Quantum A = UBased on arXiv:2407.02480

Fan Qin

Beijing Normal University

ICRA, Shanghai, 2024.08

Outline

Overview

- Backgrounds
- Main results and comments

2 Cluster algebras

- 3 Cluster operations
 - Freezing Operators
 - Base Change

Outline

Overview Backgrounds

Main results and comments

2 Cluster algebras

Cluster operations Freezing Operators Base Change

• $\Bbbk = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)

- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety A]

Fundamental yet largely open problem

When do we have A = U?

- Classical level: many A from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell G^{u,v} [GY20]

- $\Bbbk = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety A]

Fundamental yet largely open problem

When do we have A = U?

- Classical level: many A from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell G^{u,v} [GY20]

- $\Bbbk = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety A]

Fundamental yet largely open problem

When do we have A = U?

- Classical level: many A from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell G^{u,v} [GY20]

- $\mathbb{k} = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety *A*]

Fundamental yet largely open problem

When do we have A = U?

- Classical level: many A from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell G^{u,v} [GY20]

- $\mathbb{k} = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety *A*]

Fundamental yet largely open problem

When do we have A = U?

- Classical level: many **A** from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell G^{u,v} [GY20]

- $\Bbbk = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety *A*]

Fundamental yet largely open problem

When do we have $\mathbf{A} = \mathbf{U}$?

- Classical level: many **A** from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell $G^{u,v}$ [GY20]

- $\Bbbk = \mathbb{Z}, \mathbb{C}...$ (classical), $\mathbb{Z}[v^{\pm}], \mathbb{C}[v^{\pm}]...$ (quantum)
- Ordinary cluster algebra (algebra definition)
 A = k[generators]/relations
- Upper cluster algebra (geometry definition)
 U = k[cluster variety *A*]

Fundamental yet largely open problem

When do we have $\mathbf{A} = \mathbf{U}$?

- Classical level: many **A** from (higher) Teichmüller theory / Lie theory (see [IOS23] for a list)
- Quantum level: double Bruhat cell $G^{u,v}$ [GY20]

Outline

- Backgrounds
- Main results and comments

2 Cluster algebras

Cluster operations
 Freezing Operators
 Base Change

Theorem [Qin24a]

For almost all the known \boldsymbol{U} from Lie theory, we have $\boldsymbol{A} = \boldsymbol{U}$ at the classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum $\Bbbk[\mathcal{A}] \simeq$ some U or \overline{U} (frozen not inverted)

- G: C finite type (in preparation)
- Subvarieties of G: N(w), N^w , $G^{u,v}$
- Configurations of (partial) flags: Grassmannian, Positroids, Open Richardson, double Bott-Samelson cells, Braid varieties

Theorem [Qin24a]

For almost all the known \boldsymbol{U} from Lie theory, we have $\boldsymbol{A} = \boldsymbol{U}$ at the classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum $\Bbbk[\mathcal{A}] \simeq$ some U or \overline{U} (frozen not inverted)

- *G*: *C* finite type (in preparation)
- Subvarieties of $G: N(w), N^w, G^{u,v}$
- Configurations of (partial) flags: Grassmannian, Positroids, Open Richardson, double Bott-Samelson cells, Braid varieties

Theorem [Qin24a]

For almost all the known \boldsymbol{U} from Lie theory, we have $\boldsymbol{A} = \boldsymbol{U}$ at the classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum $\Bbbk[\mathcal{A}] \simeq$ some U or \overline{U} (frozen not inverted)

- *G*: *C* finite type (in preparation)
- Subvarieties of $G: N(w), N^w, G^{u,v}$
- Configurations of (partial) flags: Grassmannian, Positroids, Open Richardson, double Bott-Samelson cells, Braid varieties

Theorem [Qin24a]

For almost all the known \boldsymbol{U} from Lie theory, we have $\boldsymbol{A} = \boldsymbol{U}$ at the classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum $\Bbbk[\mathcal{A}] \simeq$ some U or \overline{U} (frozen not inverted)

- *G*: *C* finite type (in preparation)
- Subvarieties of $G: N(w), N^w, G^{u,v}$
- Configurations of (partial) flags: Grassmannian, Positroids, Open Richardson, double Bott-Samelson cells, Braid varieties

Theorem [Qin24a]

For almost all the known \boldsymbol{U} from Lie theory, we have $\boldsymbol{A} = \boldsymbol{U}$ at the classical & quantum levels.

Almost all the known cluster algebras from Lie theory

Classical or quantum $\Bbbk[\mathcal{A}] \simeq$ some U or \overline{U} (frozen not inverted)

- *G*: *C* finite type (in preparation)
- Subvarieties of $G: N(w), N^w, G^{u,v}$
- Configurations of (partial) flags: Grassmannian, Positroids, Open Richardson, double Bott-Samelson cells, Braid varieties

Observation

- Varieties A, A' from Lie theory can be very different. But *U* = k[A], *U*' = k[A'] are closely-related!
- Introduce operations relating closely-related **U**, **U**'
 - Freezing
 - Base change
 - They transport structures/properties from $\,m{U}$ to $\,m{U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$

• Extension and reduction

- Extend the generalized Cartan matrix C to \widehat{C} (Kac-Moody).
- We already know k[N^w] very well.
- Obtain results for k[A] from k[N^w] via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related U, U'
 - Freezing
 - Base change
 - They transport structures/properties from $\,m{U}$ to $\,m{U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, **A** = **U**
- Extension and reduction
 - Extend the generalized Cartan matrix C to C (Kac-Moody).
 - We already know k[N[™]] very well.
 - Obtain results for k[A] from $k[N^{\widetilde{w}}]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U},~{m U}'$
 - Freezing
 - Base change

They transport structures/properties from ${m U}$ to ${m U}'$

- localized cluster monomials
- bases
- quasi-categorification (monoidal categorification up to mild changes)
- sometimes, $\boldsymbol{A} = \boldsymbol{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \overline{C} (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from $k[N^w]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U},~{m U}'$
 - Freezing
 - Base change

They transport structures/properties from ${m U}$ to ${m U}'$

- localized cluster monomials
- bases
- quasi-categorification (monoidal categorification up to mild changes)
- sometimes, $\boldsymbol{A} = \boldsymbol{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \overline{C} (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from k[N^w] via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U},~{m U}'$
 - Freezing
 - Base change

They transport structures/properties from ${m U}$ to ${m U}'$

- localized cluster monomials
- bases
- quasi-categorification (monoidal categorification up to mild changes)
- sometimes, $\boldsymbol{A} = \boldsymbol{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \overline{C} (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from k[N^w] via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, **A** = **U**
- Extension and reduction
 - Extend the generalized Cartan matrix C to \hat{C} (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from $k[N^{\overline{w}}]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, **A** = **U**
- Extension and reduction
 - Extend the generalized Cartan matrix C to \hat{C} (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from $k[N^{\overline{w}}]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, **A** = **U**
- Extension and reduction
 - Extend the generalized Cartan matrix C to C (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from $k[N^w]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to C (Kac-Moody).
 - We already know k[N^w] very well.
 - Obtain results for k[A] from $k[N^w]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \widetilde{C} (Kac-Moody).
 - We already know $\Bbbk[N^{\widetilde{w}}]$ very well.
 - Obtain results for k[A] from k[N^w] via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related ${m U}, {\mbox{ } {m U}'}$
 - Freezing
 - Base change
 - They transport structures/properties from ${m U}$ to ${m U}'$
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \widetilde{C} (Kac-Moody).
 - We already know $\Bbbk[N^{\overline{w}}]$ very well.
 - Obtain results for $\Bbbk[\mathcal{A}]$ from $\Bbbk[\widetilde{N}^{\widetilde{w}}]$ via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related **U**, **U**'
 - Freezing
 - Base change
 - They transport structures/properties from \boldsymbol{U} to \boldsymbol{U}'
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \widetilde{C} (Kac-Moody).
 - We already know $\Bbbk[\widetilde{N}^{\widetilde{w}}]$ very well.
 - Obtain results for k[A] from k[N^w] via these operations

- Observation
 - Varieties \mathcal{A} , \mathcal{A}' from Lie theory can be very different. But $\boldsymbol{U} = \Bbbk[\mathcal{A}]$, $\boldsymbol{U}' = \Bbbk[\mathcal{A}']$ are closely-related!
- Introduce operations relating closely-related **U**, **U**'
 - Freezing
 - Base change
 - They transport structures/properties from \boldsymbol{U} to \boldsymbol{U}'
 - localized cluster monomials
 - bases
 - quasi-categorification (monoidal categorification up to mild changes)
 - sometimes, $\pmb{A} = \pmb{U}$
- Extension and reduction
 - Extend the generalized Cartan matrix C to \widetilde{C} (Kac-Moody).
 - We already know $\mathbb{k}[\widetilde{N}^{\widetilde{w}}]$ very well.
 - Obtain results for $\Bbbk[\mathcal{A}]$ from $\Bbbk[\widetilde{N}^{\widetilde{w}}]$ via these operations

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- **A** = **U** (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when C is of type ADE.

Unexamined cases in the Theorem

• The exotic cluster structures on simple Lie groups [GSV23]

• The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when C is of type ADE.

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when C is of type ADE.

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when *C* is of type *ADE*.

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when *C* is of type *ADE*.

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when *C* is of type *ADE*.

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

- $\overline{\mathbf{A}} = \overline{\mathbf{U}}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when *C* is of type *ADE*.
Comments

Unexamined cases in the Theorem

- The exotic cluster structures on simple Lie groups [GSV23]
- The cluster structure on double Bott-Samelson cells by [EL21]: (Expected to equal the cluster structure [SW21] we use.)

Other applications of our approach [Qin24a]

For these cluster algebras from Lie theory, we obtain

- analogs of the dual canonical bases (common triangular bases [Qin17])
- quasi-categorification when C is symmetric.

Double Bott-Samelson cells have stronger properties:

- $\overline{A} = \overline{U}$ (frozen variables are not inverted)
- Categorified by new monoidal categories determined by positive braids, when *C* is of type *ADE*.

A seed (chart) $\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$:

- $B = (b_{ik})$: $I imes I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$
- x_i : cluster variables; x_i , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \bigoplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, $f_i =$ unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \Bbbk[x_k^{\pm}]_{k \in I_{\mathrm{uf}}}[x_j]_{j \in I_{\mathrm{f}}}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}' , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart) $\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$:

• $\tilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \bigoplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, $f_i =$ unit vector

commutative product ·

- cluster monomials: x^m, <u>m</u> > 0.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\boldsymbol{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{\mathrm{uf}}}[x_j]_{j \in I_{\mathrm{f}}}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^l , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart) $\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$: • $\widetilde{B} = (b_{ik})$: $I \times I_{uf} \mathbb{Z}$ -matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \bigoplus_{m \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

commutative product ·

- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}, \underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{\mathrm{uf}}}[x_j]_{j \in I_{\mathrm{f}}}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}' , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:

•
$$\widetilde{B} = (b_{ik})$$
: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(\mathbf{t}) = \mathbb{k}[x_i^{\pm}] = \bigoplus_{m \in \mathbb{Z}^I} \mathbb{k} x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: x^m, <u>m</u> > 0.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{\mathrm{uf}}}[x_j]_{j \in I_{\mathrm{f}}}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}' , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:

•
$$B = (b_{ik})$$
: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{K}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^I , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:

•
$$B = (b_{ik})$$
: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{K}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^l , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:
• $\widetilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^l , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:
• $\widetilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(\mathbf{t}) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$

• $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^I , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:
• $\widetilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^l , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

Twisted product ∗ on LP(t): x^m ∗ x^{m'} = v^{λ(m,m')}x^{m+m}

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:
• $\widetilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(\mathbf{t}) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$
- $\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^l , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

A seed (chart)
$$\mathbf{t} = (\widetilde{B}, (x_i)_{i \in I})$$
:
• $\widetilde{B} = (b_{ik})$: $I \times I_{uf}$ Z-matrix, $b_{ik}d_k = -b_{ki}d_i$

• x_i : cluster variables; x_j , $j \in I_f$: frozen variables

$$LP(t) = \Bbbk[x_i^{\pm}] = \oplus_{\underline{m} \in \mathbb{Z}^I} \Bbbk x^{\underline{m}}$$
, where $x_i = x^{f_i}$, f_i = unit vector

- commutative product ·
- cluster monomials: $x^{\underline{m}}$, $\underline{m} > 0$.
- localized cluster monomials: $x^{\underline{m}}$, $\underline{m}_k \ge 0$ for $k \in I_{uf}$

•
$$\overline{LP}(t) = \mathbb{k}[x_k^{\pm}]_{k \in I_{uf}}[x_j]_{j \in I_f}$$

Assume \widetilde{B} is of full rank. Then there exists $d'_k \in \mathbb{N}_{>0}$ and a skew-symm form λ on \mathbb{Z}^{I} , s.t. $\lambda(f_i, \operatorname{col}_k \widetilde{B}) = -\delta_{ik} \cdot d'_k$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\Delta^+ := \{ \text{all seeds obtained from mutations} \}$
 - $\forall j \in I_{\mathsf{f}}$, we have $x_j(\mathbf{t}) = x_j(\mathbf{t}') \ \forall \mathbf{t}, \mathbf{t}' \in \Delta^+$
- Ordinary cluster algebras $\overline{A} := \mathbb{E}[v_{1}(t)] = A := \overline{A}[v_{2}(t)]$
- $\overline{\mathbf{A}} := \mathbb{k}[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_j^{-1}]_{j \in I_f}$ Upper cluster algebras $\overline{\mathbf{U}} := \bigcirc \ \cdots \ \overline{\mathbf{LP}}(\mathbf{t}), \ \mathbf{U} := \bigcirc \ \cdots \ \mathbf{LP}(\mathbf{t})$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_i^{\pm}]_{j \in I_{\mathsf{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\Delta^+ := \{ \text{all seeds obtained from mutations} \}$

•
$$orall j \in I_{\mathsf{f}}$$
, we have $x_j(\mathsf{t}) = x_j(\mathsf{t}') \; orall \mathsf{t}, \mathsf{t}' \in \Delta^+$

- Ordinary cluster algebras $\overline{\mathbf{A}} := \Bbbk[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_j^{-1}]_{j \in I_f}$
- Upper cluster algebras $\overline{\boldsymbol{U}} := \cap_{t \in \Delta^+} \overline{\boldsymbol{LP}}(t), \ \boldsymbol{U} := \cap_{t \in \Delta^+} \boldsymbol{LP}(t)$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_j^{\pm}]_{j \in I_{\mathrm{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\Delta^+ := \{ \text{all seeds obtained from mutations} \}$

•
$$orall j \in I_{\mathsf{f}}$$
, we have $x_j(\mathbf{t}) = x_j(\mathbf{t}') \; orall \mathbf{t}, \mathbf{t}' \in \Delta^{-1}$

- Ordinary cluster algebras $\overline{\mathbf{A}} := \mathbb{k}[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_j^{-1}]_{j \in I_{\mathrm{f}}}$
- Upper cluster algebras $\overline{\boldsymbol{\textit{U}}}:=\cap_{t\in\Delta^+}\overline{\boldsymbol{\textit{LP}}}(t),\;\boldsymbol{\textit{U}}:=\cap_{t\in\Delta^+}\boldsymbol{\textit{LP}}(t)$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_j^{\pm}]_{j \in I_{\mathrm{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\bullet \ \Delta^+ := \{ \text{all seeds obtained from mutations} \}$
 - $\forall j \in I_{\sf f}$, we have $x_j({f t}) = x_j({f t}') \ \forall {f t}, {f t}' \in \Delta^+$
- Ordinary cluster algebras $\overline{\mathbf{A}} := \Bbbk[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_j^{-1}]_{j \in I_f}$
- Upper cluster algebras $\overline{\boldsymbol{U}} := \cap_{t \in \Delta^+} \overline{\boldsymbol{LP}}(t), \ \boldsymbol{U} := \cap_{t \in \Delta^+} \boldsymbol{LP}(t)$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_j^{\pm}]_{j \in I_{\mathrm{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\Delta^+ := \{ \text{all seeds obtained from mutations} \}$

•
$$\forall j \in I_{\mathsf{f}}$$
, we have $x_j(\mathbf{t}) = x_j(\mathbf{t}') \; \forall \mathbf{t}, \mathbf{t}' \in \Delta^{-1}$

- Ordinary cluster algebras $\overline{\mathbf{A}} := \mathbb{k}[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_i^{-1}]_{j \in I_{\mathbf{f}}}$
- Upper cluster algebras $\overline{\boldsymbol{U}} := \cap_{\mathbf{t} \in \Delta^+} \overline{\boldsymbol{LP}}(\mathbf{t}), \ \boldsymbol{U} := \cap_{\mathbf{t} \in \Delta^+} \boldsymbol{LP}(\mathbf{t})$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_j^{\pm}]_{j \in I_{\mathrm{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\bullet \ \Delta^+ := \{ \text{all seeds obtained from mutations} \}$

•
$$\forall j \in I_{\mathsf{f}}$$
, we have $x_j(\mathbf{t}) = x_j(\mathbf{t}') \; \forall \mathbf{t}, \mathbf{t}' \in \Delta^{-1}$

- Ordinary cluster algebras $\overline{\mathbf{A}} := \mathbb{k}[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_i^{-1}]_{j \in I_f}$
- Upper cluster algebras $\overline{U} := \cap_{t \in \Delta^+} \overline{LP}(t), \ U := \cap_{t \in \Delta^+} LP(t)$
- **A** and **U** are algebras over the frozen torus algebra $R := \Bbbk[x_j^{\pm}]_{j \in I_{\mathsf{f}}}$

- $\forall k \in I_{uf}$, mutation μ_k produces a new seed t'.
 - $\bullet \ \Delta^+ := \{ \text{all seeds obtained from mutations} \}$

•
$$\forall j \in I_{\mathsf{f}}$$
, we have $x_j(\mathbf{t}) = x_j(\mathbf{t}') \; \forall \mathbf{t}, \mathbf{t}' \in \Delta^{-1}$

- Ordinary cluster algebras $\overline{\mathbf{A}} := \mathbb{k}[x_i(\mathbf{t})]_{\forall i,t}, \ \mathbf{A} := \overline{\mathbf{A}}[x_i^{-1}]_{j \in I_f}$
- Upper cluster algebras $\overline{U} := \cap_{\mathbf{t} \in \Delta^+} \overline{LP}(\mathbf{t}), \ U := \cap_{\mathbf{t} \in \Delta^+} LP(\mathbf{t})$
- A and U are algebras over the frozen torus algebra $R:= \Bbbk[x_j^{\pm}]_{j\in I_{\mathsf{f}}}$

• In any seed **t**, define
$$y^n := x^{\widetilde{B}n}$$
 for $n \in \mathbb{Z}^{l_{uf}}$.

An element
$$z \in LP(t)$$
 is m-pointed if
 $z = x^{\underline{m}} \cdot \sum_{\underline{n} \ge 0} c_{\underline{n}} y^{\underline{n}}, c_0 = 1, c_{\underline{n}} \in \mathbb{k}.$
• $\deg^t z := \underline{m}$

For A = **A** or **U**, a pointed basis of A is a k-basis $\mathbf{S} = \{s_{\underline{m}} | \underline{m} \in \mathbb{Z}^{l}\}$, such that $s_{\underline{m}}$ are \underline{m} -pointed in $LP(\mathbf{t})$.

A pointed basis $\mathbf{S} = \{s_{\underline{m}}\}\)$ is a a good basis (satisfying the Fock-Goncharov conjecture), if $\forall \mathbf{t}', s_{\underline{m}}\)$ are $\phi_{\mathbf{t}',\mathbf{t}}\underline{m}$ -pointed in $LP(\mathbf{t}')$, where $\phi_{\mathbf{t}',\mathbf{t}}\)$ is the tropical mutation from $\mathbf{t}\)$ to \mathbf{t}' .

• In any seed **t**, define
$$y^n := x^{\widetilde{B}n}$$
 for $n \in \mathbb{Z}^{l_{uf}}$.

An element $z \in LP(t)$ is <u>m</u>-pointed if $z = x^{\underline{m}} \cdot \sum_{\underline{n} \ge 0} c_{\underline{n}} y^{\underline{n}}, c_0 = 1, c_{\underline{n}} \in \Bbbk.$ • $\deg^t z := \underline{m}$

For A = **A** or **U**, a pointed basis of A is a k-basis $\mathbf{S} = \{s_{\underline{m}} | \underline{m} \in \mathbb{Z}^{I}\}$, such that $s_{\underline{m}}$ are \underline{m} -pointed in $LP(\mathbf{t})$.

A pointed basis $\mathbf{S} = \{s_{\underline{m}}\}\)$ is a a good basis (satisfying the Fock-Goncharov conjecture), if $\forall \mathbf{t}', s_{\underline{m}}\)$ are $\phi_{\mathbf{t}',\mathbf{t}}\underline{m}$ -pointed in $\boldsymbol{LP}(\mathbf{t}')$, where $\phi_{\mathbf{t}',\mathbf{t}}\)$ is the tropical mutation from $\mathbf{t}\)$ to \mathbf{t}' .

• In any seed **t**, define
$$y^n := x^{\widetilde{B}n}$$
 for $n \in \mathbb{Z}^{l_{\mathrm{uf}}}$.

An element
$$z \in LP(t)$$
 is m-pointed if $z = x^{\underline{m}} \cdot \sum_{\underline{n} \ge 0} c_{\underline{n}} y^{\underline{n}}, c_0 = 1, c_{\underline{n}} \in \Bbbk.$
• $\deg^t z := \underline{m}$

For A = **A** or **U**, a pointed basis of A is a k-basis $\mathbf{S} = \{s_{\underline{m}} | \underline{m} \in \mathbb{Z}^{l}\}$, such that $s_{\underline{m}}$ are \underline{m} -pointed in $LP(\mathbf{t})$.

A pointed basis $\mathbf{S} = \{s_{\underline{m}}\}\)$ is a a good basis (satisfying the Fock-Goncharov conjecture), if $\forall \mathbf{t}', s_{\underline{m}}\)$ are $\phi_{\mathbf{t}',\mathbf{t}}\underline{m}$ -pointed in $LP(\mathbf{t}')$, where $\phi_{\mathbf{t}',\mathbf{t}}\)$ is the tropical mutation from $\mathbf{t}\)$ to \mathbf{t}' .

• In any seed **t**, define
$$y^n := x^{\widetilde{B}n}$$
 for $n \in \mathbb{Z}^{l_{\mathrm{uf}}}$.

An element
$$z \in LP(t)$$
 is m-pointed if $z = x^{\underline{m}} \cdot \sum_{\underline{n} \ge 0} c_{\underline{n}} y^{\underline{n}}, c_0 = 1, c_{\underline{n}} \in \Bbbk.$
• $\deg^t z := \underline{m}$

For $A = \mathbf{A}$ or \mathbf{U} , a pointed basis of A is a k-basis $\mathbf{S} = \{s_{\underline{m}} | \underline{m} \in \mathbb{Z}^I\}$, such that $s_{\underline{m}}$ are \underline{m} -pointed in $\mathbf{LP}(\mathbf{t})$.

A pointed basis $\mathbf{S} = \{s_{\underline{m}}\}\)$ is a good basis (satisfying the Fock-Goncharov conjecture), if $\forall \mathbf{t}', s_{\underline{m}}\)$ are $\phi_{\mathbf{t}',\mathbf{t}}\underline{m}$ -pointed in $\boldsymbol{LP}(\mathbf{t}')$, where $\phi_{\mathbf{t}',\mathbf{t}}$ is the tropical mutation from \mathbf{t} to \mathbf{t}' .

• In any seed **t**, define
$$y^n := x^{\widetilde{B}n}$$
 for $n \in \mathbb{Z}^{l_{\mathrm{uf}}}$.

An element
$$z \in LP(t)$$
 is m-pointed if $z = x^{\underline{m}} \cdot \sum_{\underline{n} \ge 0} c_{\underline{n}} y^{\underline{n}}, c_0 = 1, c_{\underline{n}} \in \Bbbk.$
• $\deg^t z := \underline{m}$

For $A = \mathbf{A}$ or \mathbf{U} , a pointed basis of A is a k-basis $\mathbf{S} = \{s_{\underline{m}} | \underline{m} \in \mathbb{Z}^{I}\}$, such that $s_{\underline{m}}$ are \underline{m} -pointed in $\mathbf{LP}(\mathbf{t})$.

A pointed basis $\mathbf{S} = \{s_{\underline{m}}\}\)$ is a a good basis (satisfying the Fock-Goncharov conjecture), if $\forall \mathbf{t}', s_{\underline{m}}\)$ are $\phi_{\mathbf{t}',\mathbf{t}}\underline{m}$ -pointed in $\boldsymbol{LP}(\mathbf{t}')$, where $\phi_{\mathbf{t}',\mathbf{t}}\)$ is the tropical mutation from $\mathbf{t}\)$ to \mathbf{t}' .

Nice cluster decomposition

A nice cluster decomposition of $z \in LP(t)$ is a finite decomposition $z = \sum b_i z_i$, such that $b_i \in \mathbb{k}$, z_i are products of cluster variables of U and x_i^{-1} , $j \in I_f$, and deg^t z_i are different.

• If z has a nice cluster decomposition, $z \in A$.

The dual canonical basis of $\mathbb{k}[N^w]$ is a good basis by [Qin17, Qin20]. Moreover, its elements have nice cluster decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition depending on **t**.

Nice cluster decomposition

A nice cluster decomposition of $z \in LP(t)$ is a finite decomposition $z = \sum b_i z_i$, such that $b_i \in \mathbb{k}$, z_i are products of cluster variables of U and x_i^{-1} , $j \in I_f$, and deg^t z_i are different.

• If z has a nice cluster decomposition, $z \in \mathbf{A}$.

The dual canonical basis of $\mathbb{k}[N^w]$ is a good basis by [Qin17, Qin20]. Moreover, its elements have nice cluster decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition depending on **t**.

Nice cluster decomposition

A nice cluster decomposition of $z \in LP(t)$ is a finite decomposition $z = \sum b_i z_i$, such that $b_i \in \mathbb{k}$, z_i are products of cluster variables of U and x_i^{-1} , $j \in I_f$, and deg^t z_i are different.

• If z has a nice cluster decomposition, $z \in A$.

The dual canonical basis of $\Bbbk[N^w]$ is a good basis by [Qin17, Qin20]. Moreover, its elements have nice cluster decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition depending on **t**.

Nice cluster decomposition

A nice cluster decomposition of $z \in LP(t)$ is a finite decomposition $z = \sum b_i z_i$, such that $b_i \in \mathbb{k}$, z_i are products of cluster variables of U and x_i^{-1} , $j \in I_f$, and deg^t z_i are different.

• If z has a nice cluster decomposition, $z \in \mathbf{A}$.

The dual canonical basis of $\mathbb{k}[N^w]$ is a good basis by [Qin17, Qin20]. Moreover, its elements have nice cluster decompositions (into the dual PBW basis).

Haveing a nice cluster decomposition is a technical condition depending on $\boldsymbol{t}.$

Outline

Overview

- Backgrounds
- Main results and comments

2 Cluster algebras

Freezing OperatorsBase Change

Outline

Overview

- Backgrounds
- Main results and comments

2 Cluster algebras

Cluster operations
 Freezing Operators
 Base Change

Freezing operators

• Given $F \subset I_{uf}$, freeze F in $\mathbf{t} \Rightarrow a$ new seed $\mathbf{t}' = \mathfrak{f}_F \mathbf{t}$

Take any m-pointed
$$z = x^{\underline{m}} \cdot (1 + \sum_{\underline{n} > 0} c_{\underline{n}} y^{\underline{n}})$$
 in $LP(t)$
$$\mathfrak{f}(z) := x^{\underline{m}} \cdot (1 + \sum_{\underline{n} > 0} c_{\underline{n}} y^{\underline{n}})|_{y_k \mapsto 0, \forall k \in F}$$

Freezing operators

• Given
$$F \subset I_{uf}$$
, freeze F in $\mathbf{t} \Rightarrow \mathbf{a}$ new seed $\mathbf{t}' = \mathfrak{f}_F \mathbf{t}$

Take any m-pointed
$$z = x^{\underline{m}} \cdot (1 + \sum_{\underline{n}>0} c_{\underline{n}} y^{\underline{n}})$$
 in $LP(t)$
$$\mathfrak{f}(z) := x^{\underline{m}} \cdot (1 + \sum_{\underline{n}>0} c_{\underline{n}} y^{\underline{n}})|_{y_k \mapsto 0, \forall k \in F}$$

Freezing operators

• Given
$$F \subset I_{uf}$$
, freeze F in $\mathbf{t} \Rightarrow \mathbf{a}$ new seed $\mathbf{t}' = \mathfrak{f}_F \mathbf{t}$

Take any m-pointed
$$z = x^{\underline{m}} \cdot (1 + \sum_{\underline{n} > 0} c_{\underline{n}} y^{\underline{n}})$$
 in $LP(t)$
$$\mathfrak{f}(z) := x^{\underline{m}} \cdot (1 + \sum_{\underline{n} > 0} c_{\underline{n}} y^{\underline{n}})|_{y_k \mapsto 0, \forall k \in F}$$

Properties

Theorem[Qin24b]

Assume that z is a localized cluster monomial for A, then f(z) is a localized cluster monomial for A'.

Corollary

If z has a nice cluster decomposition in t, so does f(z) in t'.

Theorem

If A = U and S is a good basis for U such that its elements have nice cluster decomposition in t, then A' = U' and f(S) is a good basis for U' such that its elements have cluster decomposition in t'.

Properties

Theorem[Qin24b]

Assume that z is a localized cluster monomial for A, then f(z) is a localized cluster monomial for A'.

Corollary

If z has a nice cluster decomposition in t, so does f(z) in t'.

Theorem

If A = U and S is a good basis for U such that its elements have nice cluster decomposition in t, then A' = U' and f(S) is a good basis for U' such that its elements have cluster decomposition in t'.

Properties

Theorem[Qin24b]

Assume that z is a localized cluster monomial for A, then f(z) is a localized cluster monomial for A'.

Corollary

If z has a nice cluster decomposition in t, so does f(z) in t'.

Theorem

If A = U and S is a good basis for U such that its elements have nice cluster decomposition in t, then A' = U' and f(S) is a good basis for U' such that its elements have cluster decomposition in t'.
Outline

Overview

- Backgrounds
- Main results and comments

2 Cluster algebras

- Cluster operationsFreezing Operators
 - Base Change

- Assume t and t' are similar: $\widetilde{B}_{l_{uf},l_{uf}} = \widetilde{B}'_{l_{uf},l_{uf}}$ up to relabeling vertices
 - They share many properties, such as F-polynomials [FZ07]

Example

Cluster algebras on double Bruhat cells and reduced double Bruhat cells are similar.

The reduced double Bruhat cell $\mathbb{K}[G^{w_0,w_0}/H]$ is a special case of double Bott-Samelson cells

- Assume t and t' are similar: $\tilde{B}_{l_{uf},l_{uf}} = \tilde{B}'_{l_{uf},l_{uf}}$ up to relabeling vertices
 - They share many properties, such as F-polynomials [FZ07]

Example

Cluster algebras on double Bruhat cells and reduced double Bruhat cells are similar.

The reduced double Bruhat cell $\mathbb{E}[G^{w_0,w_0}/H]$ is a special case of double Bott-Samelson cells

- Assume t and t' are similar: $\tilde{B}_{l_{uf},l_{uf}} = \tilde{B}'_{l_{uf},l_{uf}}$ up to relabeling vertices
 - They share many properties, such as F-polynomials [FZ07]

Example

Cluster algebras on double Bruhat cells and reduced double Bruhat cells are similar.

The reduced double Bruhat cell $\mathbb{K}[G^{w_0,w_0}/H]$ is a special case of double Bott-Samelson cells

- Assume t and t' are similar: $\widetilde{B}_{l_{uf},l_{uf}} = \widetilde{B}'_{l_{uf},l_{uf}}$ up to relabeling vertices
 - They share many properties, such as F-polynomials [FZ07]

Example

Cluster algebras on double Bruhat cells and reduced double Bruhat cells are similar.

7 2 5
8 3 3 4 6

$$k[G^{w_0,w_0}]$$
 has such a seed t
 $C = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$
 $k[G]$ is the associated \overline{U}

The reduced double Bruhat cell $\&[G^{w_0,w_0}/H]$ is a special case of double Bott-Samelson cells

• Take A = A or U. It is an algebra over the frozen torus R.

 Assume there is a homomorphism var : *LP* → *LP'* which "preserves the seed structure" and restricts to var : *R* → *R'*. (variation map [Qin17][KQW23]; classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis $\mathbf{S} = \{s_{\underline{m}}\}$ which factors through frozen variables: $\forall j \in I \in I_{\mathrm{f}}, x_j \cdot s_{\underline{m}} = s_{\underline{m}+f_j}$. Then var induces $\varphi : \mathsf{A}' \simeq \mathsf{R}' \otimes_{\mathsf{R}} \mathsf{A}$, which induces a pointed basis \mathbf{S}' for A' .

For $\mathbb{k} = \mathbb{C}$, obtain a base change (fiber product) of cluster varieties

specA
$$\xrightarrow{\phi^*}$$
 specA'
 $\downarrow \qquad \downarrow$
spec $R \xrightarrow{\phi^*}$ spec R'

- Take A = A or U. It is an algebra over the frozen torus R.
- Assume there is a homomorphism var : *LP* → *LP'* which "preserves the seed structure" and restricts to var : *R* → *R'*. (variation map [Qin17][KQW23]; classical case: quasi-cluster homomorphism [Fra16])

Assume A has a pointed basis $\mathbf{S} = \{s_{\underline{m}}\}$ which factors through frozen variables: $\forall j \in I \in I_{\mathrm{f}}, x_j \cdot s_{\underline{m}} = s_{\underline{m}+f_j}$. Then var induces $\varphi : \mathsf{A}' \simeq \mathsf{R}' \otimes_{\mathsf{R}} \mathsf{A}$, which induces a pointed basis \mathbf{S}' for A' .

For $\Bbbk = \mathbb{C},$ obtain a base change (fiber product) of cluster varieties

specA
$$\xrightarrow{\phi^*}$$
 specA'
 $\downarrow \qquad \downarrow$
spec $R \xrightarrow{\phi^*}$ spec R'

- Take A = A or U. It is an algebra over the frozen torus R.
- Assume there is a homomorphism var : *LP* → *LP'* which "preserves the seed structure" and restricts to var : *R* → *R'*. (variation map [Qin17][KQW23]; classical case: guasi-cluster homomorphism [Fra16])

Assume A has a pointed basis $\mathbf{S} = \{s_{\underline{m}}\}$ which factors through frozen variables: $\forall j \in I \in I_{\mathrm{f}}, x_j \cdot s_{\underline{m}} = s_{\underline{m}+f_j}$. Then var induces $\varphi : \mathsf{A}' \simeq \mathsf{R}' \otimes_{\mathsf{R}} \mathsf{A}$, which induces a pointed basis \mathbf{S}' for A' .

For $\mathbb{k} = \mathbb{C}$, obtain a base change (fiber product) of cluster varieties

specA
$$\xrightarrow{\phi^*}$$
 specA'
 $\downarrow \qquad \downarrow$
spec $R \xrightarrow{\phi^*}$ spec R'

- Take A = A or U. It is an algebra over the frozen torus R.
- Assume there is a homomorphism var : *LP* → *LP'* which "preserves the seed structure" and restricts to var : *R* → *R'*. (variation map [Qin17][KQW23]; classical case: guasi-cluster homomorphism [Fra16])

Assume A has a pointed basis $\mathbf{S} = \{s_{\underline{m}}\}$ which factors through frozen variables: $\forall j \in I \in I_{\mathrm{f}}, x_j \cdot s_{\underline{m}} = s_{\underline{m}+f_j}$. Then var induces $\varphi : \mathsf{A}' \simeq \mathsf{R}' \otimes_{\mathsf{R}} \mathsf{A}$, which induces a pointed basis \mathbf{S}' for A' .

For $\mathbb{k} = \mathbb{C}$, obtain a base change (fiber product) of cluster varieties

$$\begin{array}{ccc} \operatorname{spec} \mathsf{A} & \xrightarrow{\phi^*} & \operatorname{spec} \mathsf{A}' \\ \downarrow & & \downarrow \\ \operatorname{spec} R & \xrightarrow{\phi^*} & \operatorname{spec} R' \end{array}$$

Properties

Theorem

[Qin24a] If $\mathbf{A} = \mathbf{U}$ and \mathbf{U} has a good basis \mathbf{S} , such that the basis element have nice cluster decomposition in \mathbf{t} , then via the base change φ , we have $\mathbf{A}' = \mathbf{U}'$. Moreover, \mathbf{S}' is a good basis of \mathbf{U}' and its basis elements have nice cluster decomposition in \mathbf{t}' .

Appendix: $K_0(U_q(\widehat{\mathfrak{g}}) ar{\mathfrak{mod}})$ from $\widetilde{N}^{\widetilde{w}}$

t becomes t^\prime after the following procedure:

• Freeze 3,6,

Remove the frozen 3,6,9 (base change)

Appendix: Double Bott-Samelson Cells from $\widetilde{N}^{\widetilde{w}}$

 \mathbf{t} becomes \mathbf{t}' after the following procedure:

Freeze 8

Remove the frozen 8,9 (base change)

Interpretation

Ζ

$$z = x_2^{-1}x_6(1+y_2+y_2y_1+y_2y_4+y_2y_1y_4+y_2y_1y_4+y_2y_1y_4y_3)$$

$$f(z) = x_2^{-1} x_6 (1 + y_2 + y_2 y_1)$$

In cluster categories (2-Calabi-Yau triangulated categories)

Let \mathscr{C} be the cluster category for **t**, CC() cluster character, $CC(T_i) = x_i(t)$. Freezing 4:

- Restrict to the subcategory $\mathscr{C}' = \{ V' \in \mathscr{C} | \operatorname{Hom}_{\mathscr{C}}(V', T_4[1]) = 0 \}$
- $f(CC(V)) = CC(V') \cdot x_A^{-N}, N \gg 1$,
 - V' is a generic extension of V and $T_{A}^{\oplus N}$: $T^{\oplus N}_{4} \rightarrow V' \rightarrow V \rightarrow T^{\oplus N}_{4}$ [1]
- Hom(T, V') is the maximal submodule of Hom(T, V) such that $(\dim \operatorname{Hom}(T, V'))_4 = 0.$

5 • 6 • 1 6 • 4 • 2 $z = x_2^{-1}x_6(1+y_2+y_2y_1+y_2y_4+y_2y_1y_4+y_2y_1y_4y_3)$

In monoidal categories with good properties

Assume $U \simeq K_0(\mathcal{M})$, $x_i(\mathbf{t}) = [S_i]$. Freezing 4:

- Restrict to the subcategory \mathscr{M}' generated by simples $S' \in \mathscr{M}' : S' \otimes S_4$ remains simple
- \forall simple $S \in \mathcal{M}$, $\mathfrak{f}([S]) = [S'] \cdot x_4(\mathbf{t})^{-N}$, $N \gg 1$
 - S' is the simple head of $S \otimes S_4^{\otimes N}$

- [EL21] Balázs Elek and Jiang-Hua Lu, Bott-Samelson varieties and Poisson ore extensions, International Mathematics Research Notices 2021 (2021), no. 14, 10745–10797.
- [Fra16] Chris Fraser, Quasi-homomorphisms of cluster algebras, Advances in Applied Mathematics 81 (2016), 40–77, arXiv:1509.05385.
- [FZ07] Sergey Fomin and Andrei Zelevinsky, Cluster algebras IV: Coefficients, Compositio Mathematica 143 (2007), 112–164, arXiv:math/0602259.
- [GLS11] Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Advances in Mathematics 228 (2011), no. 1, 329–433, arXiv:1001.3545.
- [GSV23] Misha Gekhtman, Michael Shapiro, and Alek Vainshtein, A unified approach to exotic cluster structures on simple Lie groups, arXiv:2308.16701.

References II

- [GY20] K.R. Goodearl and M.T. Yakimov, The Berenstein-Zelevinsky quantum cluster algebra conjecture, Journal of the European Mathematical Society 22 (2020), no. 8, 2453–2509, arXiv:1602.00498.
- [HL10] David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341, arXiv:0903.1452.
- [HL13] _____, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, 2013, arXiv:1303.0744.
- [IOS23] Tsukasa Ishibashi, Hironori Oya, and Linhui Shen, A= U for cluster algebras from moduli spaces of G-local systems, Advances in Mathematics 431 (2023), 109256.
- [KQW23] Yoshiyuki Kimura, Fan Qin, and Qiaoling Wei, Twist automorphisms and Poisson structures, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 19 (2023), 105, arXiv:2201.10284.

[Qin17] Fan Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Mathematical Journal 166 (2017), no. 12, 2337–2442, arXiv:1501.04085.

- [Qin20] _____, Dual canonical bases and quantum cluster algebras, arXiv:2003.13674.
- [Qin24a] _____, Analogs of dual canonical bases for cluster algebras from Lie theory, arXiv:2407.02480.
- [Qin24b] _____, Applications of the freezing operators on cluster algebras, to appear in the special issue "Cluster Algebras and Related Topics" of Journal of Algebra and its Applications (2024).
- [SW21] Linhui Shen and Daping Weng, Cluster structures on double Bott-Samelson cells, Forum of Mathematics, Sigma, vol. 9, Cambridge University Press, 2021, arXiv:1904.07992.