・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Homological theory of representations having pure acyclic injective resolutions

Gang Yang Lanzhou Jiaotong University

The 21st International Conference on Representations of Algebras August 8, 2024, Shanghai China Outlines

Introduction

Preliminaries

Main Results

Outlines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シへぐ

Outlines

Introduction

Preliminaries

Main Results

(日)

Introduction

The study of relation between representations and their components is a traditional and important research subject in the theory of homological algebra.

Outlines	Introduction ⊙●○○○○	Preliminaries	Main Results
Introduction			

• A representation X in Rep(Q, R) of a right rooted quiver Q is injective iff $\psi_i^X : X(i) \to \prod_{a:i \to j} X(j)$ is a splitting epimorphism, and X(i) is an injective *R*-module for $\forall i \in Q_0$.

◊ E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* 61 (2) (2009) 315-335.

• A representation X in Rep(Q, R) of a left rooted quiver Q is projective (flat) iff $\varphi_i^X : \bigoplus_{a:j \to i} X(j) \to X(i)$ is a splitting epimorphism (pure monomorphism), and X(i) is a projective (flat) *R*-module for $\forall i \in Q_0$.

♦ E. Enochs, S. Estrada, Projective representations of quivers, Comm. Algebra 33 (10) (2005) 3467-3478

◊ E. Enochs, L. Oyonarte, B. Torrecillas, Flat covers and flat representations of quivers, *Comm. Algebra* **32**(4) (2004) 1319-1338.

(日) (日) (日) (日) (日) (日) (日)

Outlines	Introduction 00000	Preliminaries	Main Results
Introduction			

• A representation X in Rep(Q, R) of a right rooted quiver Q is injective iff $\psi_i^X : X(i) \to \prod_{a:i \to j} X(j)$ is a splitting epimorphism, and X(i) is an injective *R*-module for $\forall i \in Q_0$.

◊ E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* **61** (2) (2009) 315-335.

• A representation X in $\operatorname{Rep}(Q, R)$ of a left rooted quiver Q is projective (flat) iff $\varphi_i^X : \bigoplus_{a:j \to i} X(j) \to X(i)$ is a splitting epimorphism (pure monomorphism), and X(i) is a projective (flat) *R*-module for $\forall i \in Q_0$.

 ◇ E. Enochs, S. Estrada, Projective representations of quivers, *Comm. Algebra* 33 (10) (2005) 3467-3478

◊ E. Enochs, L. Oyonarte, B. Torrecillas, Flat covers and flat representations of quivers, *Comm. Algebra* **32**(4) (2004) 1319-1338.

Introduction

◊ H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of representations of quivers, *Comm. Algebra* **41** (12) (2013) 4425-4441.

 M. Aghasi, H. Nemaii, Absolutely pure representations of quivers, J. Korean Math. Soc. 51 (6) (2014) 1177-1187.

 H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representations, *Kyoto J. Math.* 59 (3) (2019) 575-606.

S otabasi Completeness of the induced colorsion parts in categories of

 Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of left rooted quivers, *J. Algebra* 584 (2021) 180-214.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

◊ H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of representations of quivers, *Comm. Algebra* **41** (12) (2013) 4425-4441.

◊ M. Aghasi, H. Nemati, Absolutely pure representations of quivers, *J. Korean Math. Soc.* **51** (6) (2014) 1177-1187.

 H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representations, *Kyoto J. Math.* 59 (3) (2019) 575-606.

 S. Odabasi, Completeness of the induced cotorsion pairs in categories of quiver representations, J. Pure Appl. Algebra 223 (2019) 4536-4559.

 Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of left rooted quivers, *J. Algebra* 584 (2021) 180-214.

Introduction

◊ H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of representations of quivers, *Comm. Algebra* **41** (12) (2013) 4425-4441.

◊ M. Aghasi, H. Nemati, Absolutely pure representations of quivers, *J. Korean Math. Soc.* 51 (6) (2014) 1177-1187.

◊ H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representations, *Kyoto J. Math.* 59 (3) (2019) 575-606.

 S. Odabasi, Completeness of the induced cotorsion pairs in categories of quiver representations, J. Pure Appl. Algebra 223 (2019) 4536-4559.

◊ Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of left rooted quivers, *J. Algebra* 584 (2021) 180-214.

(日)

Introduction

◊ H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of representations of quivers, *Comm. Algebra* **41** (12) (2013) 4425-4441.

◊ M. Aghasi, H. Nemati, Absolutely pure representations of quivers, *J. Korean Math. Soc.* 51 (6) (2014) 1177-1187.

◊ H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representations, *Kyoto J. Math.* 59 (3) (2019) 575-606.

◊ S. Odabasi, Completeness of the induced cotorsion pairs in categories of quiver representations, *J. Pure Appl. Algebra* 223 (2019) 4536-4559.

◊ Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of left rooted quivers, *J. Algebra* 584 (2021) 180-214.

Introduction

◊ H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of representations of quivers, *Comm. Algebra* **41** (12) (2013) 4425-4441.

◊ M. Aghasi, H. Nemati, Absolutely pure representations of quivers, *J. Korean Math. Soc.* 51 (6) (2014) 1177-1187.

◊ H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representations, *Kyoto J. Math.* 59 (3) (2019) 575-606.

◊ S. Odabasi, Completeness of the induced cotorsion pairs in categories of quiver representations, *J. Pure Appl. Algebra* 223 (2019) 4536-4559.

◊ Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of left rooted quivers, *J. Algebra* 584 (2021) 180-214.

(日) (日) (日) (日) (日) (日) (日)

Introduction

- An *R*-module *L* is said to be fp-injective (absolutely pure) if $\operatorname{Ext}_{R}^{1}(P,L) = 0$ for every finitely presented *R*-module *P*, or equivalently, if every exact sequence $0 \to L \to M \to N \to 0$ of *R*-modules is pure.
- An *R*-module *N* is flat if and only if every exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *R*-modules is pure, and so fp-injective modules are often regarded as dual analogues of flat modules.

Introduction

- An *R*-module *L* is said to be fp-injective (absolutely pure) if $\operatorname{Ext}_{R}^{1}(P,L) = 0$ for every finitely presented *R*-module *P*, or equivalently, if every exact sequence $0 \to L \to M \to N \to 0$ of *R*-modules is pure.
- An *R*-module *N* is flat if and only if every exact sequence
 0 → L → M → N → 0 of *R*-modules is pure, and so fp-injective modules are often regarded as dual analogues of flat modules.

(日)

Introduction

• An *R*-module *L* is called *strongly fp-injective* if $\operatorname{Ext}_{R}^{n}(P, L) = 0$ for any finitely presented *R*-module *P* and all $n \ge 1$.

◊ W. Li, J. Guan, B. Ouyang, Strongly FP-injective modules, *Comm. Algebra* 45(9) (2017) 3816-3824.

Introduction

Objective:

• We were inspired to investigate strongly fp-injective representations in the category Rep(Q, R), and we will show that such representations share many nice homological properties.

(ロ) (母) (主) (主) (主) の(で)

(日)

Preliminaries

- Let *R* be a ring and $Q = (Q_0, Q_1)$ a quiver.
- *R*-Mod the category of (left) *R*-modules.

 $\operatorname{Rep}(Q, R)$ the category of representations of Q by R-modules.

Outlines	Introduction 000000	Preliminaries o●oooo	Main Results
Preliminaries			

Definitions:

A quiver $Q = (Q_0, Q_1)$ is a directed graph, where Q_0 and Q_1 are the sets of vertices and arrows, respectively.

a representation X is determined by assigning an *R*-module X(i) to each $i \in Q_0$ and an *R*-homomorphism $X(a) : X(i) \to X(j)$ to each $a \in Q_1$. A morphism $f : X \to Y$ between representations X and Y is a family of homomorphisms $\{f(i) : X(i) \to Y(i)\}_{i \in Q_0}$ such that the diagram

$$\begin{array}{c|c} X(i) \xrightarrow{X(a)} X(j) \\ f(i) & f(j) \\ Y(i) \xrightarrow{Y(a)} Y(j) \end{array}$$

commutes for each arrow $a: i \rightarrow j$ in Q_1 .

Outlines	Introduction 000000	Preliminaries o●oooo	Main Results
Preliminarie	S		

Definitions:

A quiver $Q = (Q_0, Q_1)$ is a directed graph, where Q_0 and Q_1 are the sets of vertices and arrows, respectively. A representation Xof Q by R-modules is a covariant functor $X : Q \to R$ -Mod. Thus a representation X is determined by assigning an R-module X(i)to each $i \in Q_0$ and an R-homomorphism $X(a) : X(i) \to X(j)$ to each $a \in Q_1$.

X and Y is a family of homomorphisms $\{f(i):X(i)
ightarrow Y(i)\}_{i\in \mathcal{Q}_0}$ such that the diagram

$$\begin{array}{c|c} X(i) \xrightarrow{X(a)} X(j) \\ f(i) & & f(j) \\ Y(i) \xrightarrow{Y(a)} Y(j) \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

commutes for each arrow $a: i \rightarrow j$ in Q_1 .

Outlines	Introduction 000000	Preliminaries o●oooo	Main Results
Prelimina	ries		

Definitions:

A quiver $Q = (Q_0, Q_1)$ is a directed graph, where Q_0 and Q_1 are the sets of vertices and arrows, respectively. A representation Xof Q by R-modules is a covariant functor $X : Q \to R$ -Mod. Thus a representation X is determined by assigning an R-module X(i)to each $i \in Q_0$ and an R-homomorphism $X(a) : X(i) \to X(j)$ to each $a \in Q_1$. A morphism $f : X \to Y$ between representations X and Y is a family of homomorphisms $\{f(i) : X(i) \to Y(i)\}_{i \in Q_0}$ such that the diagram

$$\begin{array}{c|c} X(i) \xrightarrow{X(a)} X(j) \\ f(i) & & f(j) \\ Y(i) \xrightarrow{Y(a)} Y(j) \end{array}$$

commutes for each arrow $a: i \rightarrow j$ in Q_1 .

◆□ > < □ > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlines	Introduction 000000	Preliminaries ○○●○○○	Main Results
Drolimin	ariae		

Notations:

For a vertex *i* ∈ *Q*₀, we denote by *Q*₁^{*i*→*} (respectively *Q*₁^{*s*→*i*}) the set of arrows in *Q* whose source (resp. target) is the vertex *i*, that is,

$$Q_1^{i \to *} := \{ a \in Q_1 | s(a) = i \}$$
 and $Q_1^{* \to i} := \{ a \in Q_1 | t(a) = i \}.$

 Let X ∈ rep(Q, R). By the universal properties of coproducts and products, there are unique homomorphisms

$$\varphi_i^X: \bigoplus_{a \in \mathcal{Q}_1^{* \to i}} X(s(a)) \longrightarrow X(i) \text{ and } \psi_i^X: X(i) \longrightarrow \prod_{a \in \mathcal{Q}_1^{i \to *}} X(t(a)).$$

Preliminaries

Definitions:

- By $Q^{op} = (Q_0, Q_1^{op})$ we mean a quiver with the same set of vertices and the set of reversed arrows.
- A quiver *Q* is called *right rooted* if there is no infinite sequence of arrows of the form → → → ··· in *Q*. Dually, a quiver *Q* is *left rooted* if and only if it has no infinite sequence of arrows of the form ··· → → → •.
- We note that a quiver *Q* is right rooted if and only if *Q*^{op} is left rooted.

Tensor products of representations

Definition

An exact sequence $\eta : 0 \to X \to Y \to Z \to 0$ of representations in $\operatorname{Rep}(Q, R)$ is called pure if $S \otimes_Q \eta : 0 \to S \otimes_Q X \to S \otimes_Q Y \to S \otimes_Q Z \to 0$ is exact for any representation $S \in \operatorname{Rep}(Q^{op}, R^{op})$.

_emma

Let $\eta : 0 \to X \to Y \to Z \to 0$ be an exact sequence in $\operatorname{Rep}(Q, R)$. Then η is pure if and only if the sequence $\eta^+ : 0 \to Z^+ \to Y^+ \to X^+ \to 0$ is splitting exact in $\operatorname{Rep}(Q^{op}, R^{op})$.

Tensor products of representations

Definition

An exact sequence $\eta : 0 \to X \to Y \to Z \to 0$ of representations in $\operatorname{Rep}(Q, R)$ is called pure if $S \otimes_Q \eta : 0 \to S \otimes_Q X \to S \otimes_Q Y \to S \otimes_Q Z \to 0$ is exact for any representation $S \in \operatorname{Rep}(Q^{op}, R^{op})$.

Lemma

Let $\eta : 0 \to X \to Y \to Z \to 0$ be an exact sequence in $\operatorname{Rep}(Q, R)$. Then η is pure if and only if the sequence $\eta^+ : 0 \to Z^+ \to Y^+ \to X^+ \to 0$ is splitting exact in $\operatorname{Rep}(Q^{op}, R^{op})$.

Definition. Recall that a representation *X* is called *fp-injective*, or *absolutely pure* if every exact sequence $0 \rightarrow X \rightarrow Y$ is pure.

Lemma

Let *X* be a representation in $\operatorname{Rep}(Q, R)$. If *X* is fp-injective, then ψ_i^X is a pure epimorphism, and X(i) is an fp-injective *R*-module for each $i \in Q_0$. The converse holds provided that the quiver *Q* is right rooted, and *R* is left coherent.

M. Aghasi, H. Nemati, Absolutely pure representations of quivers, *J. Korean Math. Soc.* 51 (6) (2014) 1177-1187.

Strongly fp-injective representations

Definition. A representation *X* is called strongly fp-injective if it admits a pure acyclic injective resolution $0 \rightarrow X \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ in Rep(*Q*, *R*) with E^i injective for all $i \ge 0$.

Remark

The following statements hold:

(1) Injectives \Rightarrow strongly fp-injectives \Rightarrow fp-injectives.

(2) If 0 → X → E⁰ → E¹ → ··· is a pure acyclic injective resolution of X, then Ker(Eⁱ → Eⁱ⁺¹) is strongly fp-injective for i ≥ 0.

Strongly fp-injective representations

Definition. A representation *X* is called strongly fp-injective if it admits a pure acyclic injective resolution $0 \rightarrow X \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ in Rep(*Q*, *R*) with E^i injective for all $i \ge 0$.

Remark

The following statements hold:

(1) Injectives \Rightarrow strongly fp-injectives \Rightarrow fp-injectives.

(2) If 0 → X → E⁰ → E¹ → ··· is a pure acyclic injective resolution of X, then Ker(Eⁱ → Eⁱ⁺¹) is strongly fp-injective for i ≥ 0.

Strongly fp-injective representations

Definition. A representation *X* is called strongly fp-injective if it admits a pure acyclic injective resolution $0 \rightarrow X \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ in Rep(*Q*, *R*) with E^i injective for all $i \ge 0$.

Remark

The following statements hold:

(1) Injectives \Rightarrow strongly fp-injectives \Rightarrow fp-injectives.

(2) If $0 \to X \to E^0 \to E^1 \to \cdots$ is a pure acyclic injective resolution of *X*, then $\text{Ker}(E^i \to E^{i+1})$ is strongly fp-injective for $i \ge 0$.

Strongly fp-injective representations

Theorem 1. The following statements hold for any quiver *Q*:

- (1) The class of all strongly fp-injective representations is closed under extensions, taking cokernels of monomorphisms, finite direct sums and direct summands.
 - Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be a pure exact sequence of representations. If *Y* and *Z* are strongly fp-injective, then so is *X*.

Corollary

A representation X is strongly fp-injective iff any exact sequence $0 \to X \to E^0 \to E^1 \to \cdots$ with E^i injective for $\forall i \ge 0$ is pure.

Strongly fp-injective representations

Theorem 1. The following statements hold for any quiver *Q*:

- The class of all strongly fp-injective representations is closed under extensions, taking cokernels of monomorphisms, finite direct sums and direct summands.
- (2) Let 0 → X → Y → Z → 0 be a pure exact sequence of representations. If Y and Z are strongly fp-injective, then so is X.

Corollary

A representation X is strongly fp-injective iff any exact sequence $0 \to X \to E^0 \to E^1 \to \cdots$ with E^i injective for $\forall i \ge 0$ is pure.

Strongly fp-injective representations

Theorem 1. The following statements hold for any quiver *Q*:

- The class of all strongly fp-injective representations is closed under extensions, taking cokernels of monomorphisms, finite direct sums and direct summands.
- (2) Let 0 → X → Y → Z → 0 be a pure exact sequence of representations. If Y and Z are strongly fp-injective, then so is X.

Corollary

A representation X is strongly fp-injective iff any exact sequence $0 \rightarrow X \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots$ with E^i injective for $\forall i \ge 0$ is pure.

Main Results

Strongly fp-injective representations

Theorem 2. Let *X* be a strongly fp-injective representation in Rep(Q, R). Then the following statements hold.

- (1) For each vertex $v \in Q_0$, X(v) is a strongly fp-injective *R*-module.
- (2) For each vertex $v \in Q_0$, the homomorphism $\psi_v^X : X(v) \longrightarrow \prod_{a \in Q_1^{v \to *}} X(t(a))$ induced by $X(a) : X(v) \longrightarrow X(t(a))$ is a pure epimorphism.

Main Results

Strongly fp-injective representations

Theorem 2. Let *X* be a strongly fp-injective representation in $\operatorname{Rep}(Q, R)$. Then the following statements hold.

- (1) For each vertex $v \in Q_0$, X(v) is a strongly fp-injective *R*-module.
- (2) For each vertex $v \in Q_0$, the homomorphism $\psi_v^X : X(v) \longrightarrow \prod_{a \in Q_1^{v \to *}} X(t(a))$ induced by $X(a) : X(v) \longrightarrow X(t(a))$ is a pure epimorphism.

Sac

Main Results

The CONVERSE of Theorem 2 is not true.

Example. Let Q be a quiver with one vertex v and an arrow α from v to itself, and the category of representations of Q by **k**-vector spaces (**k** is a field). In this case $\text{Rep}(Q, \mathbf{k})$ is equivalent to the category $\mathbf{k}[x]$ -Mod of $\mathbf{k}[x]$ -modules. If we take the representation X with $\mathbf{k}[x, x^{-1}]$ in the vertex v and the morphism $X(\alpha) : \mathbf{k}[x, x^{-1}] \rightarrow \mathbf{k}[x, x^{-1}]$ given by multiplying x. It is clear that X satisfies (1) and (2) in Theorem 2, but X is not strongly fp-injective.

E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* 61 (2) (2009) 315-335.

The CONVERSE of Theorem 2 is not true.

Example. Let Q be a quiver with one vertex v and an arrow α from v to itself, and the category of representations of Q by **k**-vector spaces (**k** is a field). In this case $\text{Rep}(Q, \mathbf{k})$ is equivalent to the category $\mathbf{k}[x]$ -Mod of $\mathbf{k}[x]$ -modules.

representation X with $\mathbf{k}[x, x^{-1}]$ in the vertex v and the morphism $X(\alpha) : \mathbf{k}[x, x^{-1}] \rightarrow \mathbf{k}[x, x^{-1}]$ given by multiplying x. It is clear that X satisfies (1) and (2) in Theorem 2, but X is not strongly fp-injective.

◊ E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* 61 (2) (2009) 315-335.

The CONVERSE of Theorem 2 is not true.

Example. Let Q be a quiver with one vertex v and an arrow α from v to itself, and the category of representations of Q by **k**-vector spaces (**k** is a field). In this case $\text{Rep}(Q, \mathbf{k})$ is equivalent to the category $\mathbf{k}[x]$ -Mod of $\mathbf{k}[x]$ -modules. If we take the representation X with $\mathbf{k}[x, x^{-1}]$ in the vertex v and the morphism $X(\alpha) : \mathbf{k}[x, x^{-1}] \rightarrow \mathbf{k}[x, x^{-1}]$ given by multiplying x. It is clear that X satisfies (1) and (2) in Theorem 2, but X is not strongly fp-injective.

◊ E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* **61** (2) (2009) 315-335.

The CONVERSE of Theorem 2 is not true.

Example. Let Q be a quiver with one vertex v and an arrow α from v to itself, and the category of representations of Q by **k**-vector spaces (**k** is a field). In this case $\text{Rep}(Q, \mathbf{k})$ is equivalent to the category $\mathbf{k}[x]$ -Mod of $\mathbf{k}[x]$ -modules. If we take the representation X with $\mathbf{k}[x, x^{-1}]$ in the vertex v and the morphism $X(\alpha) : \mathbf{k}[x, x^{-1}] \rightarrow \mathbf{k}[x, x^{-1}]$ given by multiplying x. It is clear that X satisfies (1) and (2) in Theorem 2, but X is not strongly fp-injective.

◊ E. Enochs, S. Estrada, J.R. García Rozas, Injective representations of infinite quivers. Applications, *Canad. J. Math.* **61** (2) (2009) 315-335.

Main Results

Strongly fp-injective representations

Theorem 3. Let Q be a right rooted quiver and X a representation in Rep(Q, R). Then X is strongly fp-injective if and only if the following statements hold.

(1) For each vertex $v \in Q_0$, X(v) is a strongly fp-injective *R*-module.

(2) For each vertex $v \in Q_0$, the homomorphism $\psi_v^X : X(v) \longrightarrow \prod_{a \in Q_1^{v \to *}} X(t(a))$ induced by $X(a) : X(v) \longrightarrow X(t(a))$ is a pure epimorphism.

Main Results

Strongly fp-injective representations

Theorem 3. Let Q be a right rooted quiver and X a representation in Rep(Q, R). Then X is strongly fp-injective if and only if the following statements hold.

- (1) For each vertex $v \in Q_0$, X(v) is a strongly fp-injective *R*-module.
- (2) For each vertex $v \in Q_0$, the homomorphism $\psi_v^X : X(v) \longrightarrow \prod_{a \in Q_1^{v \to *}} X(t(a))$ induced by $X(a) : X(v) \longrightarrow X(t(a))$ is a pure epimorphism.

Outlines	Introduction 000000	Preliminaries	Main Results ○○○○○●○
Main Resu	ults		

Let ${\it Q}$ be a right rooted quiver and ${\it J}$ the class of strongly fp-injective modules, then

 $\Psi(\mathcal{J}) = \left\{ X \in \mathsf{Rep}(\mathcal{Q}, R) \; \middle| \; \begin{array}{l} \psi_v^X \text{ is an epimorphism, } X(v) \text{ and} \\ \operatorname{Ker}(\psi_v^X) \in \mathcal{J} \text{ for each } v \in Q_0 \end{array} \right\}$

is exactly the class of strongly fp-injective representations of Q.

Corollary

Let Q be right rooted. Then the following statements hold.

(1) $\Psi(\mathcal{J})$ is closed under direct products.

(2) $(^{\perp}(\Psi(\mathcal{J})),\Psi(\mathcal{J}))$ is a complete cotorsion pair in $\mathsf{Rep}(Q,R)$.

Outlines	Introduction 000000	Preliminaries	Main Results ○○○○○●○
Main Results			

Let ${\it Q}$ be a right rooted quiver and ${\it J}$ the class of strongly fp-injective modules, then

 $\Psi(\mathcal{J}) = \left\{ X \in \mathsf{Rep}(\mathcal{Q}, R) \; \middle| \; \begin{array}{l} \psi_v^X \text{ is an epimorphism, } X(v) \text{ and} \\ \operatorname{Ker}(\psi_v^X) \in \mathcal{J} \text{ for each } v \in Q_0 \end{array} \right\}$

is exactly the class of strongly fp-injective representations of Q.

Corollary

Let Q be right rooted. Then the following statements hold.

(1) $\Psi(\mathcal{J})$ is closed under direct products.

(2) $(^{\perp}(\Psi(\mathcal{J})), \Psi(\mathcal{J}))$ is a complete cotorsion pair in $\mathsf{Rep}(Q, R)$.

Outlines	Introduction 000000	Preliminaries	Main Results ○○○○○●○
Main Resu	ults		

Let ${\it Q}$ be a right rooted quiver and ${\it J}$ the class of strongly fp-injective modules, then

 $\Psi(\mathcal{J}) = \left\{ X \in \mathsf{Rep}(\mathcal{Q}, R) \; \middle| \; \begin{array}{l} \psi_v^X \text{ is an epimorphism, } X(v) \text{ and} \\ \operatorname{Ker}(\psi_v^X) \in \mathcal{J} \text{ for each } v \in Q_0 \end{array} \right\}$

is exactly the class of strongly fp-injective representations of Q.

Corollary

Let Q be right rooted. Then the following statements hold.

(1) $\Psi(\mathcal{J})$ is closed under direct products.

(2) $(^{\perp}(\Psi(\mathcal{J})), \Psi(\mathcal{J}))$ is a complete cotorsion pair in $\operatorname{Rep}(Q, R)$.

Main Results ○○○○○●

Thank You!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @