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Introduction

The study of relation between representations and their com-
ponents is a traditional and important research subject in the
theory of homological algebra.
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Introduction

A representation X in Rep(Q,R) of a right rooted quiver Q
is injective iff ψX

i : X(i) →
∏

a:i→j X(j) is a splitting epimor-
phism, and X(i) is an injective R-module for ∀i ∈ Q0.

� E. Enochs, S. Estrada, J.R. Garcı́a Rozas, Injective representations of
infinite quivers. Applications, Canad. J. Math. 61 (2) (2009) 315-335.

A representation X in Rep(Q,R) of a left rooted quiver Q
is projective (flat) iff ϕX

i :
⊕

a:j→i X(j) → X(i) is a splitting
epimorphism (pure monomorphism), and X(i) is a projective
(flat) R-module for ∀i ∈ Q0.

� E. Enochs, S. Estrada, Projective representations of quivers, Comm.
Algebra 33 (10) (2005) 3467-3478

� E. Enochs, L. Oyonarte, B. Torrecillas, Flat covers and flat representa-
tions of quivers, Comm. Algebra 32(4) (2004) 1319-1338.
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� H. Eshraghi, R. Hafezi, Sh. Salarian. Total acyclicity for complexes of rep-
resentations of quivers, Comm. Algebra 41 (12) (2013) 4425-4441.

� M. Aghasi, H. Nemati, Absolutely pure representations of quivers, J. Korean
Math. Soc. 51 (6) (2014) 1177-1187.

� H. Holm, P. Jorgensen, Cotorsion pairs in categories of quiver representa-
tions, Kyoto J. Math. 59 (3) (2019) 575-606.

� S. Odabasi, Completeness of the induced cotorsion pairs in categories of
quiver representations, J. Pure Appl. Algebra 223 (2019) 4536-4559.

� Z. Di, S. Estrada, L. Liang, S. Odabasi, Gorenstein flat representations of
left rooted quivers, J. Algebra 584 (2021) 180-214.
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Introduction

An R-module L is said to be fp-injective (absolutely pure) if
Ext1R(P,L) = 0 for every finitely presented R-module P, or
equivalently, if every exact sequence 0→ L → M → N → 0
of R-modules is pure.

An R-module N is flat if and only if every exact sequence
0 → L → M → N → 0 of R-modules is pure, and so fp-
injective modules are often regarded as dual analogues of
flat modules.
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Introduction

An R-module L is called strongly fp-injective if ExtnR(P,L) = 0
for any finitely presented R-module P and all n ≥ 1.

� W. Li, J. Guan, B. Ouyang, Strongly FP-injective modules, Comm.
Algebra 45(9) (2017) 3816-3824.
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Introduction

Objective:

We were inspired to investigate strongly fp-injective repre-
sentations in the category Rep(Q,R), and we will show that
such representations share many nice homological proper-
ties.
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Preliminaries

Let R be a ring and Q = (Q0,Q1) a quiver.

R-Mod the category of (left) R-modules.

Rep(Q,R) the category of representations of Q by R-modules.
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Preliminaries

Definitions:

A quiver Q = (Q0,Q1) is a directed graph, where Q0 and Q1 are
the sets of vertices and arrows, respectively. A representation X
of Q by R-modules is a covariant functor X : Q → R-Mod. Thus
a representation X is determined by assigning an R-module X(i)
to each i ∈ Q0 and an R-homomorphism X(a) : X(i) → X(j) to
each a ∈ Q1. A morphism f : X → Y between representations
X and Y is a family of homomorphisms {f (i) : X(i) → Y(i)}i∈Q0

such that the diagram

X(i)

f (i)
��

X(a) // X(j)

f (j)
��

Y(i)
Y(a) // Y(j)

commutes for each arrow a : i→ j in Q1.
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Preliminaries

Notations:

For a vertex i ∈ Q0, we denote by Qi→∗
1 (respectively Q∗→i

1 )
the set of arrows in Q whose source (resp. target) is the
vertex i, that is,

Qi→∗
1 := {a ∈ Q1|s(a) = i} and Q∗→i

1 := {a ∈ Q1|t(a) = i}.

Let X ∈ rep(Q,R). By the universal properties of coproducts
and products, there are unique homomorphisms

ϕX
i :

⊕
a∈Q∗→i

1

X(s(a)) −→ X(i) and ψX
i : X(i) −→

∏
a∈Qi→∗

1

X(t(a)).
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Preliminaries

Definitions:

By Qop = (Q0,Q
op
1 ) we mean a quiver with the same set of

vertices and the set of reversed arrows.

A quiver Q is called right rooted if there is no infinite se-
quence of arrows of the form • → • → • → · · · in Q. Dually,
a quiver Q is left rooted if and only if it has no infinite se-
quence of arrows of the form · · · → • → • → •.

We note that a quiver Q is right rooted if and only if Qop is
left rooted.
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Preliminaries

Tensor products of representations

Definition
An exact sequence η : 0 → X → Y → Z → 0 of representations
in Rep(Q,R) is called pure if S ⊗Q η : 0 → S ⊗Q X → S ⊗Q Y →
S⊗Q Z → 0 is exact for any representation S ∈ Rep(Qop,Rop).

Lemma

Let η : 0→ X → Y → Z → 0 be an exact sequence in Rep(Q,R).
Then η is pure if and only if the sequence η+ : 0→ Z+ → Y+ →
X+ → 0 is splitting exact in Rep(Qop,Rop).
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Preliminaries

Definition. Recall that a representation X is called fp-injective,
or absolutely pure if every exact sequence 0→ X → Y is pure.

Lemma
Let X be a representation in Rep(Q,R). If X is fp-injective, then
ψX

i is a pure epimorphism, and X(i) is an fp-injective R-module
for each i ∈ Q0. The converse holds provided that the quiver Q
is right rooted, and R is left coherent.

� M. Aghasi, H. Nemati, Absolutely pure representations of quivers, J. Korean
Math. Soc. 51 (6) (2014) 1177-1187.
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Main Results

Strongly fp-injective representations

Definition. A representation X is called strongly fp-injective if it
admits a pure acyclic injective resolution 0 → X → E0 → E1 →
· · · in Rep(Q,R) with Ei injective for all i ≥ 0.

Remark
The following statements hold:
(1) Injectives⇒ strongly fp-injectives⇒ fp-injectives.
(2) If 0 → X → E0 → E1 → · · · is a pure acyclic injective

resolution of X, then Ker(Ei → Ei+1) is strongly fp-injective
for i ≥ 0.
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Main Results

Strongly fp-injective representations

Theorem 1. The following statements hold for any quiver Q:

(1) The class of all strongly fp-injective representations is closed
under extensions, taking cokernels of monomorphisms, fi-
nite direct sums and direct summands.

(2) Let 0 → X → Y → Z → 0 be a pure exact sequence of
representations. If Y and Z are strongly fp-injective, then so
is X.

Corollary
A representation X is strongly fp-injective iff any exact sequence
0→ X → E0 → E1 → · · · with Ei injective for ∀i ≥ 0 is pure.
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Main Results

Strongly fp-injective representations

Theorem 2. Let X be a strongly fp-injective representation in
Rep(Q,R). Then the following statements hold.

(1) For each vertex v ∈ Q0, X(v) is a strongly fp-injective R-
module.

(2) For each vertex v ∈ Q0, the homomorphism ψX
v : X(v) −→∏

a∈Qv→∗
1

X(t(a)) induced by X(a) : X(v) −→ X(t(a)) is a pure
epimorphism.
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The CONVERSE of Theorem 2 is not true.

Example. Let Q be a quiver with one vertex v and an arrow
α from v to itself, and the category of representations of Q by
k-vector spaces (k is a field). In this case Rep(Q,k) is equiv-
alent to the category k[x]-Mod of k[x]-modules. If we take the
representation X with k[x, x−1] in the vertex v and the morphism
X(α) : k[x, x−1] → k[x, x−1] given by multiplying x. It is clear
that X satisfies (1) and (2) in Theorem 2, but X is not strongly
fp-injective.

� E. Enochs, S. Estrada, J.R. Garcı́a Rozas, Injective representations of infi-
nite quivers. Applications, Canad. J. Math. 61 (2) (2009) 315-335.
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Strongly fp-injective representations

Theorem 3. Let Q be a right rooted quiver and X a representa-
tion in Rep(Q,R). Then X is strongly fp-injective if and only if the
following statements hold.

(1) For each vertex v ∈ Q0, X(v) is a strongly fp-injective R-
module.

(2) For each vertex v ∈ Q0, the homomorphism ψX
v : X(v) −→∏

a∈Qv→∗
1

X(t(a)) induced by X(a) : X(v) −→ X(t(a)) is a pure
epimorphism.
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Let Q be a right rooted quiver and J the class of strongly fp-
injective modules, then

Ψ(J ) =

{
X ∈ Rep(Q,R)

ψX
v is an epimorphism, X(v) and

Ker(ψX
v ) ∈ J for each v ∈ Q0

}
is exactly the class of strongly fp-injective representations of Q.

Corollary
Let Q be right rooted. Then the following statements hold.

(1) Ψ(J ) is closed under direct products.

(2) (⊥(Ψ(J )),Ψ(J )) is a complete cotorsion pair in Rep(Q,R).



Outlines Introduction Preliminaries Main Results

Main Results

Let Q be a right rooted quiver and J the class of strongly fp-
injective modules, then

Ψ(J ) =

{
X ∈ Rep(Q,R)

ψX
v is an epimorphism, X(v) and

Ker(ψX
v ) ∈ J for each v ∈ Q0

}
is exactly the class of strongly fp-injective representations of Q.

Corollary
Let Q be right rooted. Then the following statements hold.

(1) Ψ(J ) is closed under direct products.

(2) (⊥(Ψ(J )),Ψ(J )) is a complete cotorsion pair in Rep(Q,R).



Outlines Introduction Preliminaries Main Results

Main Results

Let Q be a right rooted quiver and J the class of strongly fp-
injective modules, then

Ψ(J ) =

{
X ∈ Rep(Q,R)

ψX
v is an epimorphism, X(v) and

Ker(ψX
v ) ∈ J for each v ∈ Q0

}
is exactly the class of strongly fp-injective representations of Q.

Corollary
Let Q be right rooted. Then the following statements hold.

(1) Ψ(J ) is closed under direct products.

(2) (⊥(Ψ(J )),Ψ(J )) is a complete cotorsion pair in Rep(Q,R).



Outlines Introduction Preliminaries Main Results

Thank You!


	Introduction
	Preliminaries
	Main Results

