Universidad Nacional de Colombia - Bogotá

Preprojective component in a suitable Krull-Schmidt category

Ivon Dorado iadoradoc@unal.edu.co

ICRA 21, August 6th 2024

Krull-Schmidt category

Consider a Krull-Schmidt category $\ensuremath{\mathcal{B}}$ with the following four properties:

- A,1 ${\cal B}$ has an exact structure with enough projectives and injectives.
- A,2 \mathcal{B} has almost split sequences.
- A,3 There is an indecomposable projective object $\hat{S} \in \mathcal{B}$ such that $\operatorname{Hom}(\hat{S},X) \neq 0$ for all $X \in \mathcal{B}$ and if $f:X \to \hat{S}$ is a non-zero morphism, then f is a retraction.
- A,4 If $X \to Q$ and $Y \to Q$ are irreducible morphisms in \mathcal{B} , with Q indecomposable projective and X, Y indecomposable objects of \mathcal{B} , then $X \cong Y$.

Theorem

Let $\mathcal B$ be a category satisfying the previous conditions and let $\mathcal C$ be the Auslander-Reiten component of $\hat S$, the object of $\mathcal B$ in A,3. Then, there exists a "unique" set of sections $\{\mathcal S_i\}_{i\in I}$ in $\mathcal C$, where I is either the set of natural numbers or $I=\{1,2,\ldots,n\}$, with the following properties

- (1) If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$.
- (2) If $X \in \mathcal{S}_i$ and X is not injective then $\tau^{-1}X \in \mathcal{S}_{i+1}$.
- (3) If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}_i$ projective, then $X \in \mathcal{S}_i$.
- (4) If $i \neq j$, then $S_i \cap S_j = \emptyset$.
- (5) $C = \bigcup_{i \in I} S_i$.

Pseudo hereditary projectives

3

Let $\mathcal A$ be a Krull-Schmidt category with an exact structure having enough projectives and enough injectives. We call an indecomposable projective objet $M \in \mathcal A$, pseudo hereditary projective if for any chain of irreducible morphisms in $\mathcal A$:

$$X_1 \to X_2 \to \cdots \to X_l \to M$$

the objects $X_1,...,X_l$ are projective in \mathcal{A} .

 \mathcal{S}_1 pseudo hereditary projectives.

 \mathcal{S}_1 pseudo hereditary projectives.

If S_1, S_2, \ldots, S_ℓ have been defined and all the objects in S_ℓ are injectives, we set $I = \{1, 2, \ldots, \ell\}$.

 \mathcal{S}_1 pseudo hereditary projectives.

If S_1, S_2, \dots, S_ℓ have been defined and all the objects in S_ℓ are injectives, we set $I = \{1, 2, \dots, \ell\}$.

Otherwise $S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}$; where

 \mathcal{S}_1 pseudo hereditary projectives.

If S_1, S_2, \ldots, S_ℓ have been defined and all the objects in S_ℓ are injectives, we set $I = \{1, 2, \ldots, \ell\}$.

Otherwise $\mathcal{S}_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}$; where $\underline{S}_{\ell} = \{Y \in \mathcal{C} | \tau Y \in \mathcal{S}_{\ell}\}$ and

 \mathcal{S}_1 pseudo hereditary projectives.

If S_1, S_2, \ldots, S_ℓ have been defined and all the objects in S_ℓ are injectives, we set $I = \{1, 2, \ldots, \ell\}$.

Otherwise $S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}$; where $S_{\ell} = \{Y \in \mathcal{C} | \tau Y \in S_{\ell} \}$ and

 \mathcal{T}_ℓ is the set of projective indecomposable objects Z, for which there is a chain of irreducible morphisms $X \to Z_1 \to \cdots \to Z_t = Z$ with Z_1, \ldots, Z_{t-1} projectives, $t \in \mathbb{N}$ and $X \in \underline{\mathcal{S}}_\ell$.

$\overline{\mathcal{S}_1}$ is a section

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

Y is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

 ${\cal Y}$ is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

$$X \cong Z_t$$

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

 ${\cal Y}$ is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

$$X \cong Z_t$$

$$Y \in \mathcal{S}_1$$

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

 ${\cal Y}$ is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

$$X \cong Z_t$$

$$Y \in \mathcal{S}_1$$

 ${\cal Y}$ is not projective

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

Y is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

$$X \cong Z_t$$

$$Y \in \mathcal{S}_1$$

Y is not projective irreducible morphism $\tau Y \to X$

S_1 is a section

 $X \to Y$ irreducible morphism with $X \in \mathcal{S}_1$ and $Y \in \mathcal{C}$.

Y is projective

$$Z_1 \to Z_2 \to \cdots \to Z_t \to Y$$

$$X \cong Z_t$$

$$Y \in \mathcal{S}_1$$

Y is not projective irreducible morphism $\tau Y \to X$

$$\tau Y \in \mathcal{S}_1$$

\mathcal{S}_1 satisfy the conditions (1) to (4)

S_1 satisfy the conditions (1) to (4)

(1) If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$.

S_1 satisfy the conditions (1) to (4)

- (1) If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$.
- (2) If $X \in \mathcal{S}_i$ and X is not injective, then $\tau^{-1}X \in \mathcal{S}_{i+1}$.

\mathcal{S}_1 satisfy the conditions (1) to (4)

- (1) If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$.
- (2) If $X \in \mathcal{S}_i$ and X is not injective, then $\tau^{-1}X \in \mathcal{S}_{i+1}$.
- (3) If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}_i$ projective, then $X \in \mathcal{S}_i$.

\mathcal{S}_1 satisfy the conditions (1) to (4)

- (1) If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$.
- (2) If $X \in \mathcal{S}_i$ and X is not injective, then $\tau^{-1}X \in \mathcal{S}_{i+1}$.
- (3) If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}_i$ projective, then $X \in \mathcal{S}_i$.
- (4) If $i \neq j$, then $S_i \cap S_j = \emptyset$.

Suppose the sections S_1, S_2, \dots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

Suppose the sections S_1, S_2, \dots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

$$\mathcal{S}_j \cap \mathcal{S}_{\ell+1} = \emptyset$$
 for $j < \ell+1$.

Suppose the sections S_1, S_2, \dots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

$$S_j \cap S_{\ell+1} = \emptyset$$
 for $j < \ell+1$.

$$X \in \mathcal{S}_j \cap \mathcal{S}_{\ell+1}$$
,

Suppose the sections S_1, S_2, \dots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

$$\mathcal{S}_j \cap \mathcal{S}_{\ell+1} = \emptyset$$
 for $j < \ell+1$.

 $X \in \mathcal{S}_i \cap \mathcal{S}_{\ell+1}$, if X is not projective

Suppose the sections S_1, S_2, \dots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

$$S_j \cap S_{\ell+1} = \emptyset$$
 for $j < \ell+1$.

$$X \in \mathcal{S}_j \cap \mathcal{S}_{\ell+1}$$
, if X is not projective

X projective

Suppose the sections S_1, S_2, \ldots, S_ℓ are built holding the conditions (1) to (4).

$$S_{\ell+1} = \underline{S}_{\ell} \cup \mathcal{T}_{\ell}.$$

$$S_j \cap S_{\ell+1} = \emptyset$$
 for $j < \ell+1$.

$$X \in \mathcal{S}_i \cap \mathcal{S}_{\ell+1}$$
, if X is not projective

$$X$$
 projective

$$Z \to X_1 \to \cdots \to X_\ell = X$$

If $X \in \mathcal{S}_i$ and X is not projective, then i > 1 and $\tau X \in \mathcal{S}_{i-1}$

If $X \in \mathcal{S}_i$ and X is not injective, then $au^{-1}X \in \mathcal{S}_i$

If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}_i$ projective, then $X \in \mathcal{S}_i$

If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}$ projective, then $X \in \mathcal{S}_i$

There is a chain of irreducible morphisms $Z \to Z_1 \to \cdots \to Z_t \to Y$ with $Z \in \underline{\mathcal{S}}_{\ell}$ and Z_1, \ldots, Z_t projectives.

If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}$ projective, then $X \in \mathcal{S}_i$

There is a chain of irreducible morphisms $Z \to Z_1 \to \cdots \to Z_t \to Y$ with $Z \in \underline{\mathcal{S}}_\ell$ and Z_1, \ldots, Z_t projectives.

If $X \to Y$ is an irreducible morphism with $Y \in \mathcal{S}$ projective, then $X \in \mathcal{S}_i$

There is a chain of irreducible morphisms $Z \to Z_1 \to \cdots \to Z_t \to Y$ with $Z \in \underline{\mathcal{S}}_\ell$ and Z_1, \ldots, Z_t projectives.

$$X \cong Z_t;$$

$$X \in \mathcal{T}_{\ell} \subset \mathcal{S}_{\ell+1}$$
.

$$\mathcal{C} = igcup_{i \in I} \mathcal{S}_i$$

$$i \in I$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$\mathcal{C} = igcup_{i \in I} \mathcal{S}_i$$

$$i \in I$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_j; \quad Y \to W$$

$$\mathcal{C} = igcup_{i \in I} \mathcal{S}_i$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_i$$
; $Y \to W$

either $W \in \mathcal{S}_j$ or W is not projective and $\tau W \in \mathcal{S}_j$

$$\mathcal{C} = igcup_{i \in I} \mathcal{S}_i$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_i; \quad Y \to W$$

either $W \in \mathcal{S}_j$ or W is not projective and $\tau W \in \mathcal{S}_j$

$$Y \in \mathcal{S}_j; \quad W \to Y$$

$$\mathcal{C} = \bigcup_{i \in I} \mathcal{S}_i$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_i; \quad Y \to W$$

either $W \in \mathcal{S}_j$ or W is not projective and $\tau W \in \mathcal{S}_j$

$$Y \in \mathcal{S}_j; \quad W \to Y$$

Y is projective

$$\mathcal{C} = igcup_{i \in I} \mathcal{S}_i$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_i; \quad Y \to W$$

either $W \in \mathcal{S}_i$ or W is not projective and $\tau W \in \mathcal{S}_i$

$$Y \in \mathcal{S}_j; \quad W \to Y$$

Y is projective Y is non-projective

$$\mathcal{C} = \bigcup_{i \in I} \mathcal{S}_i$$

$$W \in \mathcal{C}$$
, then $W \in \bigcup \mathcal{S}_i$.

$$Y \in \mathcal{S}_i; \quad Y \to W$$

either $W \in \mathcal{S}_i$ or W is not projective and $\tau W \in \mathcal{S}_i$

$$Y \in \mathcal{S}_i; \quad W \to Y$$

Y is projective

Y is non-projective

 $\tau Y \in \mathcal{S}_{i-1}$ and there is an irreducible morphism $\tau Y \to W$

Unicity

Suppose $\{\mathcal{S}_i'\}_{i\in J}$ is a family of sections in \mathcal{C} with the conditions (1),(2),(3),(4).

