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Parallel paths method

It is well-known that the Hochschild cohomology groups are
important invariants of associative algebras. Since the Hochschild
cohomology groups HH∗(A) = Ext∗Ae(A,A), the computation of
Hochschild cohomology groups are heavily based on a two-sided
projective resolution of a given algebra A.

Based on the minimal two-sided projective resolution of
monomial algebras, Strametz created the parallel paths method to
compute the first Hochschild cohomology group in monomial cases.

Minimal projective resolution
of monomial algebras

(Bardzell, 1997)
=⇒

Parallel paths method of
f.d. monomial algebras

(Strametz, 2006)
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Parallel paths method

Our aim is to generalize Strametz’s parallel paths method on
computing the first Hochschild cohomology groups from monomial
algebras to general quiver algebras (may not be finite dimensional).
We also give some applications on Brauer graph algebras.

Two-sided Anick resolution
of quiver algebras

(Chen, Liu and Zhou, 2023)
=⇒

Parallel paths method of
quiver algebras with

finite reduced Gröbner basis
(Liu and Xing, 2023)

August 9, 2024 3 / 31
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Parallel paths method

We should point out that Rubio y Degrassi, Schroll and
Solotar had done some analogous work independently by using the
Chouhy-Solotar projective resolution which is constructed by
reduction systems.

Chouhy-Solotar projective
resolution of quiver algebras

(Chouhy and Solotar, 2015)
=⇒

Parallel paths method of
f.d. quiver algebras

(Rubio y Degrassi, Schroll
and Solotar, 2022)

August 9, 2024 4 / 31
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Gröbner basis

Notations
k: a field,
Q = (Q0,Q1): a finite quiver

Two paths ε, γ of Q are called parallel if s(ε) = s(γ) and
t(ε) = t(γ). An element in kQ is called uniform if it is a linear
combination of parallel paths. If X and Y are sets of paths of
Q, the set X//Y is formed by the couples (ε, γ) ∈ X × Y such
that ε and γ are parallel paths.
We now fix an admissible well-order > on Q≥0. For any
a ∈ kQ, we have a =

∑
p∈Q≥0, λp∈k λpp and write

Supp(a) = {p | λp 6= 0}. We call Tip(a) = p, if p ∈ Supp(a)
and p′ ≤ p for all p′ ∈ Supp(a). Then we denote the tip of a
set W ⊆ kQ by Tip(W) = {Tip(w)|w ∈ W}

August 9, 2024 5 / 31
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Gröbner basis

Gröbner basis of quiver algebras (Green, 1999)
We say G is a Gröbner basis for the ideal I with respect to the
admissible order > if G is a set of uniform elements in I such that

〈Tip(I)〉 = 〈Tip(G)〉,

that is, Tip(I) and Tip(G) generate the same ideal in kQ.

August 9, 2024 6 / 31
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Generalized parallel paths method

Notations
Let ε be a path in Q and (α, γ) ∈ Q1//Q. Denote by ε(α,γ)
the sum of all nonzero paths obtained by replacing one
appearance of the arrow α in ε by path γ. If the path ε does
not contain the arrow α, we set ε(α,γ) = 0.

Let A = kQ/I be a quiver algebra with finite Gröbner basis G.
Then there is a k-linear basis B of the algebra A with respect
to G. Let the canonical projection be written as π : kQ → A.
If X is a set of paths of Q and e a vertex of Q, the set Xe is
formed by paths of X with source vertex e. In the same way
eX denotes the set of all paths of X with terminus vertex e.

August 9, 2024 7 / 31
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Generalized parallel paths method

Parallel paths method (Strametz, 2006)
Let A = kQ/I be a finite dimensional monomial algebra with

Z the minimal generating set of I. Then the beginning of the
Hochschild cochain complex of A can be described by:

0 −→ k(Q0//B)
ψ0−→ k(Q1//B)

ψ1−→ k(Z//B) −→ · · ·

where the differentials are given by

ψ0 : k(Q0//B) → k(Q1//B),
(e, γ) 7→

∑
α∈Q1e(α, π(αγ))−

∑
β∈eQ1

(β, π(γβ));

ψ1 : k(Q1//B) → k(Z//B),
(α, γ) 7→

∑
p∈Z(p, π(p(α,γ))).

In particular, we have HH0(A) ∼= Kerψ0, HH1(A) ∼= Kerψ1/Imψ0.

August 9, 2024 8 / 31
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Generalized parallel paths method

Generalized parallel paths method
Let A = kQ/I be a quiver algebra with the finite reduced

Gröbner basis G. The beginning of the Hochschild cochain
complex of A can be described by:

0 −→ k(Q0//B)
ψ0−→ k(Q1//B)

ψ1−→ k(Tip(G)//B) −→ · · ·

where the differentials are given by

ψ0 : k(Q0//B) → k(Q1//B),
(e, γ) 7→

∑
α∈Q1e(α, π(αγ))−

∑
β∈eQ1

(β, π(γβ));

ψ1 : k(Q1//B) → k(Tip(G)//B),
(α, γ) 7→

∑
g∈G

∑
p∈Supp(g) cg(p) · (Tip(g), π(p(α,γ))).

with g =
∑

p∈Supp(g) cg(p)p, cg(p) ∈ k. In particular, we have
HH0(A) ∼= Kerψ0, HH1(A) ∼= Kerψ1/Imψ0.

August 9, 2024 9 / 31
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Generalized parallel paths method

Lie structure
The bracket

[(α, γ), (β, ε)] = (β, π(ε(α,γ)))− (α, π(γ(β,ε)))

for all (α, γ), (β, ε) ∈ Q1//B induces a Lie algebra structure on
Kerψ1/Imψ0, such that HH1(A) and Kerψ1/Imψ0 are isomorphic
as Lie algebras.

August 9, 2024 10 / 31
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Example

Example
Let chark = 2 and A = k〈x, y〉/〈x2, y2, xy − yx〉. Let x > y, then

ψ0 : (1, 1) 7→ 0 , (1, x) 7→ 0,
(1, y) 7→ 0 , (1, yx) 7→ 0.

ψ1 : (x, x) 7→ 0 , (x, y) 7→ 2(x2, yx) = 0,
(y, y) 7→ 0 , (y, x) 7→ 2(y2, yx) = 0,
(x, yx) 7→ 0 , (x, 1) 7→ 2(x2, x) + 2(xy, y) = 0,
(y, yx) 7→ 0 , (y, 1) 7→ 2(y2, y) + 2(xy, x) = 0.

Then we get

HH1(A) = k{(x, 1), (y, 1), (x, x), (y, x), (x, y), (y, y), (x, yx), (y, yx)}.

· · ·

August 9, 2024 11 / 31
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Example

Example
· · ·
The Lie operations on HH1(A) are

[(x, 1), (x, yx)] = (x, y) , [(y, 1), (x, yx)] = (x, x)
[(x, 1), (y, yx)] = (y, y) , [(y, 1), (y, yx)] = (y, x)
[(x, 1), (x, x)] = (x, 1) , [(y, 1), (y, y)] = (y, 1)
[(y, y), (x, yx)] = (x, yx) , [(x, x), (y, yx)] = (y, yx)

Therefore, HH1(A) ∼= sl3(k) is a simple Lie algebra.

August 9, 2024 12 / 31
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Applications to Brauer graph algebras

Example
The Brauer graph G = (V,E) is a finite (unoriented)

connected graph:

u v we1 e2

with m : V → Z>0 (m(u) = m(v) = 1, m(w) = 3), a multiplicity
function of G. And there is an orientation o of G which is given by
o(u) : e1, o(v) : e1 < e2 < e1, o(w) : e2 < e2. Then the quiver QG
of G is given by:

α1

α2

βe1 e2

August 9, 2024 13 / 31
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Applications to Brauer graph algebras

Example

α1

α2

βe1 e2

An ideal IG in kQG generated by three types of relations.
Relations of type I: β3 − α1α2;
Relations of type II: α1α2α1, α2α1α2, β4;
Relations of type III: βα1, α2β.

The corresponding Brauer graph algebra of Brauer G is

A = kQG/〈β3 − α1α2, α1α2α1, α2α1α2, βα1, α2β〉.

August 9, 2024 14 / 31
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Applications to Brauer graph algebras

Brauer graph
A Brauer graph G is a tuple G = (V,E,m, o) where

(V,E) is a finite (unoriented) connected graph.
m : V → Z>0 is a multiplicity function of G.
o is called the orientation of G which is given, for every vertex
v ∈ V, by a cyclic ordering of the edges incident with v.

Quiver
Given a Brauer graph G = (V,E,m, o), we can define a quiver
QG = (Q0,Q1) as follows: Q0 := E,

Q1 := {i → j | i, j ∈ E, ∃v ∈ V, such that i < j belong to o(v)}.

For i ∈ E, if v ∈ V is a vertex of i and i is not truncated at v, then
there is a special i-cycle Cv(α) at v which is an oriented cycle given
by o(v) in QG with the starting arrow α (where the starting vertex
of α in QG is i).

August 9, 2024 15 / 31
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Applications to Brauer graph algebras

Brauer graph algebra (Donovan and Freislich, 1978)
We define an ideal IG in kQG generated by three types of relations.

Relations of type I: Cv(α)m(v) − Cv′(α′)m(v′), for any i ∈ Q0

and for any special i-cycles Cv(α) and Cv′(α′) at v and v′,
respectively, such that both v and v′ are not truncated.
Relations of type II: αCv(α)m(v), for any i ∈ Q0, any v ∈ V
and where Cv(α) is a special i-cycle at v with starting arrow α.
Relations of type III: βα, for any i ∈ Q1 such that βα is not a
subpath of any special cycle except if β = α is a loop
associated with a vertex v of valency one and multiplicity
m(v) > 1.

The quotient algebra A = kQG/IG is called the Brauer graph
algebra of the Brauer graph G.

August 9, 2024 16 / 31



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applications to Brauer graph algebras

The associated graded algebras
Let A be a finite dimensional algebra. Denote by r the

(Jacobson) radical rad(A) of A. Then the graded algebra gr(A) of
A associated with the radical filtration is defined as follows. As a
graded vector space,

gr(A) = A/r⊕ r/r2 ⊕ · · · ⊕ rt/rt+1 ⊕ · · · .

The multiplication of gr(A) is given as follows. For any two
homogeneous elements:
x + rm+1 ∈ rm/rm+1, y + rn+1 ∈ rn/rn+1, we have

(x + rm+1) · (y + rn+1) = xy + rm+n+1.

August 9, 2024 17 / 31
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Applications to Brauer graph algebras

Example
Consider the Brauer graph algebra

A = kQG/〈β3 − α1α2, α1α2α1, α2α1α2, βα1, α2β〉

where QG is given by

α1

α2

βe1 e2

Then the associated graded algebra of A is

gr(A) = kQG/〈β4, α1α2, βα1, α2β〉.

August 9, 2024 18 / 31
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Applications to Brauer graph algebras

Denote by val(v) the valency of the vertex v ∈ V. It is defined
to be the number of edges in G incident to v. We call the edge i
with vertex v truncated at v if m(v)val(v) = 1.

Graded degree (Guo and Liu, 2021)
For each vertex v in a Brauer graph G, we define the graded degree
grd(v) as follows. If val(v) = 1, we denote by v′ the unique vertex
adjacent to v. If G is given by a single edge with both vertices v
and v′ of multiplicity 1, then grd(v) = grd(v′) = 1; Otherwise

grd(v) =
{

m(v)val(v), if m(v)val(v) > 1;
grd(v′), if m(v)val(v) = 1.

August 9, 2024 19 / 31
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Applications to Brauer graph algebras

Balanced components

Let G = (V,E) be a Brauer graph. We call an edge v1
i
− v2 in G

with grd(v1) 6= grd(v2) an unbalanced edge. Other edges which are
not unbalanced will be called the balanced edges. We define the
balanced components of G by the following rules:

retain the balanced edges in G;
split the unbalanced edge into two edges by attaching two
new truncated vertices.

The connected components in G after remodeling by the rules
above are the balanced components of G. Denote the set of the
balanced components of G by ΓG.

August 9, 2024 20 / 31
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Applications to Brauer graph algebras

Example
Consider the Brauer graph G = (V,E) which is given by

u v we1 e2

with m(u) = m(v) = 1, m(w) = 3. Then grd(u) = grd(v) = 2,
grd(w) = 3. Thus e1 is a balanced edge and e2 is an unbalanced
edge. The balanced components of G is given by

u v p′
e1 e′2 p′′ we′′2

Actually, grd(u) = grd(v) = grd(p′) = 2, grd(p′′) = grd(w) = 3
and |ΓG| = 2.
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Applications to Brauer graph algebras

From now on, we assume that the characteristic of the ground
field k is 0.
L00

Let A = kQ/I, consider

L0 := k(Q1//Q1) ∩ Kerψ1

/
〈
∑

a∈Q1e
(a, a)−

∑
b∈eQ1

(b, b)|e ∈ Q0〉,

which is a Lie subalgebra of HH1(A). Furthermore, we can take
L00 which is given by

L00 := 〈(α, α)|α ∈ Q1〉∩Kerψ1

/
〈
∑

a∈Q1e
(a, a)−

∑
b∈eQ1

(b, b)|e ∈ Q0〉.

Actually, L00 is an abelian Lie subalgebra of HH1(A) and L00 ⊆ L0.
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Applications to Brauer graph algebras

Example
Consider

A = kQG/〈β3 − α1α2, α1α2α1, α2α1α2, βα1, α2β〉,

and
gr(A) = kQG/〈β4, α1α2, βα1, α2β〉

where QG is given by

α1

α2

βe1 e2
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Applications to Brauer graph algebras

Example
By the parallel paths method,

HH1(A) = k{3(α1, α1) + (β, β), (β, β2), (β, α1α2)}

HH1(gr(A)) = k{(α1, α1), (β, β), (β, β
2), (β, β3)},

and
LA
00 = LA

0 = k{3(α1, α1) + (β, β)}

Lgr(A)
00 = Lgr(A)

0 = k{(α1, α1), (β, β), }.
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Applications to Brauer graph algebras

Example
Recall the Brauer graph G = (V,E) which is given by

u v we1 e2

Then
dimkLA

00 = 1 = 2− 3 + 2 = |E| − |V|+ 2,

and

dimkLgr(A)
00 = 2 = 2− 3 + 1 + 2 = |E| − |V|+ 1 + |ΓG|.
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Applications to Brauer graph algebras

Let A be a Brauer graph algebra with the corresponding
Brauer graph G.

Lemma
dimkLA

00 = |E| − |V|+ 2, dimkLgr(A)
00 = |E| − |V|+ 1 + |ΓG|.

Proposition (k: algebraically closed)
LA
00 (respectively, Lgr(A)

00 ) is a maximal diagonalizable
subalgebra of HH1(A) (respectively, HH1(gr(A))).

Denote the maximal torus of Out(A)◦ (respectively,
Out(gr(A))◦) by T(A) (respectively,T(gr(A))). Then the rank of
T(A) (respectively,T(gr(A))) is equal to the dimension of LA

00

(respectively, Lgr(A)
00 ).
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Let A be a Brauer graph algebra with the corresponding
Brauer graph G.

Lemma
dimkLA

00 = |E| − |V|+ 2, dimkLgr(A)
00 = |E| − |V|+ 1 + |ΓG|.

Proposition (k: algebraically closed)
LA
00 (respectively, Lgr(A)

00 ) is a maximal diagonalizable
subalgebra of HH1(A) (respectively, HH1(gr(A))).

Denote the maximal torus of Out(A)◦ (respectively,
Out(gr(A))◦) by T(A) (respectively,T(gr(A))). Then the rank of
T(A) (respectively,T(gr(A))) is equal to the dimension of LA

00

(respectively, Lgr(A)
00 ).
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Applications to Brauer graph algebras

Example
By the parallel paths method,

HH1(A) = k{3(α1, α1) + (β, β), (β, β2), (β, α1α2)}

HH1(gr(A)) = k{(α1, α1), (β, β), (β, β
2), (β, β3)}.

Then both HH1(A) and HH1(gr(A)) are solvable. Moreover, there
is a monomorphism i : HH1(A) → HH1(gr(A)) as Lie algebras
which is given by:

i : 3(α1, α1) + (β, β) 7→ 3(α1, α1) + (β, β),
(β, β2) 7→ (β, β2),
(β, α1α2) 7→ (β, β3).

Actually, dimkHH1(gr(A))− dimkHH1(A) = 4− 3 =

dimkLgr(A)
00 − dimkLA

00 = 2− 1 = |ΓG| − 1.
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Applications to Brauer graph algebras

Let A be a Brauer graph algebra with the corresponding
Brauer graph G.

Theorem
If G is different from (• == •) (here both vertices have multiplicity
1), then both HH1(A) and HH1(gr(A)) are solvable.

Theorem
If G 6= (vS−vL) with m(vL) > m(vS) ≥ 2, then there is a
monomorphism i : HH1(A) → HH1(gr(A)) as Lie algebras.

Corollary
dimkHH1(gr(A))−dimkHH1(A) = dimkLgr(A)

00 −dimkLA
00 = |ΓG|−1.
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