Classifying *n*-representation infinite algebras of type $\tilde{\mathsf{A}}$

Darius Dramburg, Oleksandra Gasanova

Uppsala University, University of Duisburg-Essen

ICRA 21, 08.08.2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plan

Outline

- 1. Overexplain the classical case
- 2. The higher case works the same
- 3. Run out of time (otherwise: Mutation lattices)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Classical type \tilde{A}

Let n = 1.

Recall

 Λ with gdim $(\Lambda) = 1$ is of type \tilde{A}_m if $\Lambda \simeq kQ$, where Q is an acyclic orientation of the Euclidean diagram \tilde{A}_m .

Example

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Classical type \tilde{A}

Let n = 1.

Recall

 Λ with gdim $(\Lambda) = 1$ is of type \tilde{A}_m if $\Lambda \simeq kQ$, where Q is an acyclic orientation of the Euclidean diagram \tilde{A}_m .

Example

"Problem"

How many different orientations are there? Which ones are equivalent? How equivalent?

Preprojective gradings

Theorem/Definition [Baer-Geigle-Lenzing] Let $gdim(\Lambda) = 1$. Then the preprojective algebra $\Pi(\Lambda)$ is the graded algebra

$$\Pi(\Lambda) = T_{\Lambda} \operatorname{Ext}^{1}_{\Lambda}(D(\Lambda), \Lambda).$$

This way,

RI algebras $\Lambda \leftrightarrow$ "nice" gradings on $\Pi(\Lambda)$

Example continued Quiver for $\Pi(kQ)$ is the double \overline{Q} :

・ロト・西ト・西ト・日・ 白・ シック

Gradings, Cuts, Types

Definition

Identify a grading on \overline{Q} with the set $C = \{ \alpha \in \overline{Q}_1 \mid \deg(\alpha) = 1 \}$. This is called a *cut*. Define the cut quiver $\overline{Q}_C = (Q_0, \overline{Q}_1 - C)$.

イロト イヨト イヨト

Gradings, Cuts, Types

Definition

Identify a grading on \overline{Q} with the set $C = \{\alpha \in \overline{Q}_1 \mid \deg(\alpha) = 1\}$. This is called a *cut*. Define the cut quiver $\overline{Q}_C = (Q_0, \overline{Q}_1 - C)$.

Definition

For a cut C we call $\theta(C) = (\# \circlearrowright \text{ arrows in } C, \# \circlearrowright \text{ arrows in } C)$ its type.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Mutation

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Different cuts, same type. Related by reflection functors!

Mutation

Example

Different cuts, same type. Related by reflection functors!

Definition

We call a cut C_2 a mutation of C_1 , if C_2 is obtained from C_1 by turning a sink in \overline{Q}_{C_1} into a source (or reverse).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mutation

Example

Different cuts, same type. Related by reflection functors!

Definition

We call a cut C_2 a mutation of C_1 , if C_2 is obtained from C_1 by turning a sink in \overline{Q}_{C_1} into a source (or reverse).

Theorem

Two cuts have the same type iff they are related by a sequence of mutations.

Preprojective algebras, again

From McKay correspondence Λ is of type \tilde{A}_{m-1} iff $\Pi(\Lambda) = k[x, y] * C_m$, where $C_m \leq SL_2(k)$.

Preprojective algebras, again

From McKay correspondence Λ is of type \tilde{A}_{m-1} iff $\Pi(\Lambda) = k[x, y] * C_m$, where $C_m \leq SL_2(k)$.

Toric varieties

If G is abelian, $X = \text{Spec}(k[x_1, \dots, x_{n+1}]^G)$ is a toric variety. This is defined by a lattice cone $C \subseteq N_{\mathbb{R}}$. Fix the "slice at height 1" $P = C \cap \{z = 1\}$.

(日) (四) (日) (日) (日)

Preprojective algebras, again

From McKay correspondence Λ is of type \tilde{A}_{m-1} iff $\Pi(\Lambda) = k[x, y] * C_m$, where $C_m \leq SL_2(k)$.

Toric varieties

If G is abelian, $X = \text{Spec}(k[x_1, \dots, x_{n+1}]^G)$ is a toric variety. This is defined by a lattice cone $C \subseteq N_{\mathbb{R}}$. Fix the "slice at height 1" $P = C \cap \{z = 1\}$.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

э

Example

We have two possible types for preprojective gradings. We also add the infinite-dimensional ones

$$(3,0) - (2,1) - (1,2) - (0,3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Observation This is precisely *P*!

The main result

Theorem

- 1. A cut on \overline{Q} defines a preprojective grading iff its type is an *internal* lattice point in *P*.
- 2. Two cuts have the same type iff they are connected by a sequence of mutations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The main result

Theorem

- 1. A cut on \overline{Q} defines a preprojective grading iff its type is an *internal* lattice point in *P*.
- 2. Two cuts have the same type iff they are connected by a sequence of mutations.

Theorem

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

The higher case

Definition [Herschend-Iyama-Oppermann '14]

1. A f.d. algebra Λ is *n*-representation infinite (*n*-RI) if $gdim(\Lambda) \leq n$ and

$$\nu_n^{-i}(\Lambda) \in \operatorname{mod} \Lambda$$

for all $i \ge 0$, where $\nu_n^{-1} = [n] \circ \mathbb{R}\text{Hom}(D(\Lambda), -)$ the "inverse derived higher AR-translate".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The higher case

Definition [Herschend-Iyama-Oppermann '14]

1. A f.d. algebra Λ is *n*-representation infinite (*n*-RI) if $gdim(\Lambda) \leq n$ and

$$\nu_n^{-i}(\Lambda) \in \operatorname{mod} \Lambda$$

for all $i \ge 0$, where $\nu_n^{-1} = [n] \circ \mathbb{R}\text{Hom}(D(\Lambda), -)$ the "inverse derived higher AR-translate".

2. An *n*-RI Λ is of type \tilde{A} if its (n + 1)-preprojective algebra is

$$\Pi_{n+1}(\Lambda) := T_{\Lambda} \operatorname{Ext}^{n}_{\Lambda}(D(\Lambda), \Lambda) \simeq k[x_{1}, \ldots, x_{n+1}] * G,$$

- ロ ト - 4 回 ト - 4 □ -

where $G \leq SL_{n+1}(k)$ is finite abelian.

The higher case

Definition [Herschend-Iyama-Oppermann '14]

1. A f.d. algebra Λ is *n*-representation infinite (*n*-RI) if $gdim(\Lambda) \leq n$ and

$$\nu_n^{-i}(\Lambda) \in \operatorname{mod} \Lambda$$

for all $i \ge 0$, where $\nu_n^{-1} = [n] \circ \mathbb{R}\text{Hom}(D(\Lambda), -)$ the "inverse derived higher AR-translate".

2. An *n*-RI Λ is of type \tilde{A} if its (n + 1)-preprojective algebra is

$$\Pi_{n+1}(\Lambda) := T_{\Lambda} \operatorname{Ext}^{n}_{\Lambda}(D(\Lambda), \Lambda) \simeq k[x_{1}, \ldots, x_{n+1}] * G,$$

where $G \leq SL_{n+1}(k)$ is finite abelian.

Problem Which *G* appear? In how many ways?

Quivers for $\Pi_{n+1}(\Lambda)$

Construction

R * G is basic, its quiver Q is a *Cayley-graph* of $\hat{G} = \text{Hom}(G, k^*)$ wrt. (n + 1) generators $\{\rho_1, \ldots, \rho_{n+1}\}$. Every arrow $\alpha \in Q_1$ corresponds to some $\cdot \rho_i$. We call $\theta(\alpha) = i$ its *type*. We identify "nice" gradings on R * G with cuts $C \subseteq Q_1$.

Example

Mutation, again

Let
$$C \subseteq Q_1$$
 be a cut, $Q_C = (Q_0, Q_1 - C)$.

Definition

The type of C is $\theta(C) = (\#\{\alpha \in C \mid \theta(\alpha) = i\})_{1 \le i \le n+1}$.

Construction

If $s \in Q_C$ is a source (resp. sink), produce a new cut $\mu_s(C)$ by turning s into a sink (resp. source) in $Q_{\mu_s(C)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mutation, again

Let
$$C \subseteq Q_1$$
 be a cut, $Q_C = (Q_0, Q_1 - C)$.

Definition

The type of C is $\theta(C) = (\#\{\alpha \in C \mid \theta(\alpha) = i\})_{1 \le i \le n+1}$.

Construction

If $s \in Q_C$ is a source (resp. sink), produce a new cut $\mu_s(C)$ by turning s into a sink (resp. source) in $Q_{\mu_s(C)}$.

Theorem [Nakajima '22]

Two cuts have the same *positive* type iff they are related by a sequence of mutations.

Mutation, again

Let
$$C \subseteq Q_1$$
 be a cut, $Q_C = (Q_0, Q_1 - C)$.

Definition

The type of C is $\theta(C) = (\#\{\alpha \in C \mid \theta(\alpha) = i\})_{1 \le i \le n+1}$.

Construction

If $s \in Q_C$ is a source (resp. sink), produce a new cut $\mu_s(C)$ by turning s into a sink (resp. source) in $Q_{\mu_s(C)}$.

Theorem [Nakajima '22]

Two cuts have the same *positive* type iff they are related by a sequence of mutations.

Note

Cut mutation \leftrightarrow *n*-APR tilting of *n*-RI algebras

Types, again

 $X = \operatorname{Spec}(R^G)$ toric, with cone $C \subseteq N_{\mathbb{R}}$, $P = C \cap \{z = 1\}$. The toric argument

1.
$$Z(R * G) = R^G$$
.

- 2. Gradings on R * G induce gradings on R^G
- 3. Gradings on $R^G \leftrightarrow k^*$ -actions on $X \leftrightarrow 1$ -param. sbgrps. of $X \leftrightarrow points$ in N.

Theorem [D-Gasanova]

Two cuts on R * G have the same type iff they induce the same grading on R^G . There's a bijection

```
{types of cuts} \leftrightarrow {lattice points in P},
```

giving preprojective cuts \leftrightarrow internal points in P.

Types, again

Theorem [D-Gasanova]

Two cuts on R * G have the same type iff they induce the same grading on R^G . There's a bijection

{types of cuts} \leftrightarrow {lattice points in *P*},

giving preprojective cuts \leftrightarrow internal points in P.

Problem

When does an internal point exist?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convex Geometry to the rescue (almost)

The set $P = C \cap \{z = 1\}$ is a lattice polytope.

Definitipn

A lattice polytope is called *hollow* if it has no interior points.

Theorem [Nill-Ziegler '11]

An *n*-dimensional lattice polytope is hollow iff it projects to an (n-1)-dimensional hollow polytope, or it is one of finitely many exceptions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Convex Geometry to the rescue (almost)

The set $P = C \cap \{z = 1\}$ is a lattice polytope.

Definitipn

A lattice polytope is called *hollow* if it has no interior points.

Theorem [Nill-Ziegler '11]

An *n*-dimensional lattice polytope is hollow iff it projects to an (n-1)-dimensional hollow polytope, or it is one of finitely many exceptions.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Open problem(?)

Describe the exceptions in each dimension.

Convex Geometry to the rescue (almost)

The set $P = C \cap \{z = 1\}$ is a lattice polytope.

Definitipn

A lattice polytope is called *hollow* if it has no interior points.

Theorem [Nill-Ziegler '11]

An *n*-dimensional lattice polytope is hollow iff it projects to an (n-1)-dimensional hollow polytope, or it is one of finitely many exceptions.

- ロ ト - 4 回 ト - 4 □ -

Open problem(?)

Describe the exceptions in each dimension.

Corollary

"Almost all" R * G have a higher preprojective structure.

The mutation lattice

Recall that $Q_0 = \operatorname{Irr}(G)$. Fix the trivial representation $1 \in Q_0$. Let $M(C) = \{C' \text{ cut } | \theta(C) = \theta(C')\}.$

Construction

For $C_1, C_2 \in M(C)$, define $C_1 \leq C_2$ if there exists a sequence of source mutations taking C_1 to C_2 , not mutating at 1. Then $(M(C), \leq)$ is a finite distributive lattice.

Proof sketch

Associate to each C_i a height function. This is an integer valued function on Q_0 , and in this way M(C) becomes a sublattice of (\mathbb{Z}^m, \leq) .

Thank you

900

Secret slide

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○