition

When the minimal model exists, A¡ will be called the Koszul dual
A∞-coalgebra of A.



Part I: Minimal models in Algebra

Fact

From a cofibrant resolution (resp. a minimal model), one can construct
the (minimial) projective resolution P∗ → A → 0 via

P∗ = A⊗τ A¡,

where τ : A¡ → A is a twisting cochain and A⊗τ A¡ is the associated
twisted tensor product.

Corollary

Cofibrant resolutions (resp. the minimal model) of an algebra are
equivalent to (resp. minimal) projective resolutions of the trivial module.



Part I: Koszul case
If A = T (V )/(R) with R ⊂ V ⊗ V , can define its Koszul dual algebra

A! = T (V ∗)/(R⊥)

and its Koszul dual coalgebra

C (sV , s2R) = k⊕ V ⊕ R ⊕ · · · ⊕
( ⋂
i+2+j=n

V⊗i⊗R⊗V⊗j
)
⊕ · · · .

Theorem

A is a Koszul algebra iff A¡ is a graded coalgebra iff A¡ = C (sV , s2R).
In this case, the cobar construction of its Koszul dual coalgebra is a
minimal model A.

Example

T (V ) is Koszul

The polynomial algebra S(V ) = T (V )/(v ⊗ w − w ⊗ v , v ,w ∈ V )
is Koszul

The algebra A = T (V )/(v ⊗ w , v ,w ∈ V ) = k⊕ V is Koszul



Part I: Non-Koszul case

Theorem

When A is not Koszul, A¡ = TorA∗ (k, k) is a genuine A∞-coalgebra and
there is a quasi-isomorphism Ω(A¡) → A.

Remark

Tomaroff found the A∞-coalgebra structure on A¡ = TorA∗ (k, k) for
monomial algebras.



Part II: A crash course on operads

Operad theory is a tool to describe algebraic operations.

Roughly speaking, a nonsymmetric operad P is a sequence of spaces
P(n), n ≥ 1, where P(n) is considered as a space of n-ary operations and
where it is asked there are compositions of operations subject to
associativity axioms etc.



Part II: A crash course on operads

Example

Let V be a vector space. The endomorphism operad EndV is defined to
be EndV (n) = Hom(V⊗n,V ), the space of n-linear maps on V .
For f ∈ EndV (n), g ∈ EndV (m) and 1 ≤ i ≤ n, define partial
composition

f ◦i g = f (id⊗i−1⊗g⊗idn−i−1).

An n-ary operation f ∈ EndV (m) will be presented by

f

1 n

For example, the 10-ary operation (((f ◦1 g) ◦3 h) ◦9 k) ◦10 l can be
represented by the following tree

f

g

h

k

l



Part II: The operad of associative algebras

An associative algebra is a pair (A, µ) such that

µ ◦ (µ⊗idA)− µ ◦ (idA⊗µ)

Definition

The operad of associative algebras is defined to be

Ass = F(M)/I

where M = kµ, F(M) is the free operad generated by M, I is the
operadic ideal generated by

µ ◦ (µ⊗idA)− µ ◦ (idA⊗µ).

Associative algebras are exactly algebras over Ass.

Definition

Let P be an operad. An P-algebra structure on a vector space V is given
by an operad map P → EndV .



Part II: The operad of associative algebras

Present µ as the corolla with two leaves

µ

Then elements of F(M) are presented by all plane binary rooted trees,
such as

The associativity axiom can be presented as

—–

-



Part II: Minimal models in Operad Theory

Definition

A cofibrant resolution (resp. a minimal model) of an operad P is a
quasi-isomorphism of differential graded operads

(F(M), d) → P

(resp. subject to a certain minimality condition).
Equivalently, A cofibrant resolution (resp. a minimal model) of P is a
homotopy cooperad P ¡ = s−1M such that Ω(P ¡) is quasi-isomorphic to
P (resp. subject to a certain minimality condition).

Definition

When the minimal model exists, P ¡ will be called the Koszul dual
homotopy coopera of P.



Part III: Koszul case

Assume the operad P is Koszul.

Example

associative algebras

commutative associative algebras

Lie algebras

Poisson algebras

pre-Lie algebras

Leibniz algebras

Lie triple systems

etc



Part II: Minimal models in Koszul cases

Answer

P∞ = Ω(P ¡) is the minimal model of P, where P ¡ is a genuine cooperad.

V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math.
J. 76 (1994), no. 1, 203-272.

E. Getzler and D. S. J. Jones, Operads, homotopy algebra and
iterated integrals for double loop spaces, hep-th/9403055 (1994).



Part II: A∞ operad vs Ass

Theorem (Ginzburg-Kapranov 90)

The operad Ass is a Koszul operad and the cobar construction of Ass ¡ is
the operad governing A∞-algebras. The latter is a minimal model of Ass.

V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math.
J. 76 (1994), no. 1, 203̈ı¿½C272.



Part III: History about algebraic deformation theory

1945, G. Hochschild introduced a cohomology theory of associative
rings

G. Hochschild, On the cohomology groups of an associative algebra.
Ann. of Math. (2) 46 (1945), 58-67.

1963-64, M. Gerstenhaber discovered a dg Lie algebra structure over
Hochschild cochain complex and developed algebraic deformation
theory

M. Gerstenhaber, The cohomology structure of an associative ring.
Ann. Math. (2) 78 (1963) 267-288.

M. Gerstenhaber, On the deformation of rings and algebras. Ann.
Math. (2) 79 (1964) 59-103.

1963, J. Stasheff defined A∞-algebras

J. Stasheff, Homotopy associativity of H -spaces. I, II. Trans. Amer.
Math. Soc. 108 (1963), 275-292; ibid. 108 1963 293̈ı¿½C312.
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Part III: History about algebraic deformation theory

1966, A. Nijenhuis and R. W. Richardson investigated deformations
and cohomologies of graded Lie algebras.

A. Nijenhuis, R. W. Richardson,Cohomology and deformations in
graded Lie algebras. Bull. Amer. Math. Soc. 72 (1966), 1-29.

1990, J. Stasheff introduced L∞-algebras

J. Stasheff, Differential graded Lie algebras, quasi-Hopf algebras and
higher homotopy algebras. Quantum groups (Leningrad, 1990), pp.
120-137, Lecture Notes in Mathematics, 1510. Springer, Berlin
(1992)



Part III: History about algebraic deformation theory

1993, P. Deligne proposed Deligne conjecture via operad theory

P. Deligne, Letter to Stasheff, Gerstenhaber, May, Schechtman,
Drinfeld, 1993.

1997 M. Kontsevich proved his deformation quantization theorem
for Poisson manifolds

M. Kontsevich, Deformation quantization of Poisson manifolds.
Lett. Math. Phys. 66(2003), 157-216.



Part III: Philosophy of Deformation Theory after Deligne,
Drinfeld, Kontsevich,...

(Deligne 1986): "The deformation theory of any

mathematical object, e.g., an associative algebra, a

complex manifold, etc., can be discribed starting from

a certain dg Lie algebra associated to the

mathematical obejct in question."

Theorem (Lurie, Pridham)

In characteristic 0, there exists an equivalence between the ∞-category of
formal moduli problems and the ∞-category of DG Lie algebras
(L∞-algebras).

J. Lurie, DAG X: Formal moduli problems.

J. P. Pridham, Unifying derived deformation theories, Adv. Math.
224 (2010), no. 3, 772-826.
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Part III: Differential graded Lie algebras

Throughout this talk, let k be a field of characteristic zero.

Definition

A differential graded Lie algebra (aka dg Lie algebra) is a graded space
L = ⊕i∈ZLi together with two operations:

l1 : Li → Li−1

of degree −1 and
l2 : Li ⊗ Lj → Li+j

of degree zero such that

(i) l1 : Li → Li−1 is a differential,

(ii) l2 : Li ⊗ Lj → Li+j is a Lie bracket,

(IV) l1 is a derivation for l2 ,i.e.

l1l2(a⊗ b) = l2(l1(a)⊗ b) + (−1)|a|l2(a⊗ l1(b))

for a, b ∈ L homogeneous.



Part III: Maurer-Cartan elements in dg Lie algebra

Definition

Let L be a dg Lie algebra. An element α ∈ L−1 is a Maurer-Cartan
element if

l1(α)−
1

2
l2(α⊗α) = 0.

Proposition (Twisting procedure)

Let L be a dg Lie algebra. Given a Maurer-Cartan element α ∈ L−1, one
can produce a new dg Lie algebra by imposing

lα1 (x) = l1(x)− l2(α⊗x)

and
lα2 (x⊗y) = l2(x⊗y)



Part III: L∞-algebras

Definition

Let L =
⊕
i∈Z

Li be a graded space over k. Assume that L is endowed with

a family of linear operators ln : L⊗n → L, n ≥ 1 with |ln| = n − 2
satisfying the following conditions: ∀σ ∈ Sn, x1, . . . , xn ∈ L,

(i) (Skew-symmetry)

ln(xσ(1)⊗ . . .⊗xσ(n)) = χ(σ, x1, . . . , xn)ln(x1, . . . , xn),

(ii) (Higher Jacobi identities)
n∑

i=1

∑
σ∈Sh(i,n−i)

χ(σ, x1, . . . , xn)(−1)i(n−i)

ln−i+1(li (xσ(1)⊗ . . .⊗xσ(i))⊗xσ(i+1)⊗ . . .⊗xσ(n)) = 0,
where Sh(i , n − i) is the set of (i , n − i) shuffles, i.e.,
Sh(i , n − i) = {σ ∈ Sn such that σ(1) < σ(2) < · · · <
σ(i), and σ(i + 1) < σ(i + 2) < . . . σ(n)}.

Then (L, {ln}n≥1) is called a L∞-algebra.



Part III: L∞-algebras

Example

Let (L, {ln}n≥1) be a L∞-algebra.

(i) n = 1, l1 is a differential,

(ii) n = 2, l1 is a derivation for l2,

(IV) n = 3, l2 satisfies the Jacobi identity up to homotopy.



Part III: Maurer-Cartan elements and L∞-algebras

Definition

Let (L, {ln}n≥1) be an L∞-algebra and α ∈ L−1. Then α is called a
Maurer-Cartan element if it satisfies equation:

∞∑
n=1

1

n!
(−1)

n(n−1)
2 ln(α

⊗n) = 0,

whenever this infinite sum exists.

Proposition

Let (L, {ln}n≥1) be an L∞-algebra. Given a Maurer-Cartan element α in
L∞-algebra L, we can define a new L∞ structure {lαn }n≥1 on graded
space L, where lαn : L⊗n → L is defined as :

lαn (x1⊗ . . .⊗xn) =
∞∑
i=0

1

i !
(−1)in+

i(i−1)
2 ln+i (α

⊗i⊗x1⊗ . . .⊗xn).



Part III: Problems from Deformation Theory

Given an algebraic structure governed by an operad P, two basic
problems of deformation theory:

Problem

Find a cofibrant resolution (or minimal model) P∞ of P, that is, there
exists a quasi-isomorphism

P∞ = Ω(P ¡) → P.

In general, the Koszul dual P ¡ is only a homotopy cooperad.

Problem

Define the deformation cohomology of P-algebras and describe the dg
Lie algebra (or L∞ structure) on the deformation complex



Part III: From minimal models to L∞-structures

Problem

Describe the L∞ structure on the deformation complex

Answer

Given a cofibrant resolution, or in particular, the minimal model
P∞ = Ω(P ¡) of P, can introduce the deformation complex
Hom(P ¡,EndV ) and describe the L∞-algebra structure on the
deformation complex.

M. Kontsevich and Y. Soibelman, Deformations of algebras over
operads and the Deligne conjecture, Conférence Moshé Flato 1999,
Vol. I (Dijon), Math. Phys. Stud. 21 (2000), 255-307.

P. Van der Laan, Operads up to Homotopy and Deformations of
Operad Maps, arXiv 0208041.

P. Van der Laan, Coloured Koszul duality and strongly homotopy
operads, arXiv 0312147.



Part III: Koszul case

Assume the operad P is Koszul.

Example

associative algebras

commutative associative algebras

Lie algebras

Poisson algebras

pre-Lie algebras

Leibniz algebras

Lie triple systems

etc



Part II: Koszul case

Let P be a Koszul operad.

Can compute Koszul dual cooperad P ¡.

The dg operad P∞ = Ω(P ¡) is the minimal model of P.

The homotopy version of P-algebras are exactly P∞-algebras.

For a vector space, there is a graded Lie algebra

(Hom(P ¡,EndV ), l2)

such that its Maurer-Cartan elements are in bijection with P-algebra
structures on V .

Let µ be a P-algebra structures on V . Then the underlying complex
of the twisted dg Lie algebra

(Hom(P ¡,EndV ), l
µ
1 , l

µ
2 )

is the deformation complex of P-algebra (V , µ).



Part III: Non-Koszul case

When P is NOT Koszul, no general answer so far.

Example

Rota-Baxter associative/Lie algebras

differential associative/Lie algebras with nonzero weight

Hom-associative algebras, Hom-Lie algebras, · · ·
etc



Part III: Our method for non-Koszul case

Four steps:

formal deformations
⇓

deformation complex
⇓

L∞−structure L99 derived brackets (Bai,Guo,Sheng,Tangetc)
⇓

minimal model



Part IV: Rota-Baxter associative algebras

Definition

Let (R, µ = ·) be an associative algebra and λ ∈ k. A linear operator
T : R → R is said to be a Rota-Baxter operator of weight λ if it satisfies

T (a) · T (b) = T (a · T (b)) + T (T (a) · b) + λT (a · b) (1)

for any a, b ∈ R, that is,

µ ◦ (T⊗T ) = T ◦ µ ◦ (Id⊗T ) + T ◦ µ ◦ (T⊗Id) + λT ◦ µ. (2)

Then (R, µ,T ) is called a Rota-Baxter algebra of weight λ.

Remark

The Rota-Baxter relation does not lie in degree two, so one cannot use
the Koszul duality theory for quadratic operads to study its cohomology
theory and its minimal model.



Part IV: Rota-Baxter associative algebras

Theorem

Can define cohomology theory of (relative) Rota-Baxter associative
algebras

Can found the L∞-structure on the deformation complex

Can defined homotopy Rota-Baxter associative algebras

Can prove that the operad of homotopy Rota-Baxter algebras is a
minimal model of the operad of Rota-Baxter algebras.

Can find the Koszul dual homotopy cooperad of the operad of
Rota-Baxter algebras.

K. Wang and G. Zhou, Deformations and homotopy theory of
Rota-Baxter algebras of any weight, arXiv:2108.06744.

K. Wang and G. Zhou, The minimal model of Rota-Baxter operad
with arbitrary weight. Selecta Math. to appear.



Part IV: Homotopy Rota-Baxter associative algebras

Homotopy Rota-Baxter algebras are equivalent to the following data: two
family of operators mn : V⊗n → V and Tn : V⊗n → V . For each
n ⩾ 1, ∑

i+j+k=n,
i,k⩾0,j⩾1

(−1)i+jkmi+1+k ◦
(
id⊗i⊗mj⊗id⊗k

)
= 0

and∑
l1+···+lk=n,

l1,...,lk⩾1

(−1)αmk◦
(
Tl1⊗ · · ·⊗Tlk

)
=

∑
1⩽q⩽p

∑
r1+···+rq+p−q=n,

r1,...,rq⩾1

∑
i+1+k=r1,

i,k⩾0

∑
j1+···+jq+q−1=p,

j1,...,jq⩾0

(−1)βλp−qTr1 ◦
(
id⊗i⊗mp ◦ (id⊗j1⊗Tr2⊗id⊗j2⊗ · · ·⊗Trq⊗id⊗jq )⊗id⊗k

)



Part IV: Homotopy Rota-Baxter associative algebras

The second equation for n = 1, 2 gives

m1 ◦ T1 = T1 ◦m1, (3)

and

m2 ◦ (T1⊗T1)− T1 ◦m2 ◦ (id⊗T1)− T1 ◦m2 ◦ (T1⊗id)− λT1 ◦m2(4)

= −
(
m1 ◦ T2 + T2 ◦ (id⊗m1) + T2 ◦ (m1⊗id)

)
.

Equation (3) implies that T1 : (V ,m1) → (V ,m1) is a chain map, thus
T1 is well-defined on the H•(V ,m1); Equation (4) indicates that T1 is a
Rota-Baxter operator of weight λ with respect to m2 up to homotopy,
whose obstruction is just operator T2. As a consequence,
(H•(V ,m1),m2,T1) is a Rota-Baxter algebra.



Thank you very much


