On relative Koszul duality and dg enhanced orbit categories

Fan, Li with Yu Qiu and Bernhard Keller arXiv:2405.00093

Tsinghua University

ICRA 21, Shanghai, 2024.08.08

Outline

- Motivations
- Preliminaries
- Relative Koszul duality
- ① Dg orbit categories (*)

Contents

- Motivations
- Preliminaries
- Relative Koszul duality
- Dg orbit categories (*)

Our goals

Goal 1. Give a general construction of (pre)triangulated hull of (dg) orbit categories.

Goal 2. Generalize Ikeda-Qiu and Happel's results respectively.

Goal 3. Connect them via relative Koszul duality.

Cluster theory

- Let A be a f.d. hereditary algebra over a field \mathbf{k} .
- Cluster category (Buan-Marsh-Reineke-Reiten-Todorov) as the orbit category

$$C_2(A) \coloneqq \mathcal{D}^b(\operatorname{mod} A)/\tau^{-1} \circ [1],$$

where τ is the AR-translation functor.

 Additive categorification of cluster algebras (Fomin-Zelevinsky) via cluster tilting theory.

Higher cluster categories without the hereditary assumptions

- Let A be a f.d. **k**-algebra with gldim $A < \infty$ and $m \ge 2$ an integer.
- per A admits a Serre functor $\mathbb{S} := -\stackrel{L}{\otimes}_A DA$ and set $\Sigma_m := \mathbb{S} \circ [-m]$, which is an automorphism of per A.
- The orbit category per A/Σ_m has a triangulated hull (Keller)

$$C_m(A) \coloneqq \langle A \rangle_B / \operatorname{per} B$$
,

where B is the dg algebra $A \oplus DA[-m-1]$.

• The *m*-cluster category $C_m(A)$ of A coincides with per A/Σ_m when A is hereditary.

Goal 1. Give a general construction of (pre)triangulated hull of (dg) orbit categories.

Generalized cluster categories

Amiot-Guo-Keller defined a generalized version of cluster category.

• For an integer N, the <u>N-Calabi-Yau completion</u> of A is the derived dg tensor algebra

$$\Pi_N A = T_A(\Theta) = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots,$$

where $\Theta = \theta[N-1]$, θ is a cofibrant replacement of $\mathsf{RHom}_{A^e}(A,A^e)$ and $A^e = A^{op} \otimes_k A$.

- $\mathcal{C}(\Pi_N A) \coloneqq \operatorname{per}(\Pi_N A) / \operatorname{pvd}(\Pi_N A)$, the generalized (N-1)-cluster category.
- pvd($\Pi_N A$) is N-Calabi-Yau and if $\mathcal{C}(\Pi_N A)$ is Hom-finite, then there is a triangle equivalence

$$\mathcal{C}(\Pi_N A) \simeq \mathcal{C}_{N-1}(A).$$

Furthermore, $C(\Pi_N A)$ is (N-1)-Calabi-Yau.

X-Calabi-Yau completion and ∞-cluster category

- Let A be a connective, smooth and proper dg algebra.
- The \mathbb{X} -Calabi-Yau completion $\Pi_{\mathbb{X}}(A)$ of A is a dbg algebra

$$T_A(\Theta) = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots$$

for
$$\Theta = \theta[X - 1]$$
.

• $\mathcal{C}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) \coloneqq \operatorname{per}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) / \operatorname{pvd}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A)$, the ∞ -cluster category.

Theorem (Keller, Ikeda-Qiu)

 $\mathsf{pvd}^\mathbb{Z}(\Pi_\mathbb{X}(A)) \text{ is } \mathbb{X}\text{-}\mathit{Calabi-Yau} \text{ and } \mathcal{C}^\mathbb{Z}(\Pi_\mathbb{X}\,A) \text{ is } (\mathbb{X}-1)\text{-}\mathit{Calabi-Yau}.$

Perfect derived category as ∞ -cluster category

Theorem (Ikeda-Qiu)

We have a triangle equivalence

$$\mathbb{S} = ? \overset{L}{\otimes_{A}} DA \longrightarrow [\mathbb{X} - 1]$$

$$per A \longrightarrow \mathcal{C}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A). \tag{1}$$

Note that $\mathbb{S} = \tau^{-1} \circ [1]$ is the Serre functor.

Goal 2. Generalize Ikeda-Qiu's results above.

Perfect derived category as singularity categories

- Let A be a f.d. algebra with gldim $A < \infty$.
- Let $E_{\mathbb{X}} = A \oplus DA[-\mathbb{X}]$ be the trivial extension of A.
- $\operatorname{mod}^{\mathbb{Z}}(E_{\mathbb{X}})$ is equivalent to $\operatorname{mod}(\hat{A})$, where \hat{A} is the repetitive algebra.

Theorem (Happel, Rickard)

There is an equivalence

Goal 3. Generalize Happel's results above and build a connection with Ikeda-Qiu's results.

Contents

- Motivations
- Preliminaries
- Relative Koszul duality
- Dg orbit categories (*)

Differential bigraded categories/algebras

- Let **k** be an algebraically closed field.
- Let $Grm(\mathbf{k})$ be the category of \mathbb{Z} -graded \mathbf{k} -modules $M = \bigoplus_{p \in \mathbb{Z}} M_p$ with grading shift given by $(M[\mathbb{X}])_p = M_{p+1}$.
- Let $C_{dbg}(\mathbf{k})$ be the dg category of complexes over $Grm(\mathbf{k})$.
- ullet The differential bigraded (dbg) category ${\cal A}$ is a category enriched in ${\cal C}_{dbg}({f k})$.

Remark

If $\mathcal A$ is a dbg category with one object *, then we can identity $\mathcal A$ with the dbg algebra $A=\mathcal A(*,*)$, i.e. a dg $\mathbf k$ -algebra endowed with the Adams $\mathbb Z$ -grading

$$A=\oplus_{p\in\mathbb{Z}}A_p$$

such that |d| = (1, 0).

The derived categories

The <u>bigraded derived category</u> $\mathcal{D}^{\mathbb{Z}}(\mathcal{A})$ is the category of dbg modules $M: \mathcal{A}^{op} \to \mathcal{C}_{dbg}(\mathbf{k})$ localized at the $s: M \to L$ such that $s_pX: L_pX \to M_pX$ is a quasi-isomorphism for any $p \in \mathbb{Z}$ and $X \in \text{obj}(\mathcal{A})$.

Remark

 $\mathcal{D}^{\mathbb{Z}}(\mathcal{A})$ is compactly generated by $\{X^{\wedge}[p\mathbb{X}], p \in \mathbb{Z}, X \in \text{obj}(\mathcal{A})\}$, where $X^{\wedge} := \mathcal{A}(?, X)$.

The perfect derived category is

$$\operatorname{per}^{\mathbb{Z}}(\mathcal{A}) \coloneqq \operatorname{thick}\{X^{\wedge}[pX], p \in \mathbb{Z}, X \in \operatorname{obj}(\mathcal{A})\}.$$

The perfectly valued derived category is

$$\operatorname{pvd}^{\mathbb{Z}}(\mathcal{A}) \coloneqq \{ M \in \mathcal{D}^{\mathbb{Z}}(\mathcal{A}) \mid MX \in \operatorname{per}^{\mathbb{Z}}(\mathbf{K}), \forall X \in \operatorname{obj}(\mathcal{A}) \},$$

where ${\bf K}$ is ${\bf k}$ when regarded as a dbg algebra with trivial grading shift.

Let A be a dg algebra, B a dbg algebra and $i_A^B:A\to B$ a morphism of dbg algebras. There is an induced restriction functor:

$$\mathcal{D}^{\mathbb{Z}}(B) \to \mathcal{D}^{\mathbb{Z}}(A).$$

Definition

We define the <u>relative perfectly valued derived categories</u> of B, with respect to A, to be

$$\operatorname{pvd}^{\mathbb{Z}}(B,A) := \{ M \in \mathcal{D}^{\mathbb{Z}}(B) \big| M|_{A} \in \operatorname{per}^{\mathbb{Z}}(A) \}. \tag{3}$$

Let $X \in \mathcal{D}(A^e)$ an invertible dg bimodule with inverse Y, i.e.

$$X \overset{L}{\otimes}_A Y \simeq A \text{ and } Y \overset{L}{\otimes}_A X \simeq A$$

in $\mathcal{D}(A^e)$.

Write \hat{X} for a cofibrant resolution of X[X=1] and let

$$T = T_{\mathcal{A}}(\hat{X}) = \bigoplus_{p \geqslant 0} \hat{X}^{\otimes_{\mathcal{A}}^{p}} \tag{4}$$

be the differential bigraded tensor algebra of \widehat{X} over A and

$$\mathsf{E} = A \oplus Y[-\mathbb{X}] \tag{5}$$

the differential bigraded trivial extension algebra of Y[-X] by A.

Remark

The relative perfectly valued derived categories $\operatorname{pvd}^{\mathbb{Z}}(\mathsf{T},A)$ and $\operatorname{pvd}^{\mathbb{Z}}(\mathsf{E},A)$ equal the thick subcategory of $\mathcal{D}^{\mathbb{Z}}(\mathsf{T})$ and $\mathcal{D}^{\mathbb{Z}}(\mathsf{E})$ generated by the $A[q\mathbb{X}], q \in \mathbb{Z}$ respectively.

Contents

- Motivations
- Preliminaries
- Relative Koszul duality
- Dg orbit categories (*)

Enlarged cluster categories

Definition

We define the enlarged cluster category of A wrt X as the Verdier quotient

$$C^{\mathbb{Z}}(\mathsf{T}, A) := \operatorname{per}^{\mathbb{Z}}(\mathsf{T}) / \operatorname{pvd}^{\mathbb{Z}}(\mathsf{T}, A). \tag{6}$$

A generalization of Ikeda-Qiu:

Theorem (F-Keller-Qiu)

The composition

$$? \overset{L}{\otimes_{A}} Y[1] \longrightarrow [X]$$

$$\Phi : \operatorname{per} A \xrightarrow{? \overset{L}{\otimes_{A}} T} \operatorname{per}^{\mathbb{Z}}(T) \longrightarrow \mathcal{C}^{\mathbb{Z}}(\Pi_{X} A)$$

$$(7)$$

is a triangle equivalence, where $[X] \circ \Phi \simeq \Phi \circ (? \overset{L}{\otimes}_A Y[1])$.

Shrunk singularity categories

Definition

We define the shrunk singularity category of A as the Verdier quotient

$$sg^{\mathbb{Z}}(E, A) := pvd^{\mathbb{Z}}(E, A) / per^{\mathbb{Z}}(E).$$
 (8)

A generalization of Happel:

Theorem (Hanihara, F-Keller-Qiu)

The restriction along the augmentation $E \rightarrow A$ induces an equivalence

$$? \overset{L}{\otimes_{A}} Y[1] \xrightarrow{\qquad} [X]$$

$$\psi : \operatorname{per} A \xrightarrow{\qquad} \operatorname{sg}^{\mathbb{Z}}(\mathsf{E}, A)$$

where $[X] \circ \Psi \simeq \Psi \circ (? \overset{L}{\otimes}_{A} Y[1])$.

(9)

The relative Koszul duality

Theorem (F-Keller-Qiu)

The adjoint pair

$$\operatorname{per}^{\mathbb{Z}}(\mathsf{T}) \xrightarrow{\operatorname{\mathsf{RHom}}^{\mathbb{Z}}_{\mathsf{T}}(A,?)} \operatorname{\mathsf{pvd}}^{\mathbb{Z}}(\mathsf{E},A). \tag{10}$$

induces the following commutative diagram

where "all" functors commute with [X].

Examples

• Classical Koszul duality. For the case when $A = \mathbf{k}$, $X = \mathbf{k}[1 - X]$ and $Y = \mathbf{k}[X - 1]$, we have

$$T = T_A(\mathbf{k}) = \mathbf{k}[u],$$

where u is of bidegree (0,0) and

$$\mathsf{E} = \mathbf{k} \oplus \mathbf{k}[-1] = \mathbf{k}[v]/(v^2),$$

where v is of bidegree (0,0). We see that T and E are Koszul dual to each other in the sense that

$$\mathsf{RHom}_\mathsf{E}(A,A) \simeq \mathsf{T} \text{ and } \mathsf{RHom}_\mathsf{T}(A,A) \simeq \mathsf{E}.$$

 The Calabi-Yau-X case. If A is a smooth, proper and connective dg algebra, then we can take

$$X = A^{\vee}$$
 and $Y = DA$,

In this case, $T = \Pi_{\mathbb{X}} A$ and $E = E_{\mathbb{X}}$ are the \mathbb{X} -Calabi-Yau completion and the trivial extension of A respectively. Moreover, $\mathcal{C}^{\mathbb{Z}}(T,A)$ reduces to the ∞ -cluster category $\mathcal{C}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A)$ and $\operatorname{sg}^{\mathbb{Z}}(E,A)$ becomes $\operatorname{sg}^{\mathbb{Z}}(E_{\mathbb{X}})$.

Contents

- Motivations
- Preliminaries
- Relative Koszul duality
- ① Dg orbit categories (*)

The orbit categories

Let \mathcal{A} be a dg category and $F \in \operatorname{rep}_{dg}(\mathcal{A}, \mathcal{A})$ a dg bimodule. The left lax quotient $\mathcal{A}/_{II}F^{\mathbb{N}}$ of \mathcal{A} by F is the dg category whose

- ullet objects are the same as the objects of ${\cal A}$, and
- morphisms are given by $\mathcal{A}/_{II}F^{\mathbb{N}}(X,Y)=\bigoplus_{p\in\mathbb{N}}\mathcal{A}(X,F^{p}Y).$

The canonical dg functor $Q_{\mathbb{N}}:\mathcal{A}\to\mathcal{A}/_{II}F^{\mathbb{N}}$ acts on

- objects: it sends $X \in \text{obj}(A)$ to $X \in \text{obj}(A/_{II}F^{\mathbb{N}})$, and
- morphisms: it sends $f: X \to Y$ to $f \in \mathcal{A}(X,Y) \subseteq \bigoplus_{p \in \mathbb{N}} \mathcal{A}(X,F^pY)$.

The canonical morphism of dg functors $q:Q_{\mathbb{N}}F\to Q_{\mathbb{N}}$ acts on the objects of \mathcal{A} as

$$qX := \mathrm{id}_{FX} \in \mathcal{A}(FX, FX) \subseteq \bigoplus_{p \in \mathbb{N}} \mathcal{A}(FX, F^{p+1}X).$$

Definition

The <u>dg orbit category</u> $\mathcal{A}/F^{\mathbb{Z}}$ is defined to be the dg localization $(\mathcal{A}/_{II}F^{\mathbb{N}})[q^{-1}]$ of $\mathcal{A}/_{II}F^{\mathbb{N}}$ wrt the morphisms $qX:Q_{\mathbb{N}}FX\to Q_{\mathbb{N}}X$ for any $X\in \mathrm{obj}(\mathcal{A})$.

The orbit categories with dg enhancement

The $\underline{\mathbb{Z}}$ -equivariant category \mathbb{Z} - Eq $(\mathcal{A}, F, \mathcal{B})$ consists of \mathbb{Z} -equivariant functors from (\mathcal{A}, F) to $(\mathcal{B}, \mathrm{id}_{\mathcal{B}})$ whose objects are the pairs (\mathcal{G}, γ) , where $\mathcal{G} \in \mathrm{rep}_{dq}(\mathcal{A}, \mathcal{B})$ and $\gamma : \mathcal{G}F \to \mathcal{G}$ s.t. γX is an isom in $H^0(\mathcal{B}), \forall X \in \mathrm{obj}(\mathcal{A})$.

Theorem (F-Keller-Qiu)

Let $\mathcal B$ be a pretriangulated dg category. Then $\mathcal A\to \operatorname{pretr}(\mathcal A/F^\mathbb Z)$ induces an isomorphism

$$\operatorname{rep}_{dg}(\operatorname{pretr}(\mathcal{A}/F^{\mathbb{Z}}), \mathcal{B}) \xrightarrow{\sim} \mathbb{Z}\operatorname{-Eq}(\mathcal{A}, F, \mathcal{B}). \tag{12}$$

in Hqe.

Definition

Let \mathcal{T} be a triangulated category endowed with a dg enhancement $H^0(\mathcal{A}) \xrightarrow{\sim} \mathcal{T}$ and $F \in \operatorname{rep}_{dg}(\mathcal{A}, \mathcal{A})$ be a dg bimodule. If the induced functor $H^0(F): H^0(\mathcal{A}) \to H^0(\mathcal{A})$ is an equivalence, then the <u>triangulated orbit category</u> of \mathcal{T} wrt \mathcal{A} is defined as

$$H^0(\operatorname{pretr}(\mathcal{A}/F^{\mathbb{Z}})).$$

Commuting with dg quotient

Corollary

Suppose $\mathcal{N} \subseteq \mathcal{A}$ is a full dg subcategory such that $H^0(\mathcal{N})$ is stable under $H^0(F)$, so that F induces dg bimodules $F_{\mathcal{N}} \in \operatorname{rep}_{dg}(\mathcal{N}, \mathcal{N})$ and $F_{\mathcal{A}/\mathcal{N}} \in \operatorname{rep}_{dg}(\mathcal{A}/\mathcal{N}, \mathcal{A}/\mathcal{N})$. We have a canonical isomorphism in Hqe

$$\operatorname{pretr}((\mathcal{A}/\mathcal{N})/F_{\mathcal{A}/\mathcal{N}}^{\mathbb{Z}}) \simeq \operatorname{pretr}(\mathcal{A}/F^{\mathbb{Z}})/\operatorname{pretr}(\mathcal{N}/F_{\mathcal{N}}^{\mathbb{Z}}). \tag{13}$$

Moreover, we have a short exact sequence of triangulated categories

$$0 \to (\mathcal{N}/F_{\mathcal{N}}^{\mathbb{Z}})^{tr} \to (\mathcal{A}/F^{\mathbb{Z}})^{tr} \to ((\mathcal{A}/\mathcal{N})/F_{\mathcal{A}/\mathcal{N}}^{\mathbb{Z}})^{tr} \to 0, \tag{14}$$

where $(-)^{tr}$ denotes the functor $H^0 \circ \text{pretr.}$

A conjecture of Ikeda-Qiu

Let $N \ge 3$ be an integer. There is a projection $\pi_N \colon \Pi_{\mathbb{X}} A \to \Pi_N A$ collapsing the double degree $(a,b) \in \mathbb{Z} \oplus \mathbb{Z} \mathbb{X}$ into $a+bN \in \mathbb{Z}$, that induces a functor

$$\pi_N \colon \operatorname{per}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) \to \operatorname{per}(\Pi_N A)$$

which restricts to π_N : $\operatorname{pvd}^{\mathbb{Z}} \Pi_{\mathbb{X}} A \to \operatorname{pvd}(\Pi_N A)$.

Theorem (Ikeda-Qiu, F-Keller-Qiu)

Let A be a connective, smooth and proper dg algebra. We have the following commutative diagram between short exact sequences of triangulated categories:

$$0 \longrightarrow \operatorname{pvd}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) \longrightarrow \operatorname{per}^{\mathbb{Z}}(\Pi_{\mathbb{X}} A) \longrightarrow \operatorname{per} A \longrightarrow 0$$

$$\downarrow/[\mathbb{X}-N] \qquad \downarrow/[\mathbb{X}-N] \qquad \downarrow/\tau^{-1} \circ [2-N] \qquad (15)$$

$$0 \longrightarrow \operatorname{pvd}(\Pi_{N} A) \longrightarrow \operatorname{per}(\Pi_{N} A) \longrightarrow \mathcal{C}_{N-1}(A) \longrightarrow 0.$$

Dually, we also have a projection $\pi_N : E_{\mathbb{X}} \to E_N$ that induces functors between corresponding pvd and per, where $E_{\mathbb{X}} = A \oplus DA[-\mathbb{X}]$ and $E_N = A \oplus DA[-N]$.

Combining everything

Thank you!