The first Hochschild cohomology groups under gluings

> Can Wen (文灿) Beijing Normal University (北京师范大学)

joint with Yuming Liu and Lleonard Rubio y Degrassi

ICRA 21 Shanghai Jiao Tong University 2024.08.06

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- **•** Main results
	- **·** Gluing vertices
	- Gluing arrows

 $\Box \rightarrow \neg \neg \Box$

 $\mathbb{R} \times \mathcal{A} \mathbb{R}.$

 \equiv 990

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- **•** Main results
	- **·** Gluing vertices
	- Gluing arrows

 $\Box \rightarrow \neg \neg \Box$

 $\frac{1}{\sqrt{2}}$

 \equiv 990

The notation

- fix the ground field *k*
- (*Q, I*) the bound quiver with *Q* finite and *I* an admissible ideal

The notation

- fix the ground field *k*
- (*Q, I*) the bound quiver with *Q* finite and *I* an admissible ideal
- B := *Q≥*⁰ the set of all finite paths in *Q*, *k*-basis of *kQ*
- *A*, *B* finite dimensional quiver *k*-algebras of the form *kQ*/*I*

 $2QQ$

Stable equivalence by gluing

Theorem (Martinez-Villa 1979; Koenig, Liu 2008)

Let A and B be finite dimensional k-algebras such that B is a radical embedding of A. Then the following are equivalent:

- (1) *A is stably equivalent to B*;
- (2) *B is obtained from A by a finite number of steps of gluing a source vertex and a sink vertex.*
	- This is a class of stable equivalences not of Morita type, but still close to Morita type
- [1] R. Martinez-Villa, *Algebras stably equivalent to* l*-hereditary*. in: Lecture Notes in Math. **832** (1979), pp. 396-431.
- [2] S. Koenig and Y. Liu, *Gluing of idempotents, radical embeddings and two classes of stable equivalences*. J. Algebra **319** (2008), 5144-5164.

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- **•** Main results
	- **·** Gluing vertices
	- Gluing arrows

 $\mathbb{R} \times \mathcal{A} \mathbb{R} \times$

 \equiv 990

The Hochschild cohomology

Definition

The nth Hochschild cohomology group of algebra A, denoted by $HH^n(A)$ *, is defined by* $HH^n(A) := Ext^n_{A^e}(A, A)$ *, where* $A^e := A \otimes_k A^{op}$ *is the enveloping algebra of A.*

- *HHⁿ* (*A*) can be computed using different projective resolutions of *A* over its enveloping algebra *A e* .
- We often use the reduced bar resolution of *A* which is introduced by C. Cibils.

 $2QQ$

Hochschild cohomology of lower degrees

The Hochschild cohomology groups of lower degrees have nice interpretation.

Hochschild cohomology of lower degrees

The Hochschild cohomology groups of lower degrees have nice interpretation.

Fact

- (1) The 0th Hochschild cohomology $HH^{0}(A)$ is the center of A.
- (2) *The first Hochschild cohomology* $HH¹(A) ≅ Der(A, A)/Inn(A, A)$, where

 $Der(A, A) = \{f \in Hom_k(A, A)| f(ab) = af(b) + f(a)b, \forall a, b \in A\}$ $Inn(A, A) = {g_b \in Hom_k(A, A)|g_b(a) = ab - ba, \forall a, b \in A}$

Hochschild cohomology of lower degrees

The Hochschild cohomology groups of lower degrees have nice interpretation.

Fact

- (1) The 0th Hochschild cohomology $HH^{0}(A)$ is the center of A.
- (2) *The first Hochschild cohomology* $HH¹(A) ≅ Der(A, A)/Inn(A, A)$, where

 $Der(A, A) = \{f \in Hom_k(A, A)| f(ab) = af(b) + f(a)b, \forall a, b \in A\}$ $Inn(A, A) = {g_b \in Hom_k(A, A)|g_b(a) = ab - ba, \forall a, b \in A}$

(3) *In particular, HH*¹ (*A*) *is a Lie algebra with bracket*

$[f, g] = f \circ g - g \circ f.$

 \Box [3] M. Gerstenhaber, *The cohomology structure of an associative ring*. Ann. Math. **78** (2) (1963), 267-288.

Invariant

If algebras *A* and *B* are derived equivalent, then

- their Hochschild cohomology groups are isomorphic: *HHⁿ* (*A*) *∼*= *HHⁿ* (*B*)*, ∀n ≥* 0. (J. Rickard 1991)
- in particular, we have Lie algebra isomorphism:

 HH ¹ $(A) \cong HH$ ¹ (B)

Invariant

If algebras *A* and *B* are derived equivalent, then

- their Hochschild cohomology groups are isomorphic: *HHⁿ* (*A*) *∼*= *HHⁿ* (*B*)*, ∀n ≥* 0. (J. Rickard 1991)
- in particular, we have Lie algebra isomorphism:

 HH ¹ $(A) \cong HH$ ¹ (B)

- If A and B are self-injective algerbas and $A \stackrel{St.M}{\simeq} B$, then
	- *HHⁿ*(*A*) \cong *HHⁿ*(*B*)*,* \forall *n* > 0. (Z. Pogorzaly 2001)
	- \bullet in particular, $HH¹$ of two symmetric algebras are isomorphic as Lie algebras. (Koenig, Liu, Zhou 2012)

Question

Let *B* be obtained from *A* by gluing two vertices in *QA*.

If we glue a source and a sink, then $A\stackrel{St}{\simeq}B$ but not of Morita type. What is the relation between $HH^n(A)$ and $HH^n(B)$?

Question

Let *B* be obtained from *A* by gluing two vertices in *QA*.

- If we glue a source and a sink, then $A\stackrel{St}{\simeq}B$ but not of Morita type. What is the relation between $HH^n(A)$ and $HH^n(B)$?
- How about if we glue two arbitrary vertices?

Question

Let *B* be obtained from *A* by gluing two vertices in *QA*.

- If we glue a source and a sink, then $A\stackrel{St}{\simeq}B$ but not of Morita type. What is the relation between $HH^n(A)$ and $HH^n(B)$?
- How about if we glue two arbitrary vertices?

In this talk, I will give the answers of the above questions when $n = 0, 1$ for any finite dimensional quiver algebras.

Gröbner basis

Before presenting the approach to compute *HH*¹ , we recall the Gröbner basis theory and parallel paths for *kQ*/*I*.

- \bullet Fix an admissible well-order on $\mathcal B$, that is, a well order which is compatible with multiplication
- For each *r ∈ kQ*, its tip Tip(*r*) is the maximal monomial *p* appearing with nonzero coefficient *cr*(*p*) in *r*

Gröbner basis

Before presenting the approach to compute *HH*¹ , we recall the Gröbner basis theory and parallel paths for *kQ*/*I*.

- \bullet Fix an admissible well-order on B , that is, a well order which is compatible with multiplication
- For each *r ∈ kQ*, its tip Tip(*r*) is the maximal monomial *p* appearing with nonzero coefficient *cr*(*p*) in *r*
- \bullet Put $\text{Tip}(X) := \{ \text{Tip}(r) \mid r \in X, r \neq 0 \}$ for $\emptyset \neq X \subseteq kQ$
- A Gröbner basis of *I* w.r.t. the admissible order is a subset G *⊆ I* such that Tip(G) and Tip(*I*) generate the same ideal

.

Gröbner basis

Before presenting the approach to compute *HH*¹ , we recall the Gröbner basis theory and parallel paths for *kQ*/*I*.

- \bullet Fix an admissible well-order on B , that is, a well order which is compatible with multiplication
- For each *r ∈ kQ*, its tip Tip(*r*) is the maximal monomial *p* appearing with nonzero coefficient *cr*(*p*) in *r*
- \bullet Put $\text{Tip}(X) := \{ \text{Tip}(r) \mid r \in X, r \neq 0 \}$ for $\emptyset \neq X \subseteq kQ$
- A Gröbner basis of *I* w.r.t. the admissible order is a subset $\mathcal{G} \subseteq I$ such that $\text{Tip}(\mathcal{G})$ and $\text{Tip}(I)$ generate the same ideal
- Two paths α, β of Q are called parallel if $s(\alpha) = s(\beta)$ and $t(\alpha) = t(\beta)$, denoted by $\alpha || \beta$
- If *X, Y* are sets of paths of *Q*, we denote by

$$
X||Y := \{\alpha||\beta \mid \alpha \in X, \beta \in Y\}
$$

• Let $k(X||Y)$ be the *k*-vector space with basis $X||Y$

Proposition (Bardzell 1997)

Let A = *kQ*/*I be a quiver algebra with* G *as a reduced Gröbner basis of I. Then there is a minimal projective resolution of A as an A-bimodule*

$$
A \otimes_E k(\mathrm{Tip}(\mathcal{G})) \otimes_E A \xrightarrow{d_1} A \otimes_E kQ_1 \otimes_E A \xrightarrow{d_0} A \otimes_E kQ_0 \otimes_E A \xrightarrow{\mu} A \rightarrow 0
$$

where $E \simeq kQ_0$ *is the separable subalgebra of A and the A-bimodule morphisms are given by*

$$
\mu(a \otimes_E e_i \otimes_E b) = ae_i b,
$$

\n
$$
d_0(a \otimes_E \alpha \otimes_E b) = a\alpha \otimes_E b - a \otimes_E \alpha b \text{ and }
$$

\n
$$
d_1(a \otimes_E \text{Tip}(g) \otimes_E b) = \sum_p c_g(p) \sum_{i=1}^n a\alpha_n \cdots \alpha_{i+1} \otimes_E \alpha_i \otimes_E \alpha_{i-1} \cdots \alpha_1 b
$$

\nfor all $p = \alpha_n \cdots \alpha_1 \in \text{Supp}(g)$; $a, b \in A$; $e_i \in Q_0; \alpha, \alpha_n, \cdots, \alpha_1 \in Q_1$ and $g \in G$

. oga

.

. . .

.

Proposition (Strametz; Rubio y Degrassi, Schroll, Solotar; Liu, Xing)

Let $A \simeq kQ/I$ *be a quiver algebra with* Q *as a reduced Gröbner basis*, then $HH^n(A)$ for $n = 0, 1$ *can be computed by the complex*

$$
0 \to k(Q_0 \parallel \mathcal{B}) \xrightarrow{\delta^0} k(Q_1 \parallel \mathcal{B}) \xrightarrow{\delta^1} k(Tip(\mathcal{G}) \parallel \mathcal{B}) \xrightarrow{\delta^2} \cdots
$$

Can Wen (文灿) Beijing Normal University (北京师范大学) The first Hochschild cohomology groups under gluings

. . .

.

.

Proposition (Strametz; Rubio y Degrassi, Schroll, Solotar; Liu, Xing)

Let $A \simeq kQ/I$ *be a quiver algebra with* Q *as a reduced Gröbner basis*, then $HH^n(A)$ for $n = 0, 1$ *can be computed by the complex*

$$
0 \to k(Q_0 \parallel \mathcal{B}) \xrightarrow{\delta^0} k(Q_1 \parallel \mathcal{B}) \xrightarrow{\delta^1} k(\text{Tip}(G) \parallel \mathcal{B}) \xrightarrow{\delta^2} \cdots
$$

where the differentials are given by:

$$
\delta^{0}: k(Q_{0} \parallel \mathcal{B}) \rightarrow k(Q_{1} \parallel \mathcal{B})
$$
\n
$$
e \parallel \gamma \mapsto \sum_{s(a)=e,a\gamma \in \mathcal{B}} a \parallel a\gamma - \sum_{t(a)=e,\gamma a \in \mathcal{B}} a \parallel \gamma a,
$$
\n
$$
\delta^{1}: k(Q_{1} \parallel \mathcal{B}) \rightarrow k(\text{Tip}(Q) \parallel \mathcal{B})
$$
\n
$$
a \parallel \gamma \mapsto \sum_{r \in \mathcal{G}, p \in \text{Supp}(r), p^{a} \parallel \gamma \in \mathcal{B}} c_{r}(p) \text{Tip}(r) \parallel p^{a} \parallel \gamma.
$$

an Wen (文灿) Beijing Normal University (北京师范大学) The first Hochschild cohomology groups under gluings

.

. .

Theorem (S 2006; RSS 2022; LX 2023)

Let A be a finite dimensional quiver algebra. Then the bracket

$$
[a||\alpha, b||\beta] = b||\beta^{a||\alpha} - a||\alpha^{b||\beta} \qquad (a||\alpha, b||\beta \in Q_1||\beta)
$$

 i nduces a Lie algebra structure on $\operatorname{Ker}(\delta^1)/\mathrm{Im}(\delta^0)$ such that there *is a natural isomorphism as Lie algebras*

 $HH¹(A) \simeq \text{Ker}(\delta¹)/\text{Im}(\delta⁰)$

- [4] C. Strametz, *The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra*. J. Algebra Appl. 5 (3) (2006), 245-270.
- [5] L. Rubio y Degrassi, S. Schroll, A. Solotar, *The first Hochschild cohomology as a Lie algebra*. Quaestiones Mathematicae, 2022.
- . . [6] Y. Liu and B. Xing, *Generalized parallel paths method for computing the first Hochschild cohomology groups with applications to brauer graph algebras*. arXiv: 2306.14372v3 (2023).

. .

 $2QQ$

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- Main results
	- **·** Gluing vertices
	- Gluing arrows

 $\Box \rightarrow \neg \neg \Box$

 $\frac{1}{\sqrt{2}}$

 \equiv 990

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- **·** Main results
	- Gluing vertices
	- Gluing arrows

 \Rightarrow \Rightarrow \Rightarrow \Rightarrow

 \equiv 990

Theorem (Liu, Rubio y Degrassi, Wen 2022)

Let $A = kQ_A/I_A$ *be a quiver algebra and let* $B \simeq kQ_B/I_B$ *be obtained from A by gluing a source vertex e*¹ *and a sink vertex eⁿ in QA. Then*

Theorem (Liu, Rubio y Degrassi, Wen 2022)

 \mathcal{L} et $A = kQ_A/I_A$ be a quiver algebra and let $B \simeq kQ_B/I_B$ be *obtained from A by gluing a source vertex e*¹ *and a sink vertex eⁿ in QA. Then*

(1) *If e*¹ *and eⁿ are from different blocks of A, then there is a Lie* algebra isomorphism $HH¹(A) \simeq HH¹(B)$;

Theorem (Liu, Rubio y Degrassi, Wen 2022)

Let $A = kQ_A/I_A$ *be a quiver algebra and let* $B \simeq kQ_B/I_B$ *be obtained from A by gluing a source vertex e*¹ *and a sink vertex eⁿ in QA. Then*

- (1) *If e*¹ *and eⁿ are from different blocks of A, then there is a Lie* algebra isomorphism $HH¹(A) \simeq HH¹(B)$;
- (2) *If e*¹ *and eⁿ are from the same block of A, then* $HH^1(A) \simeq HH^1(B)/\mathfrak{I}$ as Lie algebras, where $dim(\mathfrak{I}) = 1$;

Theorem (Liu, Rubio y Degrassi, Wen 2022)

Let $A = kQ_A/I_A$ *be a quiver algebra and let* $B \simeq kQ_B/I_B$ *be obtained from A by gluing a source vertex e*¹ *and a sink vertex eⁿ in QA. Then*

- (1) *If e*¹ *and eⁿ are from different blocks of A, then there is a Lie* algebra isomorphism $HH¹(A) \simeq HH¹(B)$;
- (2) *If e*¹ *and eⁿ are from the same block of A, then* $HH^1(A) \simeq HH^1(B)/\mathfrak{I}$ as Lie algebras, where $dim(\mathfrak{I}) = 1$;
- (3) *Moreover, if A is a monomial algebra and* $char(k) = 0$ *, then the one-dimensional Lie ideal* $\mathfrak I$ *lies in the center of* $\mathrm{HH}^1(B)$ *and*

 $HH¹(B) \simeq HH¹(A) \times \mathfrak{I} \simeq HH¹(A) \times k$

as Lie algebras.

Let *B* be obtained from *A* by gluing two arbitrary vertices. Then

we can provide explicit formula between dimensions of $HH¹(A)$ and $HH¹(B)$ in terms of some combinatorial datum.

[7] https://arxiv.org/abs/2211.05435

Example

 $B \simeq kQ_B/I_B$ *is obtained from* $A = kQ_A/I_A$ *by gluing a source vertex* e_1 *and a sink vertex* e_4 *in* Q_A *:*

- $I_A = \langle \beta \alpha \eta \gamma \rangle$, after gluing the new relations are given by $Z_{\mathsf{new}} = \{\alpha'\beta', \gamma'\beta', \alpha'\eta', \gamma'\eta'\},$ hence $I_B = \langle I_A \cup Z_{\mathsf{new}} \rangle$.
- Fix an order on $(Q_A)_1$ by $\eta \succ \gamma \succ \beta \succ \alpha$, it follows that $\mathcal{G}_A = \{ \eta \gamma - \beta \alpha \}$ and $\mathcal{G}_B = \mathcal{G}_A \cup \mathcal{Z}_{\text{new}}.$
- We have $HH^1(A) = 0$ and $HH^1(B) \simeq \langle \alpha' \parallel \alpha' + \gamma' \parallel \gamma' \rangle \simeq k.$

. $\overline{\mathcal{L}}$

Example

 $B \simeq kQ_B/I_B$ *is obtained from* $A = kQ_A/I_A$ *by gluing e*₁ *and e*₄ *from different blocks of A:*

$$
Q_A
$$
: $e_2 \bullet \xrightarrow{\alpha_1} \bullet e_4 \qquad \bullet e_1 \xrightarrow{\beta} \bullet e_3$
 Q_B : $f_2 \bullet \xrightarrow{\alpha'_1} \bullet f_1 \xrightarrow{\beta'} \bullet f_3$

- $I_A = 0$, after gluing the new relations are given by $Z_{\text{new}} = \{\beta'\alpha'_1, \beta'\alpha'_2\},\$ hence $I_B = \langle \beta'\alpha'_1, \beta'\alpha'_2 \rangle.$
- Let *char*(*k*) \neq 2, we have $HH^1(A) \simeq sl_2(k) \simeq HH^1(B)$.

 \Box \equiv . .

 $2QQ$

Example

 $B \simeq kQ_B/I_B$ *is obtained from* $A = kQ_A/I_A$ *by gluing e*₁ *and e*₃ *from the same block of A:*

$$
Q_A: e_1 \bullet \xrightarrow{\alpha_1} e_2 \bullet \xrightarrow{\beta} \bullet e_3 \qquad Q_B: f_1 \bullet \xrightarrow{\alpha'_2} \bullet f_2
$$

 $2QQ$

- $I_A = \langle \beta \alpha_1, \beta \alpha_2 \rangle$, after gluing the new relations are given by $Z_{\text{new}} = {\alpha'_1 \beta', \alpha'_2 \beta'}$, hence $I_B = \langle \beta' \alpha'_1, \beta' \alpha'_2, \alpha'_1 \beta, \alpha'_2 \beta' \rangle$.
- Let *char*(*k*) \neq 2, we have $HH^1(A) \simeq sl_2(k)$ and $HH^1(B) \simeq gl_2(k)$. Moreover, $HH^1(B) \simeq HH^1(A) \times k$.

Proposition (Liu, Rubio y Degrassi, Wen 2022)

*Let A be a quiver algebra and B be a radical embedding of A obtained by gluing two idempotents e*¹ *and eⁿ of A. Then*

Proposition (Liu, Rubio y Degrassi, Wen 2022)

*Let A be a quiver algebra and B be a radical embedding of A obtained by gluing two idempotents e*¹ *and eⁿ of A. Then*

(1) *If e*¹ *and eⁿ are from the same block, then there is an algebra monomorphism* $Z(A) \hookrightarrow Z(B)$ *.*

Proposition (Liu, Rubio y Degrassi, Wen 2022)

*Let A be a quiver algebra and B be a radical embedding of A obtained by gluing two idempotents e*¹ *and eⁿ of A. Then*

- (1) *If e*¹ *and eⁿ are from the same block, then there is an algebra monomorphism* $Z(A) \hookrightarrow Z(B)$ *.*
- (2) *If e*¹ *and eⁿ are from different blocks, then the radical embedding B → A restricts to a radical embedding* $Z(B) \rightarrow Z(A)$ *. In particular,* $dim Z(A) = dim Z(B) + 1$ *.*
- [7] https://arxiv.org/abs/2211.05435

Outline

- The stable equivalences by gluing
- The Hochschild cohomology groups
- **•** Main results
	- **·** Gluing vertices
	- Gluing arrows

 \equiv 990

Gluing arrows

We are particularly interested in the case of gluing a source arrow and a sink arrow.

Definition

An arrow α in Q^A is called as a source arrow if the following two conditions are satisfied:

- (1) $s(\alpha)$ *is a source vertex;*
- (2) *except α, there is neither an arrow starting from s*(*α*) *nor an arrow ending at t*(*α*)*.*

Dually, an arrow β in Q^A is called as a sink arrow if the following two conditions are satisfied:

- (1) $t(\beta)$ *is a sink vertex;*
- (2) *except β, there is neither an arrow starting from s*(*β*) *nor an arrow ending at t*(*β*)*.*

Gluing arrows

Theorem (Liu, Rubio y Degrassi, Wen 2024)

Let $A = kQ_A/I_A$ *be a monomial algebra and let* $B \simeq kQ_B/I_B$ *be obtained from A by gluing a source arrow* α : $e_1 \rightarrow e_2$ *and a sink* α *n β* : $e_{n-1} \rightarrow e_n$ *in Q_A*. Then

- (1) *If α and β are from different blocks of A, then there is a Lie* a *lgebra isomorphism* $HH¹(A) \simeq HH¹(B)$;
- (2) *If α and β are from the same block of A, then* $HH^1(A) \simeq HH^1(B)/\mathfrak{I}$ as Lie algebras, where $dim(\mathfrak{I})=1$;
- (3) *Moreover, if* $char(k) = 0$ *, then the one-dimensional Lie ideal* 3 \mathcal{L} *lies in the center of* $HH^1(B)$ *and*

$$
\mathrm{HH}^1(B) \simeq \mathrm{HH}^1(A) \times \mathfrak{I} \simeq \mathrm{HH}^1(A) \times k
$$

as Lie algebras.

[8] Y. Liu, L. Rubio y Degrassi and C. Wen, *The Hochschild cohomology*

groups under gluing arrows. Comm. Algebra 52 (9) (2024), 3871-3897. $2QQ$ Wen (文灿) Beijing Normal University (北京师范大学) The first Hochschild coho

Gluing arrows

Proposition (Liu, Rubio y Degrassi, Wen 2024)

Let A be a monomial algebra and B be obtained from A by gluing two arrows α : $e_1 \rightarrow e_2$ *and* β : $e_{n-1} \rightarrow e_n$ *in* Q_A *. Then*

- (1) *If α and β are from the same block, then there is an algebra monomorphism* $Z(A) \hookrightarrow Z(B)$ *.*
- (2) *If α and β are from different blocks, then there is an algebra monomorphism* $Z(B) \hookrightarrow Z(A)$ *. In particular,*

 $dim Z(A) = dim Z(B) + 1$

[8] Y. Liu, L. Rubio y Degrassi and C. Wen, *The Hochschild cohomology groups under gluing arrows*. Comm. Algebra **52** (9) (2024), 3871-3897.

Example

The algebra B is obtained from A by gluing a source arrow α and a sink arrow β:

$$
Q_A: e_1 \bullet \xrightarrow{\alpha} \bullet e_2 \xrightarrow{\eta} \bullet e_3 \xrightarrow{\beta} \bullet e_4 \qquad Q_B: f_1 \bullet \xrightarrow{\gamma^*} \bullet f_2 ,
$$

where $I_A = 0$ *and* $I_B = \langle Z_{new} \rangle = \langle \eta^* \gamma^* \eta^* \rangle$.

- A direct computation shows that $HH^1(A) = 0$ and $HH^{1}(B) \simeq \langle \gamma^* \| \gamma^* \rangle$, hence $HH^{1}(B) \simeq HH^{1}(A) \times k$.
- Since $\delta_B^0(f_1\|\gamma^*\eta^*)=\gamma^*\|\gamma^*\eta^*\gamma^*=-\delta_B^0(f_2\|\gamma^*\eta^*)$, we have

$$
Z(A) = \langle 1_A \rangle \hookrightarrow Z(B) \simeq \langle 1_B, f_1 \| \eta^* \gamma^* + f_2 \| \gamma^* \eta^* \rangle
$$

Thanks! 谢谢大家!