Classifying n-representation infinite algebras of
type A

Darius Dramburg, Oleksandra Gasanova

Uppsala University, University of Duisburg-Essen

ICRA 21, 08.08.2024



Plan

Outline
1. Overexplain the classical case
2. The higher case works the same

3. Run out of time (otherwise: Mutation lattices)



Classical type A

Let n=1.

Recall
A with gdim(A) = 1 is of type Am if A =~ kQ, where Q is an acyclic
orientation of the Euclidean diagram A,,.

Example
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Let n=1.

Recall
A with gdim(A) = 1 is of type Am if A =~ kQ, where Q is an acyclic
orientation of the Euclidean diagram A,,.

Example
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" Problem”

How many different orientations are there? Which ones are
equivalent? How equivalent?



Preprojective gradings

Theorem/Definition [Baer-Geigle-Lenzing]

Let gdim(A) = 1. Then the preprojective algebra M(A) is the
graded algebra
M(A) = TaExti(D(A), A).

This way,

Rl algebras A <» “nice” gradings on T(A)

Example continued
Quiver for M(kQ) is the double Q:

2N, 2N



Gradings, Cuts, Types

Definition o o
Identify a grading on Q with the set C = {a € Q1 | deg(a) = 1}.
This is called a cut. Define the cut quiver Q¢ = (Qp, Q1 — C).



Gradings, Cuts, Types

NN

Identify a grading on @ with the set C = {a € Q; | deg(a) = 1}.
This is called a cut. Define the cut quiver Q¢ = (Qp, @1 — C).

Definition
For a cut C we call §(C) = (# O arrows in C,# O arrows in C)
its type.



Mutation

i i

Different cuts, same type. Related by reflection functors!



Mutation
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Different cuts, same type. Related by reflection functors!

Definition
We call a cut G, a mutation of Gy, if G, is obtained from C; by
turning a sink in Q¢, into a source (or reverse).



Mutation

i i

Different cuts, same type. Related by reflection functors!

Definition
We call a cut G, a mutation of Gy, if G, is obtained from C; by
turning a sink in Q¢, into a source (or reverse).

Theorem
Two cuts have the same type iff they are related by a sequence of
mutations.



Preprojective algebras, again

From McKay correspondence
A'is of type A,y iff M(A) = k[x, y] * Cm, where Cp, < SLa(k).



Preprojective algebras, again

From McKay correspondence
Ais of type An,_1 iff (A) = k[x, y] * C, where Cp, < SLa(k).

Toric varieties

If G is abelian, X = Spec(k[x1,...,xn+1]®) is a toric variety. This
is defined by a lattice cone C C Ng. Fix the “slice at height 1"
P=Cn{z=1}.




Preprojective algebras, again

From McKay correspondence

Ais of type An,_1 iff (A) = k[x, y] * C, where Cp, < SLa(k).

Toric varieties
If G is abelian, X = Spec(k[x, ...,

xnt1]®) is a toric variety. This

is defined by a lattice cone C C Ng. Fix the “slice at height 1"

P=Cn{z=1}.
Example
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Types
Example

2N,

We have two possible types for preprojective gradings. We also add
the infinite-dimensional ones

(3,0) —(2,1) — (1,2) — (0,3)

Observation
This is precisely P!



The main result

Theorem

1. A cut on Q defines a preprojective grading iff its type is an
internal lattice point in P.

2. Two cuts have the same type iff they are connected by a
sequence of mutations.



The main result

Theorem

1. A cut on Q defines a preprojective grading iff its type is an
internal lattice point in P.

2. Two cuts have the same type iff they are connected by a
sequence of mutations.

Theorem
The higher case works exactly the same way.
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The higher case

Definition [Herschend-lyama-Oppermann '14]

1. A f.d. algebra A is n-representation infinite (n-RI) if
gdim(A) < n and '
vy,'(N) € mod A

n

for all i > 0, where v, = [n] o RHom(D(A), —) the “inverse
derived higher AR-translate”.
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1. A f.d. algebra A is n-representation infinite (n-RI) if
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for all i > 0, where v, = [n] o RHom(D(A), —) the “inverse
derived higher AR-translate”.

2. An n-RI A is of type A if its (n + 1)-preprojective algebra is
Mpy1(A) := TAEXtR(D(A),N) >~ k[x1, ..., xpy1] * G,

where G < SLpy1(k) is finite abelian.



The higher case

Definition [Herschend-lyama-Oppermann '14]

1. A f.d. algebra A is n-representation infinite (n-RI) if
gdim(A) < n and '
vy,'(N) € mod A

n

for all i > 0, where v, = [n] o RHom(D(A), —) the “inverse
derived higher AR-translate”.

2. An n-RI A is of type A if its (n + 1)-preprojective algebra is
Mpy1(A) := TAEXtR(D(A),N) >~ k[x1, ..., xpy1] * G,

where G < SLpy1(k) is finite abelian.

Problem
Which G appear? In how many ways?



Quivers for M,,1(A)

Construction

R % G is basic, its quiver Q is a Cayley-graph of G = Hom(G, k*)
wrt. (n+ 1) generators {p1,...,pnt1}. Every arrow a € @y
corresponds to some -p;. We call §(«) = i its type. We identify
“nice” gradings on R * G with cuts C C Q.

Example
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Mutation, again
Let C C Q1 be acut, Qc = (Qp, @1 — C).
Definition
The type of Cis §(C) = (#{a € C | (a) = i})i<i<nt1.

Construction
If s € Q¢ is a source (resp. sink), produce a new cut us(C) by
turning s into a sink (resp. source) in @, (c)-

n= 2
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Mutation, again
Let C C Q1 be acut, Qc = (Qp, @1 — C).
Definition

The type of C is 6(C) = (#{a € C | 6(a) = P1cicnir.

Construction
If s € Q¢ is a source (resp. sink), produce a new cut us(C) by
turning s into a sink (resp. source) in @, (c)-

Theorem [Nakajima '22]

Two cuts have the same positive type iff they are related by a
sequence of mutations.



Mutation, again
Let C C Q1 be acut, Qc = (Qp, @1 — C).
Definition
The type of Cis §(C) = (#{a € C | (a) = i})i<i<nt1.

Construction
If s € Q¢ is a source (resp. sink), produce a new cut us(C) by
turning s into a sink (resp. source) in @, (c)-

Theorem [Nakajima '22]
Two cuts have the same positive type iff they are related by a
sequence of mutations.

Note
Cut mutation <+ n-APR tilting of n-Rl algebras



Types, again

X = Spec(R©) toric, with cone C C Ng, P = CN{z=1}.
The toric argument

1. Z(R+G) = RC.

2. Gradings on R * G induce gradings on R®

3. Gradings on R® < k*-actions on X <> l-param. sbgrps. of X
< points in N.

Theorem [D-Gasanova]

Two cuts on R * G have the same type iff they induce the same
grading on R¢. There's a bijection

{types of cuts} <> {lattice points in P},

giving preprojective cuts <> internal points in P.



Types, again

Theorem [D-Gasanoval

Two cuts on R % G have the same type iff they induce the same
grading on R¢. There's a bijection

{types of cuts} <> {lattice points in P},

giving preprojective cuts <> internal points in P.

Problem
When does an internal point exist?

n=1 l\



Convex Geometry to the rescue (almost)

The set P = CN{z =1} is a lattice polytope.

Definitipn

A lattice polytope is called hollow if it has no interior points.
Theorem [Nill-Ziegler "11]

An n-dimensional lattice polytope is hollow iff it projects to an

(n — 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.
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Definitipn

A lattice polytope is called hollow if it has no interior points.
Theorem [Nill-Ziegler "11]

An n-dimensional lattice polytope is hollow iff it projects to an
(n — 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.

Open problem(?)

Describe the exceptions in each dimension.



Convex Geometry to the rescue (almost)

The set P = CN{z =1} is a lattice polytope.

Definitipn

A lattice polytope is called hollow if it has no interior points.
Theorem [Nill-Ziegler "11]

An n-dimensional lattice polytope is hollow iff it projects to an
(n — 1)-dimensional hollow polytope, or it is one of finitely many
exceptions.

Open problem(?)

Describe the exceptions in each dimension.

Corollary

“Almost all” R * G have a higher preprojective structure.



The mutation lattice

Recall that Qp = Irr(G). Fix the trivial representation 1 € Qp. Let
M(C) ={C" cut |6(C)=06(C")}.

Construction

For Ci, C; € M(C), define G; < G, if there exists a sequence of
source mutations taking C; to C, not mutating at 1. Then
(M(C), <) is a finite distributive lattice.

Proof sketch

Associate to each C; a height function. This is an integer valued
function on @, and in this way M(C) becomes a sublattice of
(z™, <).
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