Lattices and thick subcategories ICRA 2024, Shanghai

Sira Gratz

August 3, 2024

- Part 1: Background
- Part 2: The many shapes of lattices of thick subcategories.
- Part 3: Approximating triangulated categories by spaces
 - A fully functorial approximation
 - The non-tensor spectrum
 - Comparison maps to known spectra

Goal

Find a space that approximates T(K) via a universal functorial construction.

Motivation

The presence of a space governing the thick subcategories allows the transfer of geometric and topological techniques to the study of a triangulated category.

A fully functorial approximation The non-tensor spectrum Comparison maps

Realising T as a functor

Consider the category tcat with

- objects: essentially small triangulated categories;
- morphisms: exact functors.

To any morphism $F: K \rightarrow L$ in tcat we associate a map

$$T(F): T(K) \to T(L)$$

which sends

 $M\mapsto \langle F(M)\rangle_L.$

A fully functorial approximation The non-tensor spectrum Comparison maps

Realising T as a functor

Lemma

Let $F: K \to L$ be a morphism in tcat. The map $T(F): T(K) \to T(L)$ preserves the order and arbitrary joins.

This uses the following Lemma:

Lemma

Let $F: K \to L$ be a morphism in tcat. For any collection of objects $C \subseteq K$ there is an equality

 $\langle F \langle C \rangle_{\mathcal{K}} \rangle_L = \langle F(C) \rangle_L.$

A fully functorial approximation The non-tensor spectrum Comparison maps

Realising T as a functor

Caution

Even for very nice morphisms $F: K \to L$ in tcat, the map T(F) may not preserve meets.

Take
$$A = \mathbb{K} \bullet \xrightarrow{\alpha}_{\beta} \bullet$$
 and invert α to get $B = \mathbb{K}[x]$.

This induces a localisation $F : D^{\mathrm{b}}(\operatorname{mod} A) \to D^{\mathrm{b}}(\operatorname{mod} B)$, which sends both of the indecomposable projectives P_1 and P_2 to B. We obtain

$$\langle F(P_1)
angle \cap \langle F(P_2)
angle = \langle B
angle = \mathrm{D^b}(\mathsf{mod}\ B)$$

but

$$\langle F(\langle P_1 \rangle \cap \langle P_2 \rangle) \rangle = \langle F(0) \rangle = 0.$$

A fully functorial approximation The non-tensor spectrum Comparison maps

Realising T as a functor

Let CjSLat be the category with

 objects: complete lattices, viewed as complete join semi-lattices;

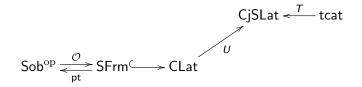
• morphisms: maps preserving the order and arbitrary joins. We get a functor

 $T: \mathsf{tcat} \to$

mapping $K \in$ tcat to T(K) and an exact functor $F : K \to L$ to $T(F) : T(K) \to T(L)$.

A fully functorial approximation The non-tensor spectrum Comparison maps

Building a functor tcat $\rightarrow \mathsf{Sob}^{\mathrm{op}}$



A fully functorial approximation The non-tensor spectrum Comparison maps

Building a functor tcat $\rightarrow \mathsf{Sob}^{\mathrm{op}}$

Theorem (The special adjoint functor theorem (SAFT))

The following conditions are sufficient for a limit-preserving functor $R: C \rightarrow D$ to be a right adjoint:

- *C* is complete, locally small, well-powered and has a small cogenerating set;
- D is locally small.

A fully functorial approximation The non-tensor spectrum Comparison maps

Building a functor tcat $\rightarrow \mathsf{Sob}^{\mathrm{op}}$

SAFT applies

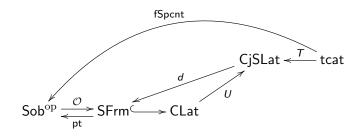
The forgetful functor SFrm \rightarrow CjSLat has a left adjoint *d* by SAFT.

Idea

- $\bullet\,$ The forgetful functor Frm \to Set creates limits, and SFrm is closed under limits in Frm.
- {*} generates Sob (any two parallel morphisms must differ at some point). By Stone duality, the frame **2** cogenerates SFrm

A fully functorial approximation The non-tensor spectrum Comparison maps

The fully functorial non-tensor spectrum



A fully functorial approximation The non-tensor spectrum Comparison maps

A free universal approximation

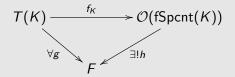
Theorem (G.-Stevenson)

For all $K \in \text{tcat}$ there exists a sober space fSpcnt(K) and map

 $f_{\mathcal{K}} \colon T(\mathcal{K}) \to \mathcal{O}(\mathsf{fSpcnt}(\mathcal{K}))$

in CjSLat which is universal:

For every map $g: T(K) \to F$ in CjSLat, where F is a spatial frame, there exists a unique factorisation $h: \mathcal{O}(fSpcnt) \to F$ in SFrm:



A fully functorial approximation The non-tensor spectrum Comparison maps

Concrete computation

Given a complete lattice L, we can associate to it a sober topological space spt(L) = CjSLat(L, **2**) with subbasis of open subsets

$$U_\ell = \{p \in \operatorname{spt}(L) \mid p(\ell) = 1\}, \text{ for all } \ell \in L.$$

Computing fSpcnt

Given an essentially small triangulated category K, fSpcnt can be explicitly computed as

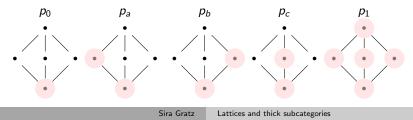
$$\mathsf{fSpcnt}(K) = \mathsf{spt}(T(K)).$$

A fully functorial approximation The non-tensor spectrum Comparison maps

$fSpcnt(D^{b}(mod \ kA_{2}))$

For $K = D^{b}(mod(\mathbb{K}A_{2}))$ the lattice T(K) is isomorphic to

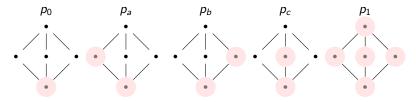
It has the following semipoints, where we colour the elements that get sent to 0.



A fully functorial approximation The non-tensor spectrum Comparison maps

$\mathsf{fSpcnt}(\mathrm{D^b}(\mathsf{mod}\,\mathbb{K}A_2))$

For $K = D^{b} (mod \mathbb{K}A_{2})$ the space spt(T(K)) has a subbasis of opens given by:



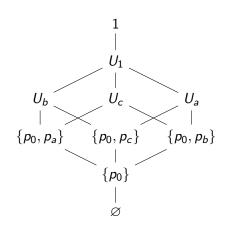
Sira Gratz Lattices and thick subcategories

A fully functorial approximation The non-tensor spectrum Comparison maps

$fSpcnt(D^b(mod \mathbb{K}A_2))$

Let $K = D^{b} (mod \mathbb{K}A_2)$. We have $fSpcnt(K) = \{p_0, p_a, p_b, p_c, p_1\}$.

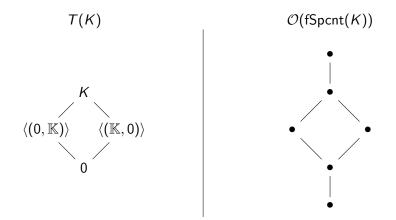
U₀ = Ø
U_a = {p₀, p_b, p_c}
U_b = {p₀, p_a, p_c}
U_c = {p₀, p_a, p_b}
U₁ = {p₀, p_a, p_b, p_c}



A fully functorial approximation The non-tensor spectrum Comparison maps

$D^b (\operatorname{mod} \mathbb{K} \times \mathbb{K})$

For $K = D^b \pmod{\mathbb{K} \times \mathbb{K}}$ we have



A fully functorial approximation The non-tensor spectrum Comparison maps

Pros and cons

fSpcnt is

- free
- universal

• functorial with respect to all exact functors

However: If T(K) is distributive, we generally have $T(K) \subsetneq \mathcal{O}(\mathsf{fSpcnt}(K))$.

Question

Is there an alternative construction which treats distributive lattices faithfully?

A fully functorial approximation The non-tensor spectrum Comparison maps

Confluent functor

Definition

A map $F: K \to L$ in tcat is called *confluent* if T(F) preserves finite meets.

Open challenge

Is there an intrinsic way to describe confluent functors in tcat?

A fully functorial approximation The non-tensor spectrum Comparison maps

Lemma

 T_{\wedge}

The composition of two confluent functors is again confluent.

Denote by $tcat_{\wedge}$ the category with

- objects: essentially small triangulated categories;
- morphisms: confluent functors.

Denote by T_{\wedge} : tcat $_{\wedge} \rightarrow$ CLat the functor mapping $K \in$ tcat to

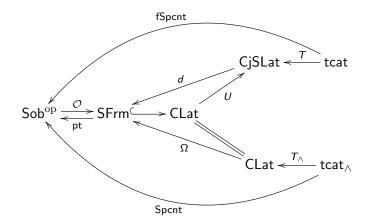
$$T_{\wedge}(K) = T(K)$$

and a confluent $F \colon K \to L$ to the map of complete lattices

$$T_{\wedge}(F) = T(F) \colon T_{\wedge}(K) \to T_{\wedge}(L)$$

A fully functorial approximation The non-tensor spectrum Comparison maps

The non-tensor spectrum



A fully functorial approximation The non-tensor spectrum Comparison maps

Concrete computation

Given a complete lattice L, we can associate to it a sober topological space pt(L) = CLat(L, 2) with open subsets

$$U_\ell = \{ p \in \mathsf{pt}(L) \mid p(\ell) = 1 \}, ext{ for all } \ell \in L.$$

Computing Spcnt

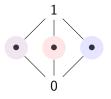
Given an essentially small triangulated category K, Spcnt can be explicitly computed as

$$\operatorname{Spcnt}(K) = \operatorname{pt}(T(K)).$$

A fully functorial approximation The non-tensor spectrum Comparison maps

$fSpcnt(D^{b}(mod \ kA_{2}))$

For $K = D^{b}(mod(\mathbb{K}A_{2}))$ the lattice T(K) is isomorphic to



It has no points!

Consequence

We have $\mathsf{Spcnt}(\mathbb{D}^{\mathrm{b}}(\mathbb{K}A_2)) = \emptyset$.

	A fully functorial approximation
Approximating triangulated categories by spaces	The non-tensor spectrum
	Comparison maps

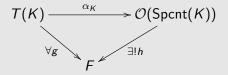
Theorem (G.-Stevenson)

For all $K \in \text{tcat}$ there exists a sober space Spcnt(K) and map

 $\alpha_{\mathcal{K}} \colon \mathcal{T}(\mathcal{K}) \to \mathcal{O}(\mathsf{Spcnt}(\mathcal{K}))$

in SFrm which is universal:

For every map $g: T(K) \to F$ in CLat, where F is a spatial frame, there exists a unique factorisation $h: \mathcal{O}(\text{Spcnt}) \to F$ in SFrm:



If T(K) is distributive, then α_K is an isomorphism.

Examples

A fully functorial approximation The non-tensor spectrum Comparison maps

There are cases where T(K) is distributive.

- K = Perf(R) for a commutative ring R [Thomason]
- $D^{b}(\mathsf{mod} \mathbb{K}G)$ for a finite *p*-group *G* [Benson-Carlson-Rickard]
- $D_{sg}(A)$ for a complete intersection A [Stevenson]

The last one is not covered by tt-geometry.

A fully functorial approximation The non-tensor spectrum Comparison maps

Comparison maps

We have a functor $pt: CLat^{op} \rightarrow Sob.$ Thus, if $f: L \rightarrow T(K)$ is a map in CLat, we get a map $pt(f): Spcnt(K) \rightarrow pt(L).$

Comparison maps Compare Spcnt to known spectra from classes \mathcal{L} of thick subcategories such that \mathcal{L} is a complete sublattice of $\mathcal{T}(\mathcal{K})$.

A fully functorial approximation The non-tensor spectrum Comparison maps

Comparison to the Balmer spectrum

Let K be a rigid tt-category (all ideals are radical).

Theorem (G.-Stevenson)

We have a comparison map

$$\begin{array}{c} \operatorname{Spcnt}(K) \longrightarrow (\operatorname{Spc}(K))^{\vee} \\ \| \\ \| \\ \operatorname{pt}(T(K)) \\ \mathrm{pt}(T^{\otimes}(K)) \end{array}$$

Idea

Because K is rigid, an arbitrary join of \otimes -ideals in T(K) is again an ideal. We obtain an inclusion of complete lattices $T^{\otimes}(K) \hookrightarrow T(K)$.

Comparison to the non-commutative spectrum

Let K be a monoidal triangulated category.

Definition

A \otimes -ideal \mathcal{I} is a thick subcategory \mathcal{I} such that for all $a \in K$ and $b \in I$ we have $a \otimes b \in \mathcal{I}$ and $b \otimes a \in \mathcal{I}$. A \otimes -ideal is *semiprime* if $a \otimes r \otimes a \in \mathcal{Q}$ for all $r \in K$ then $a \in \mathcal{Q}$.

Theorem (G.-Stevenson)

Assume every ideal of K is semiprime. We get a map

 $\operatorname{Spcnt}(K) \to \operatorname{pt}(T^{\otimes}(K)).$

If all prime ideals are completely prime, this yields a comparison map to the dual of the noncommutative spectrum due to [Nakano-Vashaw-Yakimov].

A fully functorial approximation The non-tensor spectrum Comparison maps

Centre of T(K)

Let $K \in \text{tcat}$, and consider the Yoneda embedding $\mathcal{Y} \colon K \to \text{Mod } K = [K^{\text{op}}, \text{Ab}]_{\text{add}}.$ If $U \hookrightarrow K$ is a thick subcategory, we get an induced adjunction

$$\operatorname{Mod} U \xrightarrow{\iota^*}_{\swarrow \iota_*} \operatorname{Mod} K$$

where ι^* is fully faithful and ι_* is a quotient. Set $\Gamma_U = \iota^* \iota_*$.

A fully functorial approximation The non-tensor spectrum Comparison maps

Centre of T(K)

Definition

Two thick subcategories $U, V \in T(K)$ commute if

$$\Gamma_U \Gamma_V \xleftarrow{\simeq} \Gamma_{U \cap V} \xrightarrow{\simeq} \Gamma_V \Gamma_U \; .$$

A thick subcategory $U \in T(K)$ is called *central* if it commutes with all $V \in T(K)$. The *centre* T(K) is the subset

$$Z(T(K)) = \{U \in T(K) \mid U ext{ is central}\}.$$

A fully functorial approximation The non-tensor spectrum Comparison maps

Comparison to the centre

Theorem (Krause)

The centre Z(T(K)) is closed in T(K) under joins and finite meets. Moreover, it is a spatial frame.

Consequence

We get a comparison map

 $\operatorname{Spcnt}(K) \to \operatorname{pt}(Z(T(K))).$

A fully functorial approximation The non-tensor spectrum Comparison maps

Open question

Open question

Can we find other interesting distributive sublattices of T(K)?

Motivation

Try to parametrise T(K) by the space corresponding to the sublattice plus additional data.

A fully functorial approximation The non-tensor spectrum Comparison maps

Acknowledging continuous and distributive parts

Potential angle of attack

Realising T(K) as a lattice of "decorated spaces".

For $N \in \mathbb{N}$ consider the set $[N] = \{0, 1, \dots, N\}$ with the discrete topology. We have

 $\mathcal{O}([N])=2^{[N]}.$

Now "decorate" the space [N] by associating to each $U \in \mathcal{O}([N])$ the lattice of non-crossing partitions of U.

A fully functorial approximation The non-tensor spectrum Comparison maps

Non-exhaustive non-crossing partitions

Definition

We set the non-exhaustive non-crossing partitions of [N] to be the set NNC([N]) defined as

 $\{(U, \mathcal{P}) \mid U \in \mathcal{O}([N]), \ \mathcal{P} \text{ a non-crossing partition of } U\}.$

This is a lattice under the product order: $(U, \mathcal{P}) \leq (V, \mathcal{Q})$ if and only if $U \subseteq V$ and $\mathcal{P} \leq \mathcal{Q}$.

A fully functorial approximation The non-tensor spectrum Comparison maps

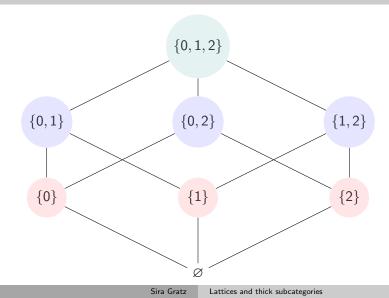
Thick subcategories of discrete cluster categories

Theorem (G.-Zvonareva)

The lattice NNC([N]) can be realised as a lattice of thick subcategories. More precisely, it is isomorphic to the lattice of thick subcategories of a discrete cluster category C_N of infinite type A.

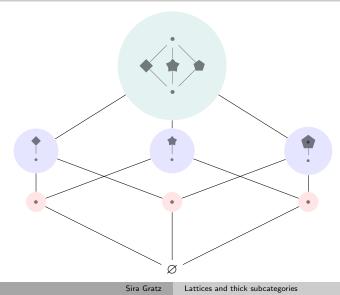
A fully functorial approximation The non-tensor spectrum Comparison maps

Powerset of [2]



A fully functorial approximation The non-tensor spectrum Comparison maps

NNC([2])



A fully functorial approximation The non-tensor spectrum Comparison maps

$\mathsf{Spcnt}(\mathcal{C}(\mathcal{Z}))$

Computation

For $N \ge 2$ we have

 $\operatorname{Spcnt}(\mathcal{C}_N) \cong \operatorname{pt}(\operatorname{NNC}[N]) \cong [N].$

A fully functorial approximation The non-tensor spectrum Comparison maps

Open question

Question

When can we realise T(K) as a lattice of decorated open subsets of Spcnt?

fully functorial approximation
he non-tensor spectrum omparison maps
ł

Thank you!

Sira Gratz Lattices and thick subcategories