On HH¹ and the fundamental groups

Lleonard Rubio y Degrassi joint with Benjamin Briggs

Setup: Let *Q* be a finite quiver and let *k* be an algebraically closed field *k* of characteristic zero. Let *kQ* be the path algebra of *Q*. Let *A* be is a finite dimensional basic algebra over *k*. Let $\nu : kQ \rightarrow A$ be a presentation. Let $I := \text{Ker}(\nu) \subseteq kQ$ be an admissible ideal, and $A \cong kQ/I$.

Setup: Let *Q* be a finite quiver and let *k* be an algebraically closed field *k* of characteristic zero. Let *kQ* be the path algebra of *Q*. Let *A* be is a finite dimensional basic algebra over *k*. Let $\nu : kQ \rightarrow A$ be a presentation. Let $I := \text{Ker}(\nu) \subseteq kQ$ be an admissible ideal, and $A \cong kQ/I$.

• *I* has a basis of minimal relations $\{r = \sum a_i p_i\}$ (this means no proper sub-sum of *r* is in *I*)

Setup: Let *Q* be a finite quiver and let *k* be an algebraically closed field *k* of characteristic zero. Let *kQ* be the path algebra of *Q*. Let *A* be is a finite dimensional basic algebra over *k*. Let $\nu : kQ \rightarrow A$ be a presentation. Let $I := \text{Ker}(\nu) \subseteq kQ$ be an admissible ideal, and $A \cong kQ/I$.

• *I* has a basis of minimal relations $\{r = \sum a_i p_i\}$ (this means no proper sub-sum of *r* is in *I*)

Definition. A walk on *Q* is a path in $Q \cup Q^{-1}$.

Setup: Let *Q* be a finite quiver and let *k* be an algebraically closed field *k* of characteristic zero. Let *kQ* be the path algebra of *Q*. Let *A* be is a finite dimensional basic algebra over *k*. Let $\nu : kQ \rightarrow A$ be a presentation. Let $I := \text{Ker}(\nu) \subseteq kQ$ be an admissible ideal, and $A \cong kQ/I$.

• *I* has a basis of minimal relations $\{r = \sum a_i p_i\}$ (this means no proper sub-sum of *r* is in *I*)

Definition. A walk on Q is a path in $Q \cup Q^{-1}$.

Example.

Homotopy relation: Equivalence relation generated by:

- $\alpha^{-1}\alpha \sim \mathbf{s}(\alpha)$ and $\alpha\alpha^{-1} \sim \mathbf{t}(\alpha)$ for any arrow α
- if $v \sim v'$, then $uvw \sim uv'w$, where u, v, v', w walks.

 \bullet if p and p' are paths which occur together in a minimal relation, then $p \sim p'$

Homotopy relation: Equivalence relation generated by:

- $\alpha^{-1}\alpha \sim s(\alpha)$ and $\alpha \alpha^{-1} \sim t(\alpha)$ for any arrow α
- if $v \sim v'$, then $uvw \sim uv'w$, where u, v, v', w walks.

 \bullet if p and p' are paths which occur together in a minimal relation, then $p \sim p'$

Definition.[Martinez-Villa, de la Peña] Fix $e \in Q_0$. Then define

$$\pi_1({m Q};{\it I},{\it e})=\{\textit{walks e}
ightarrow{\it e}\}/\sim$$

Homotopy relation: Equivalence relation generated by:

- $\alpha^{-1}\alpha \sim s(\alpha)$ and $\alpha \alpha^{-1} \sim t(\alpha)$ for any arrow α
- if $v \sim v'$, then $uvw \sim uv'w$, where u, v, v', w walks.

 \bullet if p and p' are paths which occur together in a minimal relation, then $p \sim p'$

Definition.[Martinez-Villa, de la Peña] Fix $e \in Q_0$. Then define

$$\pi_1({m Q};{\it I},{\it e})=\{\textit{walks e}
ightarrow{\it e}\}/\sim$$

Example. Fix $e = e_1$. Then $\pi_1(Q; 0, e_1) = \{e_1\}$.

If *I* is a monomial ideal in kQ then $\pi_1(Q; I) = \pi_1(Q; (0))$ is the free group on the number of holes (=

 $|Q_1| - |Q_0| + |\text{conn. components}|$) of Q as a graph.

If I is a monomial ideal in kQ then $\pi_1(Q; I) = \pi_1(Q; (0))$ is the free group on the number of holes (=

 $|Q_1| - |Q_0| + |\text{conn. components}|$) of Q as a graph.

Example. Let *Q* be

If *I* is a monomial ideal in *kQ* then $\pi_1(Q; I) = \pi_1(Q; (0))$ is the free group on the number of holes (= $|Q_1| - |Q_0| + |\text{conn. components}|$) of *Q* as a graph.

Example. Let *Q* be

If
$$I = (\gamma \beta)$$
 then $\pi_1(Q; I) = \langle \beta^{-1} \alpha \rangle \cong \mathbb{Z}$.

If *I* is a monomial ideal in *kQ* then $\pi_1(Q; I) = \pi_1(Q; (0))$ is the free group on the number of holes (= $|Q_1| - |Q_0| + |\text{conn. components}|$) of *Q* as a graph.

Example. Let *Q* be

If $I = (\gamma \beta)$ then $\pi_1(\mathbf{Q}; I) = \langle \beta^{-1} \alpha \rangle \cong \mathbb{Z}$.

If $J = (\gamma \alpha - \gamma \beta)$ then $\pi_1(Q; J) = \{e_1\}$. Note $\beta^{-1} \alpha \sim e_1$.

If *I* is a monomial ideal in *kQ* then $\pi_1(Q; I) = \pi_1(Q; (0))$ is the free group on the number of holes (= $|Q_1|-|Q_0| + |\text{conn. components}|$) of *Q* as a graph.

Example. Let *Q* be

If $I = (\gamma \beta)$ then $\pi_1(\mathbf{Q}; I) = \langle \beta^{-1} \alpha \rangle \cong \mathbb{Z}$.

If $J = (\gamma \alpha - \gamma \beta)$ then $\pi_1(Q; J) = \{e_1\}$. Note $\beta^{-1} \alpha \sim e_1$.

But $kQ/I \cong kQ/J...$

Problem. We want invariants, but the fundamental group depends on a presentation!

Spoiler. Solution is to consider all the presentations and fundamental groups

The Hochschild cohomology of degree 1 of A is

$$\mathsf{HH}^{1}(\mathsf{A}) \cong \frac{\mathsf{Der}_{k}(\mathsf{A})}{\mathsf{Inn}_{k}(\mathsf{A})}$$

The Hochschild cohomology of degree 1 of *A* is $HH^{1}(A) \cong \frac{\text{Der}_{k}(A)}{\text{Inn}_{\nu}(A)}$

where

 $Der_k(A) := \{f : A \rightarrow A; k-linear | f(ab) = f(a)b+af(b) \text{ for every } a, b \in A\}$

The Hochschild cohomology of degree 1 of *A* is $HH^{1}(A) \cong \frac{\text{Der}_{k}(A)}{\text{Inn}_{\iota}(A)}$

where

 $\mathsf{Der}_k(A) := \{f : A \to A; k\text{-linear} | f(ab) = f(a)b + af(b) \text{ for every } a, b \in A\}$

 $\operatorname{Inn}_k(A) := \{f : A \to A; k\text{-linear} \mid \exists b \in A, f(a) = ba - ab \text{ for every } a \in A\}$

The Hochschild cohomology of degree 1 of *A* is $HH^{1}(A) \cong \frac{\text{Der}_{k}(A)}{\text{Inn}_{k}(A)}$

where

 $\mathsf{Der}_k(A) := \{f : A \to A; k\text{-linear} | f(ab) = f(a)b + af(b) \text{ for every } a, b \in A\}$

 $\operatorname{Inn}_k(A) := \{f : A \to A; k-linear \mid \exists b \in A, f(a) = ba-ab \text{ for every } a \in A\}$

The first degree Hochschild cohomology is a Lie algebra. The Lie bracket in $HH^1(A)$ is defined as:

$$[f,g]:=f\circ g-g\circ f.$$

Note $HH^1(A) = \mathfrak{L}(Out^{\circ}(A))$

Note $HH^1(A) = \mathfrak{L}(Out^{\circ}(A))$

Definition. A Lie subalgebra $\mathfrak{t} \subseteq HH^1(A)$ is a torus if $\mathfrak{t} = \mathfrak{L}(T)$ for some torus $T \subseteq Out^{\circ}(A)$.

Note $HH^1(A) = \mathfrak{L}(Out^{\circ}(A))$

Definition. A Lie subalgebra $\mathfrak{t} \subseteq HH^1(A)$ is a torus if $\mathfrak{t} = \mathfrak{L}(T)$ for some torus $T \subseteq Out^{\circ}(A)$.

Definition. The maximal toral rank of HH¹(*A*) is

 $mt-rank(HH^{1}(A)) := dim_{k}(t)$ where $t \subseteq HH^{1}(A)$ is a maximal torus

Note $HH^1(A) = \mathfrak{L}(Out^{\circ}(A))$

Definition. A Lie subalgebra $\mathfrak{t} \subseteq HH^1(A)$ is a torus if $\mathfrak{t} = \mathfrak{L}(T)$ for some torus $T \subseteq Out^{\circ}(A)$.

Definition. The maximal toral rank of HH¹(*A*) is

 $mt-rank(HH^{1}(A)) := dim_{k}(t)$ where $t \subseteq HH^{1}(A)$ is a maximal torus

Theorem. [Huisgen-Zimmermann and Saorín, Rouquier] If *A* and *B* are derived equivalent, then there is an isomorphism of algebraic groups:

 $\operatorname{Out}^{\circ}(A) \cong \operatorname{Out}^{\circ}(B).$

Note $HH^1(A) = \mathfrak{L}(Out^{\circ}(A))$

Definition. A Lie subalgebra $\mathfrak{t} \subseteq HH^1(A)$ is a torus if $\mathfrak{t} = \mathfrak{L}(T)$ for some torus $T \subseteq Out^{\circ}(A)$.

Definition. The maximal toral rank of HH¹(*A*) is

 $mt-rank(HH^{1}(A)) := \dim_{k}(\mathfrak{t})$ where $\mathfrak{t} \subseteq HH^{1}(A)$ is a maximal torus

Theorem. [Huisgen-Zimmermann and Saorín, Rouquier] If *A* and *B* are derived equivalent, then there is an isomorphism of algebraic groups:

 $\operatorname{Out}^{\circ}(A) \cong \operatorname{Out}^{\circ}(B).$

In particular, $mt - rank(HH^1(A))$ is a derived invariant.

Main results

Theorem. (Assem-de la Peña, de la Peña-Saorín). For any presentation $A \cong kQ/I$ there is a canonical embedding

 $\sigma: \operatorname{Hom}(\pi_1(Q;I);k) \to \operatorname{HH}^1(A)$

and the image is a torus.

Main results

Theorem. (Assem-de la Peña, de la Peña-Saorín). For any presentation $A \cong kQ/I$ there is a canonical embedding

 $\sigma: \operatorname{Hom}(\pi_1(Q;I);k) \to \operatorname{HH}^1(A)$

and the image is a torus.

Theorem. (Farkas, Green, Marcos) (Le Meur) (Briggs, RyD). For any finite dimensional basic *k*-algebra *A*, all maximal tori in $HH^1(A)$ are of the form $\sigma(Hom(\pi_1(Q;I);k))$ for some presentation $A \cong kQ/I$.

Corollary.

$\pi_1 - \operatorname{rank}(A) := \max\{\dim_k \operatorname{Hom}(\pi_1(Q; I), k) \text{ over all presentations}\}$ $= \operatorname{mt} - \operatorname{rank}(\operatorname{HH}^1(A))$

Hence $\pi_1 - \operatorname{rank}(A)$ is a derived invariant.

Corollary.

 $\begin{aligned} \pi_1 - \mathsf{rank}(A) &:= \mathsf{max}\{\mathsf{dim}_k\mathsf{Hom}(\pi_1(Q;I),k) \text{ over all presentations}\} \\ &= \mathsf{mt} - \mathsf{rank}(\mathsf{HH}^1(A)) \end{aligned}$

Hence $\pi_1 - \operatorname{rank}(A)$ is a derived invariant.

For a monomial algebra A, $\pi_1 - \operatorname{rank}(A)$ is the number of holes in Q as a graph = $|Q_1| - |Q_0| + |\operatorname{conn. components}|$

Corollary.

 $\pi_1 - \operatorname{rank}(A) := \max\{\dim_k \operatorname{Hom}(\pi_1(Q; I), k) \text{ over all presentations}\}$ $= \operatorname{mt} - \operatorname{rank}(\operatorname{HH}^1(A))$

Hence $\pi_1 - \operatorname{rank}(A)$ is a derived invariant.

For a monomial algebra A, $\pi_1 - \operatorname{rank}(A)$ is the number of holes in Q as a graph = $|Q_1| - |Q_0| + |\operatorname{conn. components}|$

Corollary. For monomial algebras the number of holes is invariant under derived equivalences.

Corollary.

 $\pi_1 - \operatorname{rank}(A) := \max\{\dim_k \operatorname{Hom}(\pi_1(Q; I), k) \text{ over all presentations}\}$ $= \operatorname{mt} - \operatorname{rank}(\operatorname{HH}^1(A))$

Hence $\pi_1 - \operatorname{rank}(A)$ is a derived invariant.

For a monomial algebra A, $\pi_1 - \operatorname{rank}(A)$ is the number of holes in Q as a graph = $|Q_1| - |Q_0| + |\operatorname{conn. components}|$

Corollary. For monomial algebras the number of holes is invariant under derived equivalences.

Corollary. Derived equivalent monomial algebras have the same number of arrows.

Corollary.

 $\pi_1 - \operatorname{rank}(A) := \max\{\dim_k \operatorname{Hom}(\pi_1(Q; I), k) \text{ over all presentations}\}$ $= \operatorname{mt} - \operatorname{rank}(\operatorname{HH}^1(A))$

Hence $\pi_1 - \operatorname{rank}(A)$ is a derived invariant.

For a monomial algebra A, $\pi_1 - \operatorname{rank}(A)$ is the number of holes in Q as a graph = $|Q_1| - |Q_0| + |\operatorname{conn. components}|$

Corollary. For monomial algebras the number of holes is invariant under derived equivalences.

Corollary. Derived equivalent monomial algebras have the same number of arrows.

This was proven for gentle algebras by Avella-Alaminos and Geiss.

THANK YOU!