Lattices and thick subcategories I ICRA 2024, Shanghai

Sira Gratz

July 31, 2024

Overview

Part 1: Background

- Lattices
- Thick subcategories
- Two motivating examples
- Part 2: The many shapes of lattices of thick subcategories
- Part 3: Approximating triangulated categories by spaces

*****Extra slides

Marking of extra slides

Slides not explicitly discussed in the Lectures are marked by *****, and have a light blue background.

Lattices Thick subcategories Motivating examples

Lattices

Definition

A lattice is a partially ordered set (poset) (L, \leq) such that for all $a, b \in L$ there exists

• a join
$$a \lor b = \min\{c \mid a \le c, b \le c\}$$
 and

• a meet
$$a \wedge b = \max\{c \mid c \leq a, c \leq b\}.$$

In particular, finite non-empty joins and meets exist.

Lattices

Thick subcategories Motivating examples

Examples of lattices

- (\mathbb{Z}, \leq)
- the diamond

• the pentagon

Lattices Thick subcategories Motivating examples

Example: Topology

Lattice of opens

Let X be a topological space with set of open subsets $\mathcal{O}(X)$. Then $\mathcal{O}(X)$ is a lattice under inclusion \subseteq . For $U, V \in \mathcal{O}(X)$ we have • $U \lor V = U \cup V$ and

• $U \wedge V = U \cap V$.

Lattices Thick subcategories Motivating examples

Example: Representation theory

Lattice of submodules

Let R be a ring, and let M be a right R-module. The set of submodules Sub(M) forms a lattice under inclusion \subseteq . For $N_1, N_2 \in Sub(M)$ we have

•
$$\mathit{N}_1 \lor \mathit{N}_2 = \mathit{N}_1 + \mathit{N}_2$$
 and

•
$$N_1 \wedge N_2 = N_1 \cap N_2$$
.

Lattices Thick subcategories Motivating examples

Example: Combinatorics

Definition

Let $(\mathcal{L}, <)$ be a linearly ordered set. A non-crossing partition of \mathcal{L} is a partition $\mathcal{P} = \{B_i \mid i \in I\}$ of \mathcal{L}

$$\mathcal{L} = \bigsqcup_{i \in I} B_i, \ B_i \neq \emptyset \text{ for all } i \in I,$$

such that the following holds: If we have $a, b \in B_i$ and $c, d \in B_j$ with

then we must have i = j.

Lattices Thick subcategories Motivating examples

Non-crossing partitions

Take $\mathcal{L} = \{0, 1, \dots, 8\}.$

A crossing partition

A non-crossing partition

Lattices Thick subcategories Motivating examples

Lattice of non-crossing partitions

Denote by $NC(\mathcal{L})$ the set of non-crossing partitions of a linearly ordered set \mathcal{L} .

Theorem (Kreweras)

The set $NC(\mathcal{L})$ forms a lattice under reverse refinement: For $\mathcal{P}_1, \mathcal{P}_2 \in NC(\mathcal{L})$ we have $\mathcal{P}_1 \leq \mathcal{P}_2$ if for all $B_1 \in \mathcal{P}_1$ there exists a $B_2 \in \mathcal{P}_2$ such that $B_1 \subseteq B_2$.

Lattices Thick subcategories Motivating examples

Non-crossing partitions

Take $\mathcal{L} = \{0, 1, \dots, 8\}.$

Lattices Thick subcategories Motivating examples

Lattices

Thick subcategories Motivating examples

Complete lattice

Definition

A lattice L is complete if arbitrary joins and meets exist: For every subset $S \subseteq L$ there exists

• a join:
$$\bigvee S = \min\{c \mid s \leq c \text{ for all } s \in S\};$$

• a meet:
$$\bigwedge S = \max\{c \mid c \leq s \text{ for all } s \in S\}.$$

Lattices Thick subcategories Motivating examples

Existence of arbitrary meets suffices

A poset L has arbitrary meets if and only if it has arbitrary joins:

•
$$\bigwedge S = \bigvee \{ I \in L \mid I \leq s \text{ for all } s \in S \};$$

•
$$\bigvee S = \bigwedge \{ l \in L \mid s \leq l \text{ for all } s \in S \}.$$

Lattices Thick subcategories Motivating examples

Examples

- $\bullet\,$ The lattice $\mathbb Z$ under the standard order is not complete.
- The lattice of opens O(X) of a topological space X is complete: For a subset S ⊆ O(X) we have

$$\bigvee S = \bigcup S$$
 and $\bigwedge S = \operatorname{int}\left(\bigcap S\right)$,

where int(A) for a subset A of X denotes the *interior of* A, that is the largest open subset of X contained in A:

$$\operatorname{int}(A) = \bigcup_{U \subseteq A} U.$$

Lattices Thick subcategories Motivating examples

Triangulated categories

"Definition"

A triangulated category is an additive category K with an autoequivalence $\Sigma \colon K \to K$ and a distinguished class of triangles

$$A \rightarrow B \rightarrow C \rightarrow \Sigma A$$
,

satisfying certain axioms.

Thick subcategories

Let K be a triangulated category.

Definition

A *thick subcategory* of K is a full subcategory $T \subseteq K$ which is closed under:

- the action of Σ : $\Sigma T = T = \Sigma^{-1}T$;
- "two out of three": If

$$A \rightarrow B \rightarrow C \rightarrow \Sigma A$$

is a triangle and two out of A, B and C are in T, then so is the third;

summands.

Lattices Thick subcategories Motivating examples

Example

Throughout, we fix a field \mathbb{K} . Let $K = D^{b} (\text{mod } \mathbb{K}A_{2})$.

Lattices Thick subcategories Motivating examples

Lattice of thick subcategories

Lattice of thick subcategories

Fix an essentially small triangulated category K. The set

 $T(K) = \{$ thick subcategories of $K\}$

forms a complete lattice under inclusion \subseteq . For a subset $\mathcal{T} \subseteq \mathcal{T}(\mathcal{K})$ we have

•
$$\bigwedge \mathcal{T} = \bigcap \mathcal{T};$$

• $\bigvee \mathcal{T} = \langle \bigcup \mathcal{T} \rangle$, the smallest thick subcategory containing $\bigcup \mathcal{T}$.

Lattices Thick subcategories Motivating examples

$\mathrm{D^b}(\mathsf{mod}\,\mathbb{K}[x])$

Theorem (Hopkins, Neeman)

There is a lattice isomorphism

 $T(D^{b}(\text{mod }\mathbb{K}[x])) \cong \{\text{unions of closed subsets of } Spec(\mathbb{K}[x])\},\$

where the latter is a lattice under inclusion.

$\mathrm{D^b}(\mathsf{mod}\,\mathbb{K}[x])$

Assume $\mathbb{K} = \overline{\mathbb{K}}$.

- indecomposables in mod $\mathbb{K}[x]$: $\mathbb{K}[x]$ and $\mathbb{K}[x]/(x-\alpha)^n$, $\alpha \in \mathbb{K}$, $n \ge 1$
- Spec $\mathbb{K}[x] = \{(x \alpha) \mid \alpha \in \mathbb{K}\} \sqcup \{(0)\}$
- closed subsets of Spec $\mathbb{K}[x]$: \emptyset , Spec $\mathbb{K}[x]$, finite subsets of $\{(x \alpha) \mid \alpha \in \mathbb{K}\}$

$\mathrm{D^b}(mod\mathbb{K}[x])$	$\operatorname{Spec}\mathbb{K}[x]$
0	Ø
$\langle \mathbb{K}[x]/(x-\alpha) \rangle$	$\{(x-\alpha)\}$

Commutative ring R

Theorem (Hopkins, Neeman, Thomason)

There is a lattice isomorphism

 $T(\operatorname{Perf}(R)) \cong \{ Thomason \ subsets \ of \operatorname{Spec}(R) \},\$

where the latter is a lattice under inclusion.

A subset of Spec(R) is a *Thomason subset*, if it is a union of closed subsets with quasi-compact complements.

Lattices Thick subcategories Motivating examples

Controlled by a space

The Hochster dual of X = Spec(R) is the topological space X^{\vee} , whose underlying set is X and whose open subsets are the Thomason subsets of Spec(R).

Theorem (Hopkins, Neeman, Thomason)

There is a lattice isomorphism

 $T(\operatorname{Perf} R) \cong \mathcal{O}(\operatorname{Spec}(R)^{\vee}).$

%tt-geometry

Let K be an essentially small symmetric monoidal triangulated category (*tt-category*).

Definition

A thick tensor ideal is a thick subcategory $I \subseteq K$ such that for all $k \in K$ and $t \in I$ we have $k \otimes t \in I$. A thick tensor ideal \mathcal{P} is *prime* if whenever $a \otimes b \in \mathcal{P}$ we have $a \in \mathcal{P}$ or $b \in \mathcal{P}$. A thick tensor ideal I is *radical* if whenever $a \otimes \cdots \otimes a \in I$ then $a \in I$.

Lattices Thick subcategories Motivating examples

%tt-geometry

Let K be an essentially small symmetric monoidal triangulated category (*tt-category*).

Definition

The Balmer spectrum

 $Spc(K) = \{ prime \otimes -ideals in K \}$

is a topological space under the Zariski topology.

Theorem (Balmer)

There is an isomorphism of lattices (under inclusion):

{radical \otimes -ideals of K} $\cong \mathcal{O}(\operatorname{Spc}(K)^{\vee}).$

Lattices Thick subcategories Motivating examples

%tt-geometry

Let K be an essentially small tt-category. The *support* of $x \in K$ is defined as supp $x = \{\mathcal{P} \in \text{Spc}(K) \mid x \notin \mathcal{P}\}.$

Theorem (Balmer)

There is an isomorphism of lattices (under inclusion):

$${radical \otimes -ideals of K} \xrightarrow{\cong} {Thomason subsets of Spc(K)}$$

$$I \longmapsto \bigcup_{x \in I} \operatorname{supp} x$$

$$x \in K \mid \operatorname{supp} x \subseteq V \} \longleftrightarrow V$$

Lattices Thick subcategories Motivating examples

$D^b(\text{gr}\,\mathbb{K}[x])$

$D^b(\operatorname{gr}(\mathbb{K}[x]))$

Theorem (G.-Stevenson)

There is a lattice isomorphism

$$T(D^b(\operatorname{gr}(\mathbb{K}[x]))) \cong \operatorname{NC}(\mathbb{Z} \cup \{-\infty\}).$$

Idea: Identify the $\Sigma\text{-orbit}$ of

- $\mathbb{K}[x](j)$ with the pair $\{-\infty, j\}$;
- $\mathbb{K}[x]/(x^i)(j)$ for $i \in \mathbb{N}$, $j \in \mathbb{Z}$ with the pair $\{j i, j\}$.

$\mathrm{D^b}(\mathsf{gr}(\mathbb{K}[x]))$

Idea: Identify the Σ -orbit of

- $\mathbb{K}[x](j)$ with the pair $\{-\infty, j\}$;
- $\mathbb{K}[x]/(x^i)(j)$ for $i \in \mathbb{N}$, $j \in \mathbb{Z}$ with the pair $\{j i, j\}$.

The thick subcategory $\langle \mathbb{K}[x]/(x^2), \mathbb{K}[x]/(x^3)(-1), \mathbb{K}[x] \rangle$ corresponds to the non-crossing partition

Lattices Thick subcategories Motivating examples

Not controlled by a space

Note

For every topological space X we have

 $T(D^{\mathrm{b}}(\mathsf{gr}(\mathbb{K}[x]))) \ncong \mathcal{O}(X).$

Problem: $T(D^{b}(\operatorname{gr} \mathbb{K}[x]))$ is not distributive.

Distributivity

Definition

A lattice L is *distributive* if for all $a, b, c \in L$ we have

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c).$$

A lattice is distributive if and only if for all $a, b, c \in L$ we have

$$a \lor (b \land c) = (a \lor b) \land (a \lor c).$$

Lattices Thick subcategories Motivating examples

Examples

 Let X be a topological space. Then O(X) is distributive: For all U, V, W in O(X) we have

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W).$$

• $T(D^{\mathrm{b}}(\operatorname{gr} \mathbb{K}[x])) \cong \operatorname{NC}(\mathbb{Z} \cup \{-\infty\})$ is not distributive.

Lattices Thick subcategories Motivating examples

$\mathcal{T}(\mathrm{D^b}(\mathbb{K}[\mathrm{x}]))$ is not distributive

Lattices Thick subcategories Motivating examples

Non-crossing partitions beyond type A

Theorem (Ingalls-Thomas)

Let Q be an orientation of an ADE-diagram Δ . Then

 $T(D^b (\operatorname{mod} kQ)) \cong \operatorname{NC}(\Delta),$

where $NC(\Delta)$ denotes the non-crossing partitions of type Δ .

We have $NC(A_n) \cong NC(\{0,\ldots,n\})$.

Lattices Thick subcategories Motivating examples

Example

Let $K = D^{\mathrm{b}}(\operatorname{mod} \mathbb{K}A_2)$. We have $T(K) \cong NC(\{0, 1, 2\})$.

Lattices Thick subcategories Motivating examples

An obstruction to distributivity

Lemma

Let K be \mathbb{K} -linear and Hom-finite with an exceptional pair (E_1, E_2) such that Hom_K $(E_1, \Sigma^j E_2) \neq 0$ for some $j \in \mathbb{Z}$. Then T(K) is not distributive.

The pair (E_1, E_2) being exceptional means:

• For
$$i = 1, 2$$
 we have $\operatorname{Hom}_{\mathcal{K}}(E_i, \Sigma^j E_i) = \begin{cases} \mathbb{K} & \text{if } j = 0\\ 0 & \text{else;} \end{cases}$

• For all $j \in \mathbb{Z}$ we have $\operatorname{Hom}_{\mathcal{K}}(E_2, \Sigma^j E_1) = 0$.

Lattices Thick subcategories Motivating examples

*An obstruction to distributivity

Proof.

Let $F = L_{E_1}E_2$ be the left mutation of E_2 along E_1 .

$$F \to \operatorname{Hom}^{\bullet}(E_1, E_2) \otimes E_1 \to E_2 \to \Sigma F.$$

This is exceptional, and since $\text{Hom}_{\mathcal{K}}(E_1, \Sigma^i E_2) \neq 0$ we have $F \ncong \Sigma^j E_i$ for all $j \in \mathbb{Z}$, i = 1, 2. We obtain a sublattice of $T(\mathcal{K})$ of the form

$$\begin{array}{c} \langle E_1, E_2 \rangle \\ \checkmark & | \\ \langle E_1 \rangle \langle E_2 \rangle \langle F \rangle \\ & \\ 0 \end{array}$$

Lattices Thick subcategories Motivating examples

Finite dimensional algebras

Conclusion

Many examples of triangulated categories from finite dimensional algebras have non-distributive lattices of thick subcategories. They are not controlled by spaces.

Lattices Thick subcategories Motivating examples

Guiding questions

Questions

Part 2: What properties can T(K) have?

Part 3: How can we *always* approximate T(K) by a space?