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@ Ordinary cluster algebra (algebra definition)
A = k[generators]| /relations

@ Upper cluster algebra (geometry definition)
U = Kk[cluster variety A]

Fundamental yet largely open problem
When do we have A= U?

o Classical level: many A from (higher) Teichmiiller theory / Lie
theory (see [I0S23] for a list)

@ Quantum level: double Bruhat cell G*¥ [GY20]
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Main result in this talk

Theorem [Qin24a]
For almost all the known U from Lie theory, we have A= U at the

classical & quantum levels.
.

Almost all the known cluster algebras from Lie theory

Classical or quantum k[A] ~ some U or U (frozen not inverted)
o G: C finite type (in preparation)
@ Subvarieties of G: N(w), NV, G*Y

o Configurations of (partial) flags: Grassmannian, Positroids,
Open Richardson, double Bott-Samelson cells, Braid varieties

Ko(A), A4 some categories of Ug(g)mod [HL10][HL13]
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@ Observation

o Varieties A, A’ from Lie theory can be very different. But
U =Kk[A], U’ =Kk[A'] are closely-related!

e Introduce operations relating closely-related U, U’
o Freezing
e Base change

They transport structures/properties from U to U’

o localized cluster monomials

o bases
o quasi-categorification (monoidal categorification up to mild

changes)
e sometimes, A= U
@ Extension and reduction
o Extend the generalized Cartan matrix C to C (Kac-Moody).
o We already know k[N"] very well.
o Obtain results for k[A] from k[N*] via these operations
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Unexamined cases in the Theorem
@ The exotic cluster structures on simple Lie groups [GSV23]

@ The cluster structure on double Bott-Samelson cells by [EL21]:
(Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

@ analogs of the dual canonical bases
(common triangular bases [Qin17])

@ quasi-categorification when C is symmetric.
Double Bott-Samelson cells have stronger properties:
e A= U (frozen variables are not inverted)

o Categorified by new monoidal categories determined by
positive braids, when C is of type ADE.

Fan Qin Quantum A=U 5/14
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A seed (chart) t = (B, (x)icr):
o B =(by): I x Iy Z-matrix, bjdy = —byid;

e x;: cluster variables; x;, j € lf: frozen variables

LP(t) = k[x;"] = ® ez kx™, where x; = xfi, fi= unit vector
@ commutative product -
@ cluster monomials: x@, m > 0.

o localized cluster monomials: x™, m, > 0 for k € I
G o
o LP(t)= ]k[xk ]kg[uf [Xj]_jg[f

Assume B is of full rank. Then there exists d;, € Nyg and a
skew-symm form A on Z/, s.t. A(f;,col,B) = — 5 - d,

o Twisted product * on LP(t): xMxx™ = yA(mm')ym+m
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Cluster algebras

e Vk € l,¢, mutation p produces a new seed t'.
o AT :={all seeds obtained from mutations}
o Vj €k, we have xj(t) = x;(t') Vt,t' € AT
@ Ordinary cluster algebras
A= ]k[X,'(t)]v,"t, A= Z[Xfl]jelf
@ Upper cluster algebras
U= ﬂteAJrﬁ(t), U :=Niea+ LP(t)
@ A and U are algebras over the frozen torus algebra
R :=k[x; jei

Two seeds for k[N], N C SL3
B0 B0
A N ¥

X{:Xfl-x2+xf1-X3
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@ In any seed t, define y" := xB" for n € Zls,

An element z € LP(t) is m-pointed if
z=x"-Ysocny" c0=1, ch€k.

o degtz:=m

For A= A or U, a pointed basis of A is a k-basis S = {s,|m € Z'},
such that s, are m-pointed in LP(t).

v

A pointed basis S = {s;,} is a a good basis (satisfying the
Fock-Goncharov conjecture), if Vt', sp, are ¢p ym-pointed in LP(t'),
where ¢y ¢ is the tropical mutation from t to t’.
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Nice cluster decomposition

Nice cluster decomposition

A nice cluster decomposition of z € LP(t) is a finite decomposition
z =Y bjz;, such that b; € k, z are products of cluster variables of
U and xj’l, j €k, and deg z; are different.

@ If z has a nice cluster decomposition, z € A.

The dual canonical basis of k[N"] is a good basis by
[Qin17, Qin20]. Moreover, its elements have nice cluster
decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition
depending on t.
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Freezing operators

e Given F C Iy, freeze F in t = a new seed t' = f¢t

Take any m-pointed z = x™-(1+Y -0 cay”) in LP(t)
f(z) == x™-(1+ Y=o ngﬂ)|ykr—>O,VkeF

Sty Pty

Z:X{1X6(1 + Yo+ yoy1+yoya—+ f(z) = X{1X6(1 +y2+yoy1)
Yoy1ya -+ Yay1yay3)
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Assume that z is a localized cluster monomial for A, then §(z) is a
localized cluster monomial for A’.
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Cluster operations
oe

Properties

Theorem[Qin24b]

Assume that z is a localized cluster monomial for A, then §(z) is a
localized cluster monomial for A’.

If z has a nice cluster decomposition in t, so does f(z) in t'.

If A= U and S is a good basis for U such that its elements have
nice cluster decomposition in t, then A'= U’ and §(S) is a good
basis for U’ such that its elements have cluster decomposition in t’.
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Outline

© Cluster operations

@ Base Change
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Similar seeds

@ Assume t and t’ are similar: B, ;. = B up to relabeling
i uf > luf luf s lus
vertices
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@ Assume t and t’ are similar: E/uf_,uf = é; (1, up to relabeling
vertices
o They share many properties, such as F-polynomials [FZ07]
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Cluster operations
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Similar seeds

@ Assume t and t’ are similar: E/uf_,uf -B up to relabeling

vertices

/
Lug Lt

o They share many properties, such as F-polynomials [FZ07]

Cluster algebras on double Bruhat cells and reduced double Bruhat
cells are similar.
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Cluster operations

@00

Similar seeds

@ Assume t and t’ are similar: B, ,, =B up to relabeling
vertices

o They share many properties, such as F-polynomials [FZ07]

/
Lug Lt

Cluster algebras on double Bruhat cells and reduced double Bruhat
cells are similar.

seeen  coen

k[G"0o:"0] has such a seed ' The reduced double Bruhat cell
c ( il ) k[G"o-"0 /H] is a special case of

—1 2 double Bott-Samelson cells
k[G] is the associated U
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Base change

@ Take A= Aor U. It is an algebra over the frozen torus R.
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Base change

@ Take A= Aor U. It is an algebra over the frozen torus R.
@ Assume there is a homomorphism var : LP — LP’" which
“preserves the seed structure” and restricts to var: R — R'.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fral6])
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Base change

@ Take A= Aor U. It is an algebra over the frozen torus R.
@ Assume there is a homomorphism var : LP — LP’" which
“preserves the seed structure” and restricts to var: R — R'.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fral6])

Assume A has a pointed basis S = {55, } which factors through
frozen variables: Vj € | € I, Xj - Sm = S £ Then var induces
¢ : A~ R'®rA, which induces a pointed basis S’ for A’.
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Cluster operations
(o] le}

Base change

@ Take A= Aor U. It is an algebra over the frozen torus R.
@ Assume there is a homomorphism var : LP — LP’" which
“preserves the seed structure” and restricts to var: R — R'.
(variation map [Qin17][KQW23];
classical case: quasi-cluster homomorphism [Fral6])

Assume A has a pointed basis S = {55, } which factors through
frozen variables: Vj € | € I, Xj - Sm = S £ Then var induces
¢ : A~ R'®rA, which induces a pointed basis S’ for A’.

For k = C, obtain a base change (fiber product) of cluster varieties

specA L5 specA’

3 3

specR G specR’
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Cluster operations
[efe] ]

Properties

[Qin24a] If A= U and U has a good basis S, such that the basis
element have nice cluster decomposition in t, then via the base
change @, we have A' = U'.

Moreover, S is a good basis of U’ and its basis elements have nice
cluster decomposition in t’.
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Appendix: Ko(Uq(g)mod) from N¥

-~

t’ for > [HL10], type Az t for k[N<’], type Agl)
(subcategory of Uy(sl3)mod) ¢ = sisps3 [GLS11]

t becomes t’ after the following procedure:
@ Freeze 3,6,
@ Remove the frozen 3,6,9 (base change)




Appendix: Double Bott-Samelson Cells from &

owilly s

k[dBS] has such a seed t’ t for kK[N"]

c_ ( 2 -2 ) /2 =2 -1
-2 2 C=| -2 2 =2

i'=(1,2,1,1,2,2,1) 1 -2 2

w=(1,2,1,3,1,2,3,2,1)

t becomes t’ after the following procedure:
O Freeze 8
@ Remove the frozen 8,9 (base change)




Interpretation

Sty Pty

2= "%(1+tyatyoy1tyoyat  §(2) = x5 x6(L+y2 +yoy1)
YoY1Ya+ Yoyi1yay3)

In cluster categories (2-Calabi-Yau triangulated categories)

Let & be the cluster category for t, CC( ) cluster character,
CC(T;) = xi(t). Freezing 4:
@ Restrict to the subcategory
€' ={V' € €|Homy(V’, T4[1]) =0}
o f(CC(V))=CC(V)-x, N, N>1,
o V' is a generic extension of V and T'V:
TN >V = v TPV

e Hom(T,V’) is the maximal submodule of Hom(T, V) such
that (dimHom(T,V’))s =0.




Interpretation

atety

ety

2= "x6(1+y2+yoy1+yaya+ f(2) = x5 *x6(1+y2 + yay1)

YoY1Ya+ Yoyi1yay3)

In monoidal categories with good properties
Assume U >~ Ko(.#), xi(t) = [Si]. Freezing 4:
@ Restrict to the subcategory .#' generated by simples
S'e . #'": S'® S, remains simple
o Vsimple S ., §([S]) =[S'] - xa(t)™™, N> 1
o S is the simple head of S® S&N

.
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