Lattices and thick subcategories ICRA 2024, Shanghai

Sira Gratz

August 2, 2024

\times Extra slides

Marking of extra slides

Slides not explicitly discussed in the Lectures are marked by *, and have a light blue background.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Part 2: The many shapes of $T(K)$

Part 1: Background

Part 2: The many shapes of lattices of thick subcategories.

- Spatial frames
- Algebraic lattices
- Beyond distributivity

Part 3: Approximating triangulated categories by spaces

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Motivation

We fix K an essentially small triangulated category.

Motivation

Understanding lattice-theoretic properties of $T(K)$.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Reminder

Recall

A lattice L is distributive if for all a, b, $c \in L$ we have

$$
a\wedge (b\vee c)=(a\wedge b)\vee (a\wedge c).
$$

A lattice is complete if all meets and joins exist.

In particular, every complete lattice is *bounded*: It has a top 1 and a bottom 0.

Examples

- For a topological space X, the lattice $\mathcal{O}(X)$ is complete and distributive.
- \bullet $T(K)$ is complete, but may or may not be distributive.

Definition

The *dual lattice* $(L^{\mathrm{op}}, \leq_{L^{\mathrm{op}}})$ of a lattice (L, \leq_{L}) has underlying set $L^{\text{op}} = L$ with relation $a \leq_{L^{\text{op}}} b$ if and only if $b \leq_{L} a$.

The dual lattice of a complete and distributive lattice is again complete and distributive.

Example

Given a topological space X the lattice $O(X)^{op}$ is isomorphic to the lattice of closed subsets of X .

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Frames

Definition

A complete lattice L is a frame if binary meets distribute over arbitrary joins: For all $a \in L$ and $S \subseteq L$ we have

$$
a\wedge(\bigvee S)=\bigvee_{s\in S}(a\wedge s).
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Example

For a topological space X the lattice $O(X)$ is a frame: For $U\in \mathcal{O}(X)$, $\{V_i\mid i\in I\}\subseteq \mathcal{O}(X)$ we have

$$
U\cap\left(\bigcup_{i\in I}V_i\right)=\bigcup_{i\in I}\left(U\cap V_i\right).
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Frames

Careful

Being a frame is not equivalent to binary joins distributing over arbitrary meets!

Take $\mathbb R$ with the standard topology, and take $U = \mathbb R \setminus \{0\}$ and $V_i = \left(-\frac{1}{i}\right)$ $\frac{1}{i}, \frac{1}{i}$ $\frac{1}{i}$). We have

$$
U\vee\left(\bigwedge_{i\in I}V_i\right)=U\cup\mathsf{int}(\{0\})=U\cup\varnothing=U=\mathbb{R}\setminus\{0\}.
$$

However,

$$
\bigwedge_{i\in I} (U\vee V_i)=\bigwedge_{i\in I} \mathbb{R}=\mathbb{R}.
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Complete distributive lattices

Consequence

There exist complete distributive lattices which are not frames, for example $\mathcal{O}(\mathbb{R})^{\mathrm{op}}$.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

From topological spaces to frames

Denote by Frm the category with

- objects: frames;
- morphisms: order preserving maps which preserve all joins and finite meets.

Denote by Top the category with

- objects: topological spaces;
- morphisms: continuous maps.

We have a functor

$$
\mathcal{O}\colon\operatorname{\mathsf{Top}}^{\mathrm{op}}\to\operatorname{\mathsf{Frm}}\nolimits.
$$

sending a topological space X to

 $\mathcal{O}(X)$

and a continuous map $f: X \rightarrow Y$ to the map of frames

$$
\begin{array}{ccc} {\mathcal O}(f)\colon {\mathcal O}(Y) & \to & {\mathcal O}(X) \\ U & \mapsto & f^{-1}(U). \end{array}
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Spatial frames

Not every frame is of the form $\mathcal{O}(X)$.

Definition

A frame F is spatial if there exists a topological space X and an isomorphism of frames $F \cong \mathcal{O}(X)$.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Towards an intrinsic definition via points

Let F be a frame.

Definition

A point p of F is an element of $Frm(F, 2) = pt(F)$, where

 \mathfrak{p}

$$
S=\begin{array}{cc} & 1 \\ \vert \\ 0 \end{array}
$$

Example

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

has two points.

$$
\digamma \cong \mathcal{O}(\{p_1, p_2\})
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Enough points

Definition

```
A frame F has enough points if
```

```
for all a, b \in F with a \nleq b
```
there exists a point $p \in \text{pt}(F)$ such that

```
p(a) = 1 and
p(b) = 0.
```
"Example"

For a topological space X, the lattice of opens $\mathcal{O}(X)$ has enough points: For $U, V \in \mathcal{O}(X)$ with $U \nsubseteq V$ we pick $x \in X$ such that

 $x \in U$ and $x \notin V$.

We define $p_x: \mathcal{O}(X) \rightarrow 2$ by

$$
p_x \colon W \mapsto \begin{cases} 1 & \text{if } x \in W \\ 0 & \text{if } x \notin W. \end{cases}
$$

The point p_x separates U and V.

Spatial frames

Fact

A frame is spatial if and only if it has enough points.

Proof.

 \Rightarrow : $U, V \in \mathcal{O}(X)$ with $U \subsetneq V$ are separated by p_x for $x \in U$, $x \notin V$.

 \Leftarrow : Assume F has enough points. We can endow pt(F) with a topology by declaring the open subsets to be the sets

$$
U_{\ell} = \{p \in \mathsf{pt}(\mathcal{F}) \mid p(\ell) = 1\}, \text{ for all } \ell \in \mathcal{F}.
$$

One checks that this yields a bijection $F \to \mathcal{O}(\text{pt}(F))$ given by $\ell \mapsto U_\ell$, which preserves finite meets and arbitrary joins.

Non-spatial frame

Definition

A regular open set of a topological space X is an open subset such that

 $int(\overline{X}) = X$.

where int(\overline{X}) denotes the interior of the topological closure of X.

Every open interval of $\mathbb R$ is a regular open set. However, not every open is regular open:

$$
\mathsf{int}(\overline{(-1,0)\cup(0,1)}) = (-1,1) \neq (-1,0)\cup(0,1).
$$

The regular open subsets $\mathcal{RO}(X)$ form a frame under inclusion.

Example

A non-spatial frame

The poset of regular open subsets $\mathcal{RO}(\mathbb{R})$ is a non-spatial frame under inclusion. In fact, it has no points.

Set up for the proof

First note that $\mathcal{RO}(\mathbb{R})$ has no atoms: For every $\varnothing \neq U \in \mathcal{RO}(\mathbb{R})$ there exists a regular open U' with $\varnothing\neq U'\subsetneq U.$ Second, note that every $U \in \mathcal{RO}(\mathbb{R})$ has a *lattice complement*: There exist $U^c = \text{int}(\mathbb{R} \setminus U)$ such that

$$
U\vee U^c=\mathbb{R} \text{ and } U\wedge U^c=\varnothing.
$$

Note that $\mathcal{RO}(\mathbb{R})$ also has no coatoms.

Example

A non-spatial frame

The poset of regular open subsets $\mathcal{RO}(\mathbb{R})$ is a non-spatial frame under inclusion. In fact, it has no points.

Proof.

Assume p is a point and set $U = \bigvee \{ W \in \mathcal{RO}(\mathbb{R}) \mid p(W) = 0 \}.$ We have $p(U) = 0$, and hence $U \neq \mathbb{R}$. We can therefore pick $U \subsetneq V \subsetneq \mathbb{R}$, and find $p(V) = 1$. In particular, this implies $p(V^c) = 0$ and therefore $V^c \leq U$. However, $U \subseteq V$ also implies that $V^c \leq U^c$. This implies $\varnothing \neq V^c \leq U^c \wedge U = \varnothing$; a contradiction.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Stone duality

Denote by SFrm the full subcategory of Frm whose objects are the spatial frames. We have an adjunction

$$
\text{Top}^{\text{op}} \xrightarrow{\mathcal{O}} \text{SFrm}.
$$

Definition

A topological space X is *sober* if every irreducible closed subset has a unique generic point.

A closed subset Z is irreducible if $Z = Z_1 \cup Z_2$ with Z_1 and Z_2 closed implies $Z = Z_1$ or $Z = Z_2$. A generic point of Z is a point $z \in Z$ such that $Z = \{z\}.$

Stone duality

Proposition

Let F be a spatial frame. Then $pt(F)$ is a sober space.

Idea

```
The closure of p \in \text{pt}(F) is the set
```

$$
\{q \in \mathsf{pt}(F) \mid p^{-1}(0) \subseteq q^{-1}(0)\}.
$$

It turns out that the sets of this form are exactly the irreducible closed subsets.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Stone duality

Denote by Sob the full subcategory of Top which has as objects sober spaces.

Stone duality We obtain a duality

$$
\mathsf{Sob}^{\mathrm{op}} \xrightarrow{\mathcal{O}} \mathsf{S}\mathsf{Frm}.
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Distributive versus non-distributive lattices

Lattices of thick subcategories arising from:

tt geometry \rightsquigarrow spatial frames finite dimensional algebras \rightsquigarrow often non-distributive lattices

Implications

spatial frame \Rightarrow frame \Rightarrow complete distributive lattice

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Compact elements

An element l in a lattice L is *compact* if whenever

 $l \leq \bigvee S$

for some subset $S \subseteq L$ then there exists a finite subset $\{s_1, \ldots, s_n\} \subseteq S$ such that

$$
l\leq \bigvee_{i=1}^n s_i.
$$

Algebraic lattice

Definition

A complete lattice L is algebraic if its compact elements generate under joins, that is, every element of L is a join of compact elements.

Theorem (Grätzer-Schmidt)

A lattice L is algebraic if and only if it is isomorphic to a lattice of subobjects of a T-algebra for a Lawvere theory T.

Lattices of thick subcategories are algebraic

Theorem (G.-Stevenson)

The lattice of thick subcategories $T(K)$ is algebraic.

Idea

One can show that the compact elements of $T(K)$ are precisely the thick subcategories $\langle k \rangle$ generated by an object $k \in K$. Now take any thick subcategory $T \in T(K)$. We have

$$
\mathcal{T} = \bigvee_{t \in \mathcal{T}} \langle t \rangle,
$$

hence it is a join of compact elements.

Corollary (G.-Stevenson)

A lattice of thick subcategories $T(K)$ is a spatial frame if and only if it is distributive.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Modular lattice

Given a ring R and a right R -module M , its lattice of submodules Sub(M) is a lattice under inclusion, with $\wedge = \cap$ and $\vee = +$.

Definition

A lattice is *modular* if for all a, b, c in L with $a \leq c$ we have

 $a \vee (b \wedge c) = (a \vee b) \wedge c$.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Distributivity and modularity

Distributivity implies modularity: Indeed, if L is distributive and a, b, $c \in L$ with $a \leq c$ then

$$
a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) = (a \vee b) \wedge c.
$$

However, there are modular lattices which are not distributive.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

$\mathbb{X}\text{Sub}(M)$

Let R be a ring and let M be a right R -module.

 \bullet The lattice $\text{Sub}(M)$ is modular: For all submodules N_1, N_2, N_3 with $N_1 \subseteq N_3$ we have

$$
N_1 \vee (N_2 \wedge N_3) = N_1 + (N_2 \cap N_3) = (N_1 + N_2) \cap N_3.
$$

It is not in general distributive: Take $R = \mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. We have

$$
\langle (1,1)\rangle \cap \left(\langle (1,0)\rangle + \langle (0,1)\rangle \right) = \langle 1,1\rangle
$$

but

$$
(\langle (1,1)\rangle \cap \langle (1,0)\rangle) + (\langle (1,1)\rangle \cap \langle (0,1)\rangle) = 0.
$$

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Minimal non-modular lattice

Question

Is $T(K)$ always modular?

The pentagon

is the minimal non-modular lattice. A lattice is non-modular if and only if it contains the pentagon as a sublattice.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Non-modular $T(K)$

The lattice $T(K)$ contains the pentagon as a bounded sublattice:

Coherent frames

Definition

A frame F is coherent if there is exists a commutative ring R such that $F \cong \mathcal{O}(\operatorname{Spec}(R)).$

Theorem (Balmer, Buan-Krause-Solberg, Kock-Pitsch)

Let K be a tt-category. The lattice $\mathcal{T}^{\sqrt{\otimes}}(K)$ of radical thick tensor ideals is a coherent frame.

Question

If $T(K)$ is distributive, is it also a coherent frame?

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Spectral spaces

Definition

A space is spectral if

- o it is sober:
- it is quasi-compact;
- it has a basis of quasi-compact open subsets whose finite intersections are also quasi-compact.

Theorem (Hochster)

A space is spectral if and only if it is isomorphic to $Spec(R)$ for some commutative ring R.

Coherent frame

A space is spectral if

- it is sober:
- o it is quasi-compact;
- o its quasi-compact open subsets are closed under finite intersections and form a basis for the topology.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

A frame F is coherent if

- pt(F) is sober (for free)
- \circ its top 1 is compact.
- o its compact elements are closed under finite meets and generate F under joins.

Coherent frame

A space is spectral if

- it is sober:
- o it is quasi-compact;
- o its quasi-compact open subsets are closed under finite intersections and form a basis for the topology.

A frame F is coherent if and only if the compact elements of F form a bounded sublattice and generate F under joins.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Non-coherent spatial frame $T(K)$

Consider $K = \mathrm{D^b_{tors}}(\mathsf{mod}\,\mathbb{K}[x])$, the full subcategory of $L = D^{\rm b}(\text{mod}\,\mathbb{K}[x])$ of objects with torsion cohomology. Assume $\mathbb{K} = \overline{\mathbb{K}}$

- \bullet K \subseteq L thick subcategory \Rightarrow $T(K) \hookrightarrow T(L)$ as lattices
- \circ $T(L)$ distributive \Rightarrow $T(K)$ distributive. In particular, they are both spatial frames.
- \bullet K is not compact in $T(K)$: K has infinitely many tubes.

Consequence

The lattice $T(K)$ is a spatial frame which is not coherent.

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

¸Most possibilities occur

For a complete lattice L we have the following implications:

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Most possibilities occur

For the algebraic lattice $T(K)$ we have the following implications:

[Spatial frames](#page-4-0) [Algebraic lattices](#page-24-0) [Beyond distributivity](#page-29-0)

Open question

Question

Which algebraic lattices can be realised as lattices of thick subcategories?