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Plan

Outline

1. Overexplain the classical case

2. The higher case works the same

3. Run out of time (otherwise: Mutation lattices)



Classical type Ã

Let n = 1.

Recall
Λ with gdim(Λ) = 1 is of type Ãm if Λ ≃ kQ, where Q is an acyclic
orientation of the Euclidean diagram Ãm.

Example

Q =

2 2

1 3, 1 3



Classical type Ã

Let n = 1.

Recall
Λ with gdim(Λ) = 1 is of type Ãm if Λ ≃ kQ, where Q is an acyclic
orientation of the Euclidean diagram Ãm.

Example

Q =

2 2

1 3, 1 3

”Problem”
How many different orientations are there? Which ones are
equivalent? How equivalent?



Preprojective gradings

Theorem/Definition [Baer-Geigle-Lenzing]

Let gdim(Λ) = 1. Then the preprojective algebra Π(Λ) is the
graded algebra

Π(Λ) = TΛ Ext
1
Λ(D(Λ),Λ).

This way,

RI algebras Λ ↔ “nice” gradings on Π(Λ)

Example continued

Quiver for Π(kQ) is the double Q:

2 2

1 3 1 3



Gradings, Cuts, Types

2 2

1 3 1 3

Definition
Identify a grading on Q with the set C = {α ∈ Q1 | deg(α) = 1}.
This is called a cut. Define the cut quiver QC = (Q0,Q1 − C ).



Gradings, Cuts, Types

2 2

1 3 1 3

Definition
Identify a grading on Q with the set C = {α ∈ Q1 | deg(α) = 1}.
This is called a cut. Define the cut quiver QC = (Q0,Q1 − C ).

Definition
For a cut C we call θ(C ) = (# ⟳ arrows in C ,# ⟲ arrows in C )
its type.



Mutation

Example

1 2 1 2

4 3 4 3

Different cuts, same type. Related by reflection functors!



Mutation

Example

1 2 1 2

4 3 4 3

Different cuts, same type. Related by reflection functors!

Definition
We call a cut C2 a mutation of C1, if C2 is obtained from C1 by
turning a sink in QC1

into a source (or reverse).



Mutation

Example

1 2 1 2

4 3 4 3

Different cuts, same type. Related by reflection functors!

Definition
We call a cut C2 a mutation of C1, if C2 is obtained from C1 by
turning a sink in QC1

into a source (or reverse).

Theorem
Two cuts have the same type iff they are related by a sequence of
mutations.



Preprojective algebras, again

From McKay correspondence

Λ is of type Ãm−1 iff Π(Λ) = k[x , y ] ∗ Cm, where Cm ≤ SL2(k).
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From McKay correspondence

Λ is of type Ãm−1 iff Π(Λ) = k[x , y ] ∗ Cm, where Cm ≤ SL2(k).

Toric varieties
If G is abelian, X = Spec(k[x1, . . . , xn+1]

G ) is a toric variety. This
is defined by a lattice cone C ⊆ NR. Fix the “slice at height 1”
P = C ∩ {z = 1} .



Preprojective algebras, again

From McKay correspondence

Λ is of type Ãm−1 iff Π(Λ) = k[x , y ] ∗ Cm, where Cm ≤ SL2(k).

Toric varieties
If G is abelian, X = Spec(k[x1, . . . , xn+1]

G ) is a toric variety. This
is defined by a lattice cone C ⊆ NR. Fix the “slice at height 1”
P = C ∩ {z = 1} .

Example

G = ⟨13(1, 2)⟩



Types

Example

2

1 3

We have two possible types for preprojective gradings. We also add
the infinite-dimensional ones

(3, 0)− (2, 1)− (1, 2)− (0, 3)

Observation
This is precisely P!



The main result

Theorem

1. A cut on Q defines a preprojective grading iff its type is an
internal lattice point in P .

2. Two cuts have the same type iff they are connected by a
sequence of mutations.



The main result

Theorem

1. A cut on Q defines a preprojective grading iff its type is an
internal lattice point in P .

2. Two cuts have the same type iff they are connected by a
sequence of mutations.

Theorem
The higher case works exactly the same way.



The higher case

Definition [Herschend-Iyama-Oppermann ’14]

1. A f.d. algebra Λ is n-representation infinite (n-RI) if
gdim(Λ) ≤ n and

ν−i
n (Λ) ∈ modΛ

for all i ≥ 0, where ν−1
n = [n] ◦ RHom(D(Λ),−) the “inverse

derived higher AR-translate”.
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1. A f.d. algebra Λ is n-representation infinite (n-RI) if
gdim(Λ) ≤ n and

ν−i
n (Λ) ∈ modΛ

for all i ≥ 0, where ν−1
n = [n] ◦ RHom(D(Λ),−) the “inverse

derived higher AR-translate”.

2. An n-RI Λ is of type Ã if its (n + 1)-preprojective algebra is

Πn+1(Λ) := TΛ Ext
n
Λ(D(Λ),Λ) ≃ k[x1, . . . , xn+1] ∗ G ,

where G ≤ SLn+1(k) is finite abelian.



The higher case

Definition [Herschend-Iyama-Oppermann ’14]

1. A f.d. algebra Λ is n-representation infinite (n-RI) if
gdim(Λ) ≤ n and

ν−i
n (Λ) ∈ modΛ

for all i ≥ 0, where ν−1
n = [n] ◦ RHom(D(Λ),−) the “inverse

derived higher AR-translate”.

2. An n-RI Λ is of type Ã if its (n + 1)-preprojective algebra is

Πn+1(Λ) := TΛ Ext
n
Λ(D(Λ),Λ) ≃ k[x1, . . . , xn+1] ∗ G ,

where G ≤ SLn+1(k) is finite abelian.

Problem
Which G appear? In how many ways?



Quivers for Πn+1(Λ)

Construction
R ∗ G is basic, its quiver Q is a Cayley-graph of Ĝ = Hom(G , k∗)
wrt. (n + 1) generators {ρ1, . . . , ρn+1}. Every arrow α ∈ Q1

corresponds to some ·ρi . We call θ(α) = i its type. We identify
“nice” gradings on R ∗ G with cuts C ⊆ Q1.

Example

n = 1: ρ2 1 ρ1 · · · ρ2
·ρ1
·ρ2

·ρ1·ρ1
·ρ2 ·ρ2

n = 2:



Mutation, again

Let C ⊆ Q1 be a cut, QC = (Q0,Q1 − C ).

Definition
The type of C is θ(C ) = (#{α ∈ C | θ(α) = i})1≤i≤n+1.

Construction
If s ∈ QC is a source (resp. sink), produce a new cut µs(C ) by
turning s into a sink (resp. source) in Qµs(C).
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Construction
If s ∈ QC is a source (resp. sink), produce a new cut µs(C ) by
turning s into a sink (resp. source) in Qµs(C).

Theorem [Nakajima ’22]

Two cuts have the same positive type iff they are related by a
sequence of mutations.



Mutation, again

Let C ⊆ Q1 be a cut, QC = (Q0,Q1 − C ).

Definition
The type of C is θ(C ) = (#{α ∈ C | θ(α) = i})1≤i≤n+1.

Construction
If s ∈ QC is a source (resp. sink), produce a new cut µs(C ) by
turning s into a sink (resp. source) in Qµs(C).

Theorem [Nakajima ’22]

Two cuts have the same positive type iff they are related by a
sequence of mutations.

Note
Cut mutation ↔ n-APR tilting of n-RI algebras



Types, again

X = Spec(RG ) toric, with cone C ⊆ NR, P = C ∩ {z = 1}.
The toric argument

1. Z (R ∗ G ) = RG .

2. Gradings on R ∗ G induce gradings on RG

3. Gradings on RG ↔ k∗-actions on X ↔ 1-param. sbgrps. of X
↔ points in N.

Theorem [D-Gasanova]

Two cuts on R ∗ G have the same type iff they induce the same
grading on RG . There’s a bijection

{types of cuts} ↔ {lattice points in P},

giving preprojective cuts ↔ internal points in P .



Types, again

Theorem [D-Gasanova]

Two cuts on R ∗ G have the same type iff they induce the same
grading on RG . There’s a bijection

{types of cuts} ↔ {lattice points in P},

giving preprojective cuts ↔ internal points in P .

Problem
When does an internal point exist?



Convex Geometry to the rescue (almost)

The set P = C ∩ {z = 1} is a lattice polytope.

Definitipn

A lattice polytope is called hollow if it has no interior points.

Theorem [Nill-Ziegler ’11]

An n-dimensional lattice polytope is hollow iff it projects to an
(n − 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.
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An n-dimensional lattice polytope is hollow iff it projects to an
(n − 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.

Open problem(?)

Describe the exceptions in each dimension.



Convex Geometry to the rescue (almost)

The set P = C ∩ {z = 1} is a lattice polytope.

Definitipn

A lattice polytope is called hollow if it has no interior points.

Theorem [Nill-Ziegler ’11]

An n-dimensional lattice polytope is hollow iff it projects to an
(n − 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.

Open problem(?)

Describe the exceptions in each dimension.

Corollary

“Almost all” R ∗ G have a higher preprojective structure.



The mutation lattice

Recall that Q0 = Irr(G ). Fix the trivial representation 1 ∈ Q0. Let
M(C ) = {C ′ cut | θ(C ) = θ(C ′)}.
Construction
For C1,C2 ∈ M(C ), define C1 ≤ C2 if there exists a sequence of
source mutations taking C1 to C2, not mutating at 1. Then
(M(C ),≤) is a finite distributive lattice.

Proof sketch
Associate to each Ci a height function. This is an integer valued
function on Q0, and in this way M(C ) becomes a sublattice of
(Zm,≤).



Thank you

Thank you!



Secret slide


