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Overview Cluster algebras Cluster operations

A = U problem

k= Z,C... (classical), Z[v±],C[v±]... (quantum)
Ordinary cluster algebra (algebra definition)
A = k[generators]/relations
Upper cluster algebra (geometry definition)
U = k[cluster variety A]

Fundamental yet largely open problem
When do we have A = U?

Known results
Classical level: many A from (higher) Teichmüller theory / Lie
theory (see [IOS23] for a list)
Quantum level: double Bruhat cell Gu,v [GY20]
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Overview Cluster algebras Cluster operations

Main result in this talk

Theorem [Qin24a]

For almost all the known U from Lie theory, we have A = U at the
classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum k[A] ≃ some U or U (frozen not inverted)
G : C finite type (in preparation)

Subvarieties of G : N(w), Nw , Gu,v

Configurations of (partial) flags: Grassmannian, Positroids,
Open Richardson, double Bott-Samelson cells, Braid varieties

K0(M ), M : some categories of Uq(ĝ)mod [HL10][HL13]
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Overview Cluster algebras Cluster operations

A unified approach [Qin24a]

Observation
Varieties A, A′ from Lie theory can be very different. But
U = k[A], U ′ = k[A′] are closely-related!

Introduce operations relating closely-related U , U ′

Freezing
Base change

They transport structures/properties from U to U ′

localized cluster monomials
bases
quasi-categorification (monoidal categorification up to mild
changes)
sometimes, A = U

Extension and reduction
Extend the generalized Cartan matrix C to C̃ (Kac-Moody).
We already know k[Ñ w̃ ] very well.
Obtain results for k[A] from k[Ñ w̃ ] via these operations
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Obtain results for k[A] from k[Ñ w̃ ] via these operations
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Overview Cluster algebras Cluster operations

Comments

Unexamined cases in the Theorem
The exotic cluster structures on simple Lie groups [GSV23]
The cluster structure on double Bott-Samelson cells by [EL21]:
(Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain
analogs of the dual canonical bases
(common triangular bases [Qin17])
quasi-categorification when C is symmetric.

Double Bott-Samelson cells have stronger properties:
A = U (frozen variables are not inverted)
Categorified by new monoidal categories determined by
positive braids, when C is of type ADE .

Fan Qin Quantum A = U 5 / 14
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Overview Cluster algebras Cluster operations

I = Iuf ⊔ If unfrozen/frozen vertices, symmetrizers di ∈ N>0

A seed (chart) t = (B̃,(xi )i∈I ):
B̃ = (bik): I × Iuf Z-matrix, bikdk =−bkidi

xi : cluster variables; xj , j ∈ If : frozen variables

LP(t) = k[x±i ] =⊕m∈ZIkxm, where xi = x fi , fi= unit vector
commutative product ·
cluster monomials: xm, m > 0.
localized cluster monomials: xm, mk ≥ 0 for k ∈ Iuf

LP(t) = k[x±k ]k∈Iuf [xj ]j∈If

Assume B̃ is of full rank. Then there exists d ′
k ∈ N>0 and a

skew-symm form λ on ZI , s.t. λ (fi ,colk B̃) =−δik ·d ′
k

Twisted product ∗ on LP(t): xm ∗ xm′
= vλ(m,m′)xm+m′

Fan Qin Quantum A = U 6 / 14
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Overview Cluster algebras Cluster operations

Cluster algebras

∀k ∈ Iuf , mutation µk produces a new seed t′.
∆+ := {all seeds obtained from mutations}
∀j ∈ If , we have xj (t) = xj (t′) ∀t,t′ ∈∆+

Ordinary cluster algebras
A := k[xi (t)]∀i ,t , A := A[x−1

j ]j∈If
Upper cluster algebras
U := ∩t∈∆+LP(t), U := ∩t∈∆+LP(t)
A and U are algebras over the frozen torus algebra
R := k[x±j ]j∈If

Two seeds for k[N], N ⊂ SL3

x1

x2

x3 x ′1

x2

x3

x ′1 = x−1
1 ·x2+ x−1

1 ·x3
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Overview Cluster algebras Cluster operations

Pointed elements and good bases

In any seed t, define yn := x B̃n for n ∈ ZIuf .

An element z ∈ LP(t) is m-pointed if
z = xm ·∑n≥0 cny

n, c0 = 1, cn ∈ k.
degt z :=m

For A =A or U , a pointed basis of A is a k-basis S= {sm|m ∈ ZI},
such that sm are m-pointed in LP(t).

A pointed basis S = {sm} is a a good basis (satisfying the
Fock-Goncharov conjecture), if ∀t′, sm are φt′,tm-pointed in LP(t′),
where φt′,t is the tropical mutation from t to t′.
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Overview Cluster algebras Cluster operations

Nice cluster decomposition

Nice cluster decomposition

A nice cluster decomposition of z ∈ LP(t) is a finite decomposition
z = ∑bizi , such that bi ∈ k, zi are products of cluster variables of
U and x−1

j , j ∈ If , and degt zi are different.

If z has a nice cluster decomposition, z ∈ A.

The dual canonical basis of k[Nw ] is a good basis by
[Qin17, Qin20]. Moreover, its elements have nice cluster
decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition
depending on t.

Fan Qin Quantum A = U 9 / 14
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Overview Cluster algebras Cluster operations

Freezing operators

Given F ⊂ Iuf , freeze F in t ⇒ a new seed t′ = fF t

Take any m-pointed z = xm · (1+∑n>0 cny
n) in LP(t)

f(z) := xm · (1+∑n>0 cny
n)|yk 7→0,∀k∈F

1

2

3

4

5

6
z = x−1

2 x6(1+y2+y2y1+y2y4+
y2y1y4+ y2y1y4y3)

1

2

3

4

5

6
f(z) = x−1

2 x6(1+ y2+ y2y1)
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Overview Cluster algebras Cluster operations

Properties

Theorem[Qin24b]

Assume that z is a localized cluster monomial for A, then f(z) is a
localized cluster monomial for A′.

Corollary

If z has a nice cluster decomposition in t, so does f(z) in t′.

Theorem
If A = U and S is a good basis for U such that its elements have
nice cluster decomposition in t, then A′ = U ′ and f(S) is a good
basis for U ′ such that its elements have cluster decomposition in t′.
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Overview Cluster algebras Cluster operations

Similar seeds

Assume t and t′ are similar: B̃Iuf ,Iuf = B̃ ′
Iuf ,Iuf

up to relabeling
vertices

They share many properties, such as F -polynomials [FZ07]

Example
Cluster algebras on double Bruhat cells and reduced double Bruhat
cells are similar.

1

2

3 4

5

6

7

8
k[Gw0,w0 ] has such a seed t′

C =

(
2 −1
−1 2

)
k[G ] is the associated U

1

2

3 4

5

6
The reduced double Bruhat cell
k[Gw0,w0/H] is a special case of
double Bott-Samelson cells
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Overview Cluster algebras Cluster operations

Base change

Take A = A or U . It is an algebra over the frozen torus R .
Assume there is a homomorphism var : LP → LP ′ which
“preserves the seed structure” and restricts to var : R → R ′.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis S = {sm} which factors through
frozen variables: ∀j ∈ I ∈ If , xj · sm = sm+fj . Then var induces
ϕ : A′ ≃ R ′⊗R A, which induces a pointed basis S′ for A′.

For k= C, obtain a base change (fiber product) of cluster varieties

specA
ϕ∗
−→ specA′

↓ ↓
specR

ϕ∗
−→ specR ′

Fan Qin Quantum A = U 13 / 14



Overview Cluster algebras Cluster operations

Base change

Take A = A or U . It is an algebra over the frozen torus R .
Assume there is a homomorphism var : LP → LP ′ which
“preserves the seed structure” and restricts to var : R → R ′.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis S = {sm} which factors through
frozen variables: ∀j ∈ I ∈ If , xj · sm = sm+fj . Then var induces
ϕ : A′ ≃ R ′⊗R A, which induces a pointed basis S′ for A′.

For k= C, obtain a base change (fiber product) of cluster varieties

specA
ϕ∗
−→ specA′

↓ ↓
specR

ϕ∗
−→ specR ′

Fan Qin Quantum A = U 13 / 14



Overview Cluster algebras Cluster operations

Base change

Take A = A or U . It is an algebra over the frozen torus R .
Assume there is a homomorphism var : LP → LP ′ which
“preserves the seed structure” and restricts to var : R → R ′.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis S = {sm} which factors through
frozen variables: ∀j ∈ I ∈ If , xj · sm = sm+fj . Then var induces
ϕ : A′ ≃ R ′⊗R A, which induces a pointed basis S′ for A′.

For k= C, obtain a base change (fiber product) of cluster varieties

specA
ϕ∗
−→ specA′

↓ ↓
specR

ϕ∗
−→ specR ′

Fan Qin Quantum A = U 13 / 14



Overview Cluster algebras Cluster operations

Base change

Take A = A or U . It is an algebra over the frozen torus R .
Assume there is a homomorphism var : LP → LP ′ which
“preserves the seed structure” and restricts to var : R → R ′.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis S = {sm} which factors through
frozen variables: ∀j ∈ I ∈ If , xj · sm = sm+fj . Then var induces
ϕ : A′ ≃ R ′⊗R A, which induces a pointed basis S′ for A′.

For k= C, obtain a base change (fiber product) of cluster varieties

specA
ϕ∗
−→ specA′

↓ ↓
specR

ϕ∗
−→ specR ′
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Properties

Theorem
[Qin24a] If A = U and U has a good basis S, such that the basis
element have nice cluster decomposition in t, then via the base
change ϕ , we have A′ = U ′.
Moreover, S′ is a good basis of U ′ and its basis elements have nice
cluster decomposition in t′.

Fan Qin Quantum A = U 14 / 14



Appendix: K0(Uq(ĝ)mod) from Ñ w̃
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t′ for C2 [HL10], type A2
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t for k[Ñc3

], type A
(1)
2

c = s1s2s3 [GLS11]

t becomes t′ after the following procedure:
1 Freeze 3,6,
2 Remove the frozen 3,6,9 (base change)



Appendix: Double Bott-Samelson Cells from Ñ w̃
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k[dBS] has such a seed t′

C =
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i ′ = (1,2,1,1,2,2,1)
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t for k[Ñ w̃ ]

C̃ =

 2 −2 −1
−2 2 −2
−1 −2 2


w̃ = (1,2,1,3,1,2,3,2,1)

t becomes t′ after the following procedure:
1 Freeze 8
2 Remove the frozen 8,9 (base change)



Interpretation
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z = x−1

2 x6(1+y2+y2y1+y2y4+
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f(z) = x−1

2 x6(1+ y2+ y2y1)

In cluster categories (2-Calabi-Yau triangulated categories)

Let C be the cluster category for t, CC( ) cluster character,
CC(Ti ) = xi (t). Freezing 4:

Restrict to the subcategory
C ′ = {V ′ ∈ C |HomC (V

′,T4[1]) = 0}
f(CC(V )) = CC(V ′) ·x−N

4 , N ≫ 1,
V ′ is a generic extension of V and T⊕N

4 :
T⊕N

4 → V ′ → V −→ T⊕N
4 [1]

Hom(T ,V ′) is the maximal submodule of Hom(T ,V ) such
that (dimHom(T ,V ′))4 = 0.
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In monoidal categories with good properties

Assume U ≃ K0(M ), xi (t) = [Si ]. Freezing 4:
Restrict to the subcategory M ′ generated by simples
S ′ ∈ M ′ : S ′⊗S4 remains simple
∀ simple S ∈ M , f([S ]) = [S ′] ·x4(t)−N , N ≫ 1

S ′ is the simple head of S⊗S⊗N
4
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