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Part 2: The many shapes of T (K )

Part 1: Background
Part 2: The many shapes of lattices of thick subcategories.

Spatial frames

Algebraic lattices

Beyond distributivity
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Motivation

We fix K an essentially small triangulated category.

Motivation

Understanding lattice-theoretic properties of T (K ).

Sira Gratz Lattices and thick subcategories



The many shapes of lattices of thick subcategories
Spatial frames
Algebraic lattices
Beyond distributivity

Reminder

Recall

A lattice L is distributive if for all a, b, c ∈ L we have

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A lattice is complete if all meets and joins exist.

In particular, every complete lattice is bounded: It has a top 1 and
a bottom 0.
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Examples

For a topological space X , the lattice O(X ) is complete and
distributive.

T (K ) is complete, but may or may not be distributive.

Definition

The dual lattice (Lop,≤Lop) of a lattice (L,≤L) has underlying set
Lop = L with relation a ≤Lop b if and only if b ≤L a.

The dual lattice of a complete and distributive lattice is again
complete and distributive.

Example

Given a topological space X the lattice O(X )op is isomorphic to
the lattice of closed subsets of X .
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Frames

Definition

A complete lattice L is a frame if binary meets distribute over
arbitrary joins: For all a ∈ L and S ⊆ L we have

a ∧ (
∨

S) =
∨
s∈S

(a ∧ s).
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Example

For a topological space X the lattice O(X ) is a frame: For
U ∈ O(X ), {Vi | i ∈ I} ⊆ O(X ) we have

U ∩

(⋃
i∈I

Vi

)
=
⋃
i∈I

(U ∩ Vi ) .
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Frames

Careful

Being a frame is not equivalent to binary joins distributing over
arbitrary meets!

Take R with the standard topology, and take U = R \ {0} and
Vi = (−1

i ,
1
i ). We have

U ∨

(∧
i∈I

Vi

)
= U ∪ int({0}) = U ∪∅ = U = R \ {0}.

However, ∧
i∈I

(U ∨ Vi ) =
∧
i∈I

R = R.
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Complete distributive lattices

Consequence

There exist complete distributive lattices which are not frames, for
example O(R)op.
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From topological spaces to frames

Denote by Frm the category with

objects: frames;

morphisms: order preserving maps which preserve all joins and
finite meets.

Denote by Top the category with

objects: topological spaces;

morphisms: continuous maps.
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We have a functor
O : Topop → Frm .

sending a topological space X to

O(X )

and a continuous map f : X → Y to the map of frames

O(f ) : O(Y ) → O(X )

U 7→ f −1(U).
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Spatial frames

Not every frame is of the form O(X ).

Definition

A frame F is spatial if there exists a topological space X and an
isomorphism of frames F ∼= O(X ).

Sira Gratz Lattices and thick subcategories



The many shapes of lattices of thick subcategories
Spatial frames
Algebraic lattices
Beyond distributivity

Towards an intrinsic definition via points

Let F be a frame.

Definition

A point p of F is an element of Frm(F , 2) = pt(F ), where

2 =

0

1
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Example

The square

p2p1

••

••••••

••

has two points.

0

1
F ∼= O({p1, p2})
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Enough points

Definition

A frame F has enough points if

for all a, b ∈ F with a ≰ b

there exists a point p ∈ pt(F ) such that

p(a) = 1 and

p(b) = 0.
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“Example”

For a topological space X , the lattice of opens O(X ) has enough
points: For U,V ∈ O(X ) with U ⊈ V we pick x ∈ X such that

x ∈ U and x /∈ V .

We define px : O(X ) → 2 by

px : W 7→

{
1 if x ∈ W

0 if x /∈ W .

The point px separates U and V .
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Spatial frames

Fact

A frame is spatial if and only if it has enough points.

Proof.

⇒: U,V ∈ O(X ) with U ⊊ V are separated by px for x ∈ U,
x /∈ V .
⇐: Assume F has enough points. We can endow pt(F ) with a
topology by declaring the open subsets to be the sets

Uℓ = {p ∈ pt(F ) | p(ℓ) = 1}, for all ℓ ∈ F .

One checks that this yields a bijection F → O(pt(F )) given by
ℓ 7→ Uℓ, which preserves finite meets and arbitrary joins.
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Non-spatial frame

Definition

A regular open set of a topological space X is an open subset such
that

int(X ) = X ,

where int(X ) denotes the interior of the topological closure of X .

Every open interval of R is a regular open set. However, not every
open is regular open:

int((−1, 0) ∪ (0, 1)) = (−1, 1) ̸= (−1, 0) ∪ (0, 1).

The regular open subsets RO(X ) form a frame under inclusion.
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Example

A non-spatial frame

The poset of regular open subsets RO(R) is a non-spatial frame
under inclusion. In fact, it has no points.

Set up for the proof

First note that RO(R) has no atoms: For every ∅ ̸= U ∈ RO(R)
there exists a regular open U ′ with ∅ ̸= U ′ ⊊ U.
Second, note that every U ∈ RO(R) has a lattice complement:
There exist Uc = int(R \ U) such that

U ∨ Uc = R and U ∧ Uc = ∅.

Note that RO(R) also has no coatoms.
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Example

A non-spatial frame

The poset of regular open subsets RO(R) is a non-spatial frame
under inclusion. In fact, it has no points.

Proof.

Assume p is a point and set U =
∨
{W ∈ RO(R) | p(W ) = 0}.

We have p(U) = 0, and hence U ̸= R.
We can therefore pick U ⊊ V ⊊ R, and find p(V ) = 1.
In particular, this implies p(V c) = 0 and therefore V c ≤ U.
However, U ⊆ V also implies that V c ≤ Uc .
This implies ∅ ̸= V c ≤ Uc ∧ U = ∅; a contradiction.
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Stone duality

Denote by SFrm the full subcategory of Frm whose objects are the
spatial frames. We have an adjunction

Topop
O //oo
pt

SFrm .

Definition

A topological space X is sober if every irreducible closed subset
has a unique generic point.
A closed subset Z is irreducible if Z = Z1 ∪ Z2 with Z1 and Z2

closed implies Z = Z1 or Z = Z2. A generic point of Z is a point
z ∈ Z such that Z = {z}.
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Stone duality

Proposition

Let F be a spatial frame. Then pt(F ) is a sober space.

Idea

The closure of p ∈ pt(F ) is the set

{q ∈ pt(F ) | p−1(0) ⊆ q−1(0)}.

It turns out that the sets of this form are exactly the irreducible
closed subsets.
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Stone duality

Denote by Sob the full subcategory of Top which has as objects
sober spaces.

Stone duality

We obtain a duality

Sobop
O //oo
pt

SFrm .
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Distributive versus non-distributive lattices

Lattices of thick subcategories arising from:

tt geometry ⇝ spatial frames
finite dimensional algebras ⇝
often non-distributive lattices

Implications

spatial frame ⇒ frame ⇒ complete distributive lattice
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Compact elements

An element l in a lattice L is compact if whenever

l ≤
∨

S

for some subset S ⊆ L then there exists a finite subset
{s1, . . . , sn} ⊆ S such that

l ≤
n∨

i=1

si .
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Algebraic lattice

Definition

A complete lattice L is algebraic if its compact elements generate
under joins, that is, every element of L is a join of compact
elements.

Theorem (Grätzer-Schmidt)

A lattice L is algebraic if and only if it is isomorphic to a lattice of
subobjects of a T -algebra for a Lawvere theory T .
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Lattices of thick subcategories are algebraic

Theorem (G.-Stevenson)

The lattice of thick subcategories T (K ) is algebraic.

Idea

One can show that the compact elements of T (K ) are precisely
the thick subcategories ⟨k⟩ generated by an object k ∈ K .
Now take any thick subcategory T ∈ T (K ). We have

T =
∨
t∈T

⟨t⟩,

hence it is a join of compact elements.
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Corollary (G.-Stevenson)

A lattice of thick subcategories T (K ) is a spatial frame if and only
if it is distributive.
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Modular lattice

Given a ring R and a right R-module M, its lattice of submodules
Sub(M) is a lattice under inclusion, with ∧ = ∩ and ∨ = +.

Definition

A lattice is modular if for all a, b, c in L with a ≤ c we have

a ∨ (b ∧ c) = (a ∨ b) ∧ c .
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Distributivity and modularity

Distributivity implies modularity: Indeed, if L is distributive and
a, b, c ∈ L with a ≤ c then

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) = (a ∨ b) ∧ c .

However, there are modular lattices which are not distributive.
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¸Sub(M)

Let R be a ring and let M be a right R-module.

The lattice Sub(M) is modular: For all submodules N1,N2,N3

with N1 ⊆ N3 we have

N1 ∨ (N2 ∧ N3) = N1 + (N2 ∩ N3) = (N1 + N2) ∩ N3.

It is not in general distributive: Take R = Z and
M = Z/2Z⊕ Z/2Z. We have

⟨(1, 1)⟩ ∩ (⟨(1, 0)⟩+ ⟨(0, 1)⟩) = ⟨1, 1⟩

but
(⟨(1, 1)⟩ ∩ ⟨(1, 0)⟩) + (⟨(1, 1)⟩ ∩ ⟨(0, 1)⟩) = 0.
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Minimal non-modular lattice

Question

Is T (K ) always modular?

The pentagon

•

•

•

•

•

is the minimal non-modular lattice. A lattice is non-modular if and
only if it contains the pentagon as a sublattice.
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Non-modular T (K )

Consider K = Db(K • //// • ).

•

•

•

•

•• •

•

•

...

•

•

•

...

. . . •

•

•

...

•

•

•

•• •

The lattice T (K ) contains the pentagon as a bounded sublattice:

0

•

•

•
K
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Coherent frames

Definition

A frame F is coherent if there is exists a commutative ring R such
that F ∼= O(Spec(R)).

Theorem (Balmer, Buan-Krause-Solberg, Kock-Pitsch)

Let K be a tt-category. The lattice T
√
⊗(K ) of radical thick tensor

ideals is a coherent frame.

Question

If T (K ) is distributive, is it also a coherent frame?
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Spectral spaces

Definition

A space is spectral if

it is sober;

it is quasi-compact;

it has a basis of quasi-compact open subsets whose finite
intersections are also quasi-compact.

Theorem (Hochster)

A space is spectral if and only if it is isomorphic to Spec(R) for
some commutative ring R.
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Coherent frame

A space is spectral if

it is sober;

it is quasi-compact;

its quasi-compact open
subsets are closed under
finite intersections and form
a basis for the topology.

A frame F is coherent if

pt(F ) is sober (for free)

its top 1 is compact.

its compact elements are
closed under finite meets
and generate F under joins.
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Coherent frame

A space is spectral if

it is sober;

it is quasi-compact;

its quasi-compact open
subsets are closed under
finite intersections and form
a basis for the topology.

A frame F is coherent if and
only if the compact elements of
F form a bounded sublattice and
generate F under joins.
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Non-coherent spatial frame T (K )

Consider K = Db
tors(modK[x ]), the full subcategory of

L = Db(modK[x ]) of objects with torsion cohomology. Assume
K = K.

K ⊆ L thick subcategory ⇒ T (K ) ↪→ T (L) as lattices

T (L) distributive ⇒ T (K ) distributive. In particular, they are
both spatial frames.

K is not compact in T (K ): K has infinitely many tubes.

Consequence

The lattice T (K ) is a spatial frame which is not coherent.
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¸Most possibilities occur

For a complete lattice L we have the following implications:

coherent frame

spatial frame

frame

distributivity

modularity
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Most possibilities occur

For the algebraic lattice T (K ) we have the following implications:

coherent frame

spatial frame

frame

distributivity

modularity
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Open question

Question

Which algebraic lattices can be realised as lattices of thick
subcategories?
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