Auslander-Reiten triangles in Frobenius categories and applications

HERNÁN GIRALDO

Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales

INTERNATIONAL CONFERENCE ON REPRESENTATIONS OF ALGEBRAS

ICRA 21, 2024

Shanghai Jiao Tong University Shanghai - China

August 6, 2024

joint with

YOHNY CALDERÓN-HENAO* and FELIPE GALLEGO-OLAYA*

* Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia.

Frobenius categories

- Preliminaries
- Main result

2 Applications

- Shapes of Auslander-Reiten triangles in the bounded derived categories
- A relation between the strong global dimension, complexes of fixed size and derived category

Frobenius categories

- Preliminaries
- Main result

2 Applications

- Shapes of Auslander-Reiten triangles in the bounded derived categories
- A relation between the strong global dimension, complexes of fixed size and derived category

A

∃ ► < ∃ ►</p>

- C is a Krull-Schmidt category.
- Λ is a finite-dimensional k-algebra over field k.
- For simplicity, we assume that Λ is basic and k is algebraically closed.
- Denote by $D = \operatorname{Hom}_{\Bbbk}(-, \Bbbk)$ the standard duality on Λ -mod.

- A pair (i, d) of composable morphisms $X \xrightarrow{i} Y \xrightarrow{d} Z$ in C is said to be exact if (X, i) is a kernel of d, and (Z, d) is a cokernel of i.
- Let \mathcal{E} be a class of exact pairs closed under isomorphisms.
- If (i, d) in \mathcal{E} , the morphisms *i* and *d* are called an \mathcal{E} -inflation and \mathcal{E} -deflation, respectively and the exact pairs in \mathcal{E} are called \mathcal{E} -conflations.
- We call the class \mathcal{E} an exact structure on \mathcal{C} and $(\mathcal{C}, \mathcal{E})$ an exact category (in the sense of D. Quillen (1973) or equivalently in the sense of Gabriel and Roiter (1984)).

Frobenius categories Applications References	Preliminaries Main result

- The sequence $X \xrightarrow{i} Y \xrightarrow{d} Z \in C$ is called \mathcal{E} -sequence if $(i, d) \in \mathcal{E}$.
- An object $P \in C$ is called \mathcal{E} -projective if for any deflation $d: Y \to Z$ and morphism $f: P \to Z$ there is $g: P \to Y$ such that f = dg.
- We say that the exact category (C, E) has enough E-projectives if for all Z ∈ C there is a deflation d : P → Z with P an E-projective.
- An exact category (C, E) is called Frobenius category if (C, E) has enough E-projectives and enough E-injectives and if moreover the E-projectives coincide with the E-injectives.

Frobenius categories Applications References Main result

Definition

An \mathcal{E} -sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ is called **Auslander-Reiten** \mathcal{E} -sequence or almost split \mathcal{E} -sequence if if *f* is a minimal left almost split morphism and *g* is minimal right almost split morphism.

Frobenius categories Applications References	Preliminaries Main result

- \underline{C} is the stable category of C, i.e., the objects of \underline{C} are the same as those in C, and two morphisms $h, h' : X \to Y$ in \underline{C} are identified provided that h h' factors through a \mathcal{E} -projective in C.
- \underline{C} is a Krull-Schmidt category.
- \underline{C} is a triangulated category category (D. Happel, 1988).

Frobenius categories Preliminaries Applications Main result References

A triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ in \underline{C} is called an **Auslander-Reiten triangle** if the following conditions are satisfied: (AR1) *X*, *Z* are indecomposable.

(AR2) $w \neq 0$.

(AR3) If $f: W \to Z$ is not a retraction, then there is $f': W \to Y$ such that vf' = f

Frobenius categories Applications References Main result

Theorem (Y. Calderón-Henao, F. Gallego-Olaya and —)

If C has Auslander-Reiten \mathcal{E} -sequences, then \underline{C} has Auslander-Reiten triangles.

3.5

A

Theorem (Y. Calderón-Henao, F. Gallego-Olaya, and ----)

Assume that C has Auslander-Reiten \mathcal{E} -sequences. If $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{w} TX$ is an Auslander-Reiten triangle in <u>C</u> with X, Y, Z without direct \mathcal{E} -projective summands, then there is an Auslander-Reiten \mathcal{E} -sequence in C, $X \longrightarrow Y \oplus P \longrightarrow Z'$ with P an \mathcal{E} -projective and his induced triangle is isomorphic to triangle given.

Frobenius categories

- Preliminaries
- Main result

- Shapes of Auslander-Reiten triangles in the bounded derived categories
- A relation between the strong global dimension, complexes of fixed size and derived category

Repetitive algebra $\widehat{\Lambda}$ of Λ as proposed by D. Hughes and J. Waschbüsch (1983).

• The underlying vector space of repetitive algebra Λ is given by

$$\widehat{\Lambda} = (\bigoplus_{i \in \mathbb{Z}} \Lambda) \oplus (\bigoplus_{i \in \mathbb{Z}} D\Lambda),$$

 $\widehat{a} = (a_i, \varphi_i)_{i \in \mathbb{Z}}$ with $a_i \in A, \varphi_i \in D\Lambda$ and almost all a_i, φ_i being zero.

• The multiplication is defined by

$$\widehat{a} \cdot \widehat{b} = (a_i, \varphi_i)_{i \in \mathbb{Z}} \cdot (b_i, \psi_i)_{i \in \mathbb{Z}} = (a_i b_i, a_{i+1} \psi_i + \varphi_i b_i)_{i \in \mathbb{Z}}$$

 Frobenius categories
 Shapes of Auslander-Reiten triangles in the bounded derived categories

 Applications
 A relation between the strong global dimension, complexes of fixed size and derived cat

$$\widehat{M}: \qquad \cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots \\
\downarrow_{\widehat{h}} \qquad \qquad \downarrow_{h_{i-1}} \qquad \downarrow_{h_i} \qquad \downarrow_{h_{i+1}} \\
\widehat{M}': \qquad \cdots \longrightarrow M'_{i-1} \xrightarrow{g_{i-1}} M'_i \xrightarrow{g_i} M'_{i+1} \longrightarrow \cdots$$

 f_i are Λ -homomorphims $f_i : D\Lambda \otimes_{\Lambda} M_i \longrightarrow M_{i+1}$, such that $f_{i+1}(1 \otimes f_i) = 0$.

$$D\Lambda \otimes_{\Lambda} M_{i} \xrightarrow{f_{i}} M_{i+1}$$

$$\downarrow^{1 \otimes h_{i}} \qquad \qquad \downarrow^{h_{i+1}}$$

$$DA \otimes_{\Lambda} M'_{i} \xrightarrow{g_{i}} M'_{i+1}.$$

프 🖌 🖌 프 🕨

< □ > < A > >

- We denoted by $\widehat{\Lambda}$ -mod the category of finitely generated left modules over the repetitive algebra $\widehat{\Lambda}$.
- We denoted by $\widehat{\Lambda}$ -mod the stable category of $\widehat{\Lambda}$ -mod.
- The category $\widehat{\Lambda}$ -mod has almost split sequences (1983 D. Hughes and J. Waschbüsch).
- The category $\widehat{\Lambda}$ -mod is a Frobenius, and the category $\widehat{\Lambda} \underline{mod}$ is triangulated (1988 D. Happel).

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cat

$$\widehat{M} \xrightarrow{\widehat{h}} \widehat{M}' \xrightarrow{\widehat{h}'} \widehat{M}'' \xrightarrow{\widehat{h}''} T\widehat{M}$$
(1)

Corollary (Y. Calderon-Henao, -, and J.A. Veléz-Marulanda, 2023, [2])

Assume that (1) is an Auslander-Reiten triangle in $\widehat{\Lambda}$ -mod, such that neither \widehat{M} nor \widehat{M}' nor \widehat{M}'' has projective direct summands in $\widehat{\Lambda}$ -mod. Then there exists an Auslander-Reiten sequence in $\widehat{\Lambda}$ -mod

$$0 \to \widehat{M} \xrightarrow{(\widehat{h},\widehat{\alpha})'} \widehat{M}' \oplus \widehat{P} \xrightarrow{(\widehat{h}'',\widehat{\beta})} \widehat{M}'' \to 0,$$
(2)

such that \widehat{P} is a projective $\widehat{\Lambda}$ -module and (2) induces the Auslander-Reiten triangle (1). Moreover, if $\widehat{P} \neq 0$, then \widehat{P} is indecomposable, $\widehat{M} \cong \operatorname{rad} \widehat{P}$ and $\widehat{M}'' \cong \widehat{P}/\operatorname{soc} \widehat{P}$ as $\widehat{\Lambda}$ -modules.

Shapes of Auslander-Reiten triangles in the bounded derived categories

 $C^b(\text{proj}\Lambda)$ the category of the complexes over $\text{proj}\Lambda$.

 $\widehat{\Lambda}$ -mod the category of finitely generated left modules over the repetitive algebra $\widehat{\Lambda}$

Definition

An $\widehat{\Lambda}$ -homomorphism $\widehat{h} = (h_i)_{i \in \mathbb{Z}} : \widehat{M} = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow \widehat{M}' = (M'_i, g_i)_{i \in \mathbb{Z}}$:

- *is called smonic* (*resp. sepic*) *if all its components h_i are split monomorphisms* (*resp. split epimorphisms*) *and*
- is called sirreducible if there is exactly one index ι₀ such that h_{ι0} is irreducible morphism and h_i is a split epimorphism for i < ι₀ and a split monomorphism for i > ι₀.

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cate

Shapes of the irreducible morphisms

Theorem (— and H. Merklen, 2009, [4])

Theorem (—, 2018, [3])

Let $\hat{h}: \hat{M} = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow \hat{M}' = (M_i, g_i)_{i \in \mathbb{Z}}$ be an irreducible homomorphism in $\hat{\Lambda}$ -mod. Then one of the following conditions holds:

- h is a smonic morphism;
- h is a sepic morphism;
- I h is a sirreducible morphism.

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cat

Shapes of Auslander-Reiten Triangles

Theorem (E.R. Alvares, S.M. Fernandes, and —, 2020, [1])

Theorem (Y. Calderón-Henao, —, and JA. Vélez-Marulanda, 2023, [2])

If
$$\widehat{M} \xrightarrow{\widehat{h}} \widehat{M}' \xrightarrow{\widehat{h}'} \widehat{M}'' \xrightarrow{\widehat{h}''} T(\widehat{M})$$
 is an Auslander-Reiten triangle in $\widehat{\Lambda} - \underline{mod}$, then

• If
$$\underline{\hat{h}}$$
 is smonic, then $\underline{\hat{h}'}$ is sepic.

If
$$\underline{\widehat{h}}$$
 is sepic, then $\underline{\widehat{h'}}$ is sirreducible.

9 If
$$\hat{\underline{h}}$$
 is sirreducible, then $\hat{\underline{h}'}$ is smonic or sirreducible.

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cate

A relation between the strong global dimension, complexes of fize size and derived category

The strong global dimension of Λ is defined as

s.gl.dim (Λ) := sup $\{\ell(X)|X \in K^b(\operatorname{proj}\Lambda) \text{ indecomposable}\}$.

 $\eta = \text{s.gl.dim}(\Lambda)$ and assume that $1 \leq \eta < \infty$.

ヨトィヨト

 $C_n(\text{proj}\Lambda)$, whose objects are the complexes *X* with $X^i = 0$ if $i \in \{1, ..., n\}$, i.e., *X* is of the form

$$X: \dots \to 0 \to X^1 \to X^2 \to \dots \to X^{n-1} \to X^n \to 0 \to \dots$$

- $C_n(\text{proj}\Lambda)$ has almost split sequences (R. Bautista, M.J. Souto-Salorio, and Rita Zuazua, 2005).
- The Auslander-Reiten quiver of C_n(projΛ) can be constructed by using the well-known knitting algorithm which is also used in order to build the Auslander-Reiten quiver of modΛ (C. Chaio, I. Pratti, and M.J. Souto-Salorio, 2017).
- $C_n(\text{proj}\Lambda)$ is not a Frobenius category.

Definition

Let $X = (X^i, d_X^i)_{i \in \mathbb{Z}}$ be an indecomposable complex in $C_n(\text{proj}\Lambda)$.

• We say that X can be **extended to the left** in $C_{n+1}(\text{proj}\Lambda)$ if there is a projective Λ -module X'^0 and a non-zero morphism $d'^0: X'^0 \to X^1$ such that $d_X^1 {d'}^0 = 0$. We denote the extended complex to the left of X in $C_{n+1}(\text{proj}\Lambda)$ by $_EX$, where $_EX^{1} = X'^0, _EX^i = X^{i-1}$ for all $i \in \{2, ..., n+1\}, d_{EX}^1 = d'^0, d_{EX}^i = d_X^{i-1}$ for all $i \in \{2, ..., n\}$.

Theorem (Y. Calderón-Henao, F. Gallego-Olaya, and ----)

Let Λ be an algebra with finite strong global dimension $\eta = \text{s.gl.dim}(\Lambda)$. Let X, Z, and $Y = \bigoplus_{i=1}^{m} Y_i$ be with X, Z and Y_i indecomposable complexes in $C_{\eta+1}(\text{proj}\Lambda)$ such that neither X nor Z nor Y_i are $\mathcal{E}_{\eta+1}$ -projective-injective.

[i.] Up to translation. $f : X \to Z$ is an irreducible morphism in $D^b(\Lambda)$ if and only if $f : X \to Z$ is an irreducible morphism in $C_{\eta+1}(\text{proj}\Lambda)$, X cannot be extended to the left in $C_{\eta+2}(\text{proj}\Lambda)$, and Z cannot be extended to the right in $C_{\eta+2}(\text{proj}\Lambda)$.

[ii.] Up to translation. $\triangle : X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ is an Auslander-Reiten triangle in $D^b(\Lambda)$ if and only if there exists $\delta : X \xrightarrow{[u \quad u']^t} Y \oplus P \xrightarrow{[v' \quad v'']} Z$ an almost split $\mathcal{E}_{\eta+1}$ -sequence in $C_{\eta+1}(\operatorname{proj}\Lambda)$ which induce an Auslander-Reiten triangle isomorphic to \triangle , where *P* is an $\mathcal{E}_{\eta+1}$ -projective-injective, *X* cannot be extended to the left in $C_{\eta+2}(\operatorname{proj}\Lambda)$, Y_i cannot be extended to the left and cannot be extended to the right in $C_{\eta+2}(\operatorname{proj}\Lambda)$, and *Z* cannot be extended to the right in $C_{\eta+2}(\operatorname{proj}\Lambda)$. Moreover, if $P \neq 0$, then *P* is an indecomposable complex.

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cate

Example

Let Λ be the path algebra given by the following quiver

$$Q$$
 : 1 $\stackrel{\alpha}{\longrightarrow}$ 2 $\stackrel{\beta}{\longrightarrow}$ 3

with the single relation $\alpha\beta = 0$.

▶ < ∃ >

< □ > < A > >

Shapes of Auslander-Reiten triangles in the bounded derived categories A relation between the strong global dimension, complexes of fixed size and derived cate

Auslander-Reiten Quiver of $C_3(\text{proj}\Lambda)$

ヨト・ヨト

Hernán Giraldo, Medellín, Colombia Auslander-Reiten triangles in Frobenius categories and applications

The Auslander-Reiten quiver of $\mathcal{D}^b(\Lambda\operatorname{-mod})$ is given by

< ∃→

3 N - N

Image: A matrix

I Frobenius categories

- Preliminaries
- Main result

2 Applications

- Shapes of Auslander-Reiten triangles in the bounded derived categories
- A relation between the strong global dimension, complexes of fixed size and derived category

ヨトィヨト

References

ALVARES, E. R., FERNANDES, S. M., AND GIRALDO, H. Shapes of auslander-reiten triangles. *Algebras and Representation Theory* 23, 6 (2020), 22572274.

CALDERÓN-HENAO, Y., GIRALDO, H., AND VÉLEZ-MARULANDA, J. On irreducible morphisms and auslander-reiten triangles in the stable category of modules over repetitive algebras.

Algebras and Representation Theory 26 (2023), 2039–2055.

GIRALDO, H.

Irreducible morphisms between modules over a repetitive algebras.

Algebras and Representation Theory 21, 4 (2018), 683 – 702.

GIRALDO, H., AND MERKLEN, H.

Irreducible morphisms of categories of complexes. *Journal of Algebra 321*, 10 (2009), 2716 – 2736.

Wild Thanks

Hernán Giraldo, Medellín, Colombia Auslander-Reiten triangles in Frobenius categories and applications

<ロ> <西> <西> < 西> < 西> < 西>