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The fundamental group

Setup: Let Q be a finite quiver and let k be an algebraically closed
field k of characteristic zero. Let kQ be the path algebra of Q.
Let A be is a finite dimensional basic algebra over k . Let
ν : kQ → A be a presentation. Let I := Ker(ν) ⊆ kQ be an
admissible ideal, and A ∼= kQ/I.

• I has a basis of minimal relations {r =
∑

aipi} (this means
no proper sub-sum of r is in I)

Definition. A walk on Q is a path in Q ∪ Q−1.

Example.
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The fundamental group

Homotopy relation: Equivalence relation generated by:
• α−1α ∼ s(α) and αα−1 ∼ t(α) for any arrow α

• if v ∼ v′, then uvw ∼ uv′w, where u, v, v′,w walks.
• if p and p′ are paths which occur together in a minimal
relation, then p ∼ p′

Definition.[Martinez-Villa, de la Peña] Fix e ∈ Q0. Then define

π1(Q; I, e) = {walks e → e}/ ∼

Example. Fix e = e1. Then π1(Q; 0, e1) = {e1}.
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The fundamental group

If I is a monomial ideal in kQ then π1(Q; I) = π1(Q; (0)) is the free
group on the number of holes (=
|Q1|−|Q0|+ |conn. components|) of Q as a graph.

Example. Let Q be

If I = (γβ) then π1(Q; I) = ⟨β−1α⟩ ∼= Z.

If J = (γα−γβ) then π1(Q; J) = {e1}. Note β−1α ∼ e1.

But kQ/I ∼= kQ/J...
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Problem. We want invariants, but the
fundamental group depends on a

presentation!



Spoiler. Solution is to consider all the
presentations and fundamental groups



Hochschild cohomology of degree 1

The Hochschild cohomology of degree 1 of A is

HH1(A) ∼=
Derk(A)
Innk(A)

where

Derk(A) := {f : A → A; k-linear| f(ab) = f(a)b+af(b) for every a,b ∈ A}

Innk(A) := {f : A → A; k-linear | ∃ b ∈ A, f(a) = ba−ab for every a ∈ A}

The first degree Hochschild cohomology is a Lie algebra. The Lie
bracket in HH1(A) is defined as:

[f,g] := f ◦ g− g ◦ f.
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Invariance of Hochschild cohomology

Note HH1(A) = L(Out◦(A))

Definition. A Lie subalgebra t ⊆ HH1(A) is a torus if t = L(T) for
some torus T ⊆ Out◦(A).

Definition. The maximal toral rank of HH1(A) is

mt−rank(HH1(A)) := dimk(t)where t ⊆ HH1(A) is a maximal torus

Theorem. [Huisgen-Zimmermann and Saorín, Rouquier] If A
and B are derived equivalent, then there is an isomorphism of
algebraic groups:

Out◦(A) ∼= Out◦(B).

In particular, mt− rank(HH1(A)) is a derived invariant.
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Main results

Theorem. (Assem-de la Peña, de la Peña-Saorín). For any
presentation A ∼= kQ/I there is a canonical embedding

σ : Hom(π1(Q; I); k) → HH1(A)

and the image is a torus.

Theorem. (Farkas, Green, Marcos) (Le Meur) (Briggs, RyD).
For any finite dimensional basic k-algebra A, all maximal tori in
HH1(A) are of the form σ(Hom(π1(Q; I); k)) for some presentation
A ∼= kQ/I.
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Main results and applications

Corollary.

π1 − rank(A) := max{dimkHom(π1(Q; I), k) over all presentations}
= mt− rank(HH1(A))

Hence π1 − rank(A) is a derived invariant.

For a monomial algebra A, π1 − rank(A) is the number of holes in
Q as a graph = |Q1|−|Q0|+ |conn. components|

Corollary. For monomial algebras the number of holes is
invariant under derived equivalences.

Corollary. Derived equivalent monomial algebras have the
same number of arrows.

This was proven for gentle algebras by Avella-Alaminos and
Geiss.
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THANK YOU!


