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Motivation II

g = complex simple Lie algebra of simply-laced type, I =
vertex set of the Dynkin diagram of g.

Uq(ĝ) = the quantum affine algebra associated to g,
where q is not a root of unity, with generators x±i,r (i ∈ I,
r ∈ Z), k±1

i (i ∈ I), hi,s (i ∈ I, s ∈ Z\{0}), and central
element c±1, subject to certain relations.
P = the free ablian group generated by Y±1

i,a , with i ∈ I,
a ∈ C∗.
P+ = the submonoid of P generated by Yi,a, with i ∈ I,
a ∈ C∗. Elements in P+ are called dominant monomials.
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(Chari-Pressley) Every f.-d. simple Uq(ĝ)-module is a
highest l-weight module.

L(m) = the simple module with highest l-weight
monomial m ∈ P+.
C = the abelian monoidal category of f.d. Uq(ĝ)-modules
(type 1).
K0(C ) = the Grothendieck ring of C .
A simple Uq(ĝ)-module M is real if M ⊗ M is simple,
otherwise M is imaginary. A simple Uq(ĝ)-module M is
prime if it admits no non-trivial tensor decomposition.
In Uq(ŝl2) case, simple = real. Unfortunately, the
Uq(ŝl2)-philosophy is not true for general rank. For
example, L(Y1,−3Y2,−6Y2,0Y3,−3) is an imaginary module.
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A simple Uq(ĝ)-module M is real if M ⊗ M is simple,
otherwise M is imaginary. A simple Uq(ĝ)-module M is
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Hernandez and Leclerc’s work
Hernandez–Leclerc1 proved that K0(C

−
Z ) is a cluster algebra,

and conjectured

Hernandez–Leclerc Conjecture

A simple module is real if and only if it is a cluster mono-
mial.

Geometric q-character formula Conjecture

The standard truncated q-chracter of a real module is
the F-polynomial of a generic kernel over some Jacobi
algebra.

1D. Hernandez, B. Leclerc, A cluster algebra approach to q-characters
of Kirillov-Reshetikhin modules, J. Eur. Math. Soc. 18 (5) (2016)
1113–1159.
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Open part of Hernandez–Leclerc Conjecture
Following Hernandez–Lelcerc’s work, we know that

Hernandez–Leclerc Conjecture ⇒ Geometric q-character
formula Conjecture

Qin, independently Kashiwara–Kim–Oh–Park, proved that
cluster monomials are real modules.
The difficult (still open) part of Hernandez–Leclerc Conjecture
is that

Reachability of real modules (Qin)

Real modules are reachable/cluster monomials.
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In order to solve their conjectures, Hernandez and Leclerc2

proposed the following open question:

The classification of real modules (Hernandez–Leclerc)

How to classify real modules in terms of their highest l-
weight monomials?

2D. Hernandez, B. Leclerc, Quantum affine algebras and cluster
algebras, Interactions of quantum affine algebras with cluster algebras,
current algebras and categorification–in honor of Vyjayanthi Chari on the
occasion of her 60th birthday, Progr. Math., 337, Birkhäuser/Springer,
Cham, 2021, 37–65.
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Our aim

Our aim is to classify reachable real prime
modules

by establishing an interaction
between additive categorification
and monoidal categorification.
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Hernandez–Leclerc quivers

C = (cij)ij∈I = the Cartan matrix of g.

Γ̃ = quiver with vertex set Ṽ = I × Z, and arrow

(i, r) → (j, s) ⇔ cij ̸= 0, s = r + cij.

Choose one of two isomorphic connected components,
denoted by Γ, with vertex set V.
Γ≤0 = the semi-infinite subquiver of Γ with vertex set
V ∩ (I × Z≤0), called an Hernandez–Leclerc quiver.
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Figure: Quivers Γ (left) and Γ≤0 (right) in type A3.
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Quiver Γ≤ξ

ξ : I → Z a height function such that |ξ(i)− ξ(j)| = 1 if
i ∼ j.

Γ≤ξ = subquiver of Γ with vertex set

V ∩ {(i, ξ(i) + 2Z≤0) | i ∈ I}.
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Figure: In type A3, ξ(1, 2, 3) = (−1, 0,−1) (left) and
ξ(1, 2, 3) = (0,−1, 0) (right).
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Figure: In type A3, ξ(1, 2, 3) = (0,−1,−2) (left) and
ξ(1, 2, 3) = (−2,−1, 0) (right).

These four quivers are all possibilities of Γ≤ξ up to shift of
parameter.
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Inspired by Hernandez–Leclerc’s work, for any height
function ξ and ℓ ∈ Z≥1, we introduce a series of monoidal
subcategories C ≤ξ

ℓ of C as follows:

C ≤ξ
1 ⊂ C ≤ξ

2 ⊂ · · · ⊂ C ≤ξ
ℓ ⊂ · · · ⊂ C ≤ξ

∞ := C ≤ξ.

where the highest ℓ-monomials of composition factors of
any object in C ≤ξ

ℓ are monomials in Yi,ξ(i)−2k for
i ∈ I, 0 ≤ k ≤ ℓ.
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Theorem (DS23)
The quantum Grothendieck ring Kt(C

≤ξ
ℓ ) of C ≤ξ

ℓ admits a
quantum cluster algebra structure. The isomorphism is given
by the truncated (q,t)-characters.

Example

(1, 1) (2, 0) (3,−1)

(1,−1) (2,−2) (3,−3)

//

||yy
yy
yy
yy
yy
yy
y

//

OO OO OO

||yy
yy
yy
yy
yy
yy
y

(1, 1) (2, 0) (3,−1)// //

Figure: Quiver of Kt(C
≤ξ
1 ) in A3, ξ(1, 2, 3) = (1, 0,−1).
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For an arbitrary height function ξ and ℓ ∈ Z≥1, one can
define a Jacobian algebra A≤ξ

ℓ (ingnore coefficients) in
the sense of Derksen–Weyman–Zelevinsky.

In particular, for ℓ = 1, the Jacobian algebra A≤ξ
1 is a

path algebra of a Dynkin quiver, with vertex set I.
Let C≤ξ

1 be the cluster category of A≤ξ
1 , which is a

triangulated 2-Calabi-Yau category with cluster-tilting
objects.
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For each pair of non-split triangles

L → M → N → L[1], N → M′ → L → N[1] (1)

in C≤ξ
1 , with L and N indecomposable, g(M) = g(L) + g(N)

and Ext1C≤ξ
1

(L,N) = 1, we have

XLXN = XM + yαXM′ , N ∈ mod kA≤ξ
1 .

where
XL is the cluster variable associated to L,
yα is a Laurent monomial in variables yi, with i ∈ I, and
the vector α ∈ ZI is the dimension vector of the image of
the morphism h : τ−1

C L → N from the second
exchangeable triangle.
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We relate the monoidal category C ≤ξ
1 to the cluster category

C≤ξ
1 via cluster variables. More precisely, there is a bijection

Φ :

{
Indecomposable rigid

objects in C≤ξ
1

}
//

{
Real prime

modules in C ≤ξ
1

}∖
{L(fi) | i ∈ I} ,

We extend Φ to arbitrary rigid objects in C≤ξ
1 by

Φ(M1 ⊕ M2) = Φ(M1)⊗ Φ(M2).

Under the map Φ, for any i ∈ I,

Φ(P(i)[1]) = L(Yi,ξ(i)).

For i ∈ I, let fi = Yi,ξ(i)−2Yi,ξ(i), and the modules

L(fi) = L(Yi,ξ(i)−2Yi,ξ(i))

are Kirillov-Reshetikhin modules.
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Following Buan–Marsh–Reiten, there is an equivalence of
categories

F = HomC≤ξ
1
(kA≤ξ

1 ,−) : C≤ξ
1 /add kA≤ξ

1 [1]
∼→ mod kA≤ξ

1 .

Let (L,N) be an exchange pair in C≤ξ
1 with exchange triangles

(1). We define

κ(L,M,N) = dim(soc(FL)) + dim(soc(FN))− dim(soc(FM)).

Similarly, we define κ(L,M′,N).
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Theorem (DS23)
Let (L,N) be an exchange pair in C≤ξ

1 with N ∈ mod kA≤ξ
1 and

with exchange triangles (1). Then there is an exact sequence
in C ≤ξ

1

0 → Φ(M′)⊗

⊗
j∈I

L(fj)⊗dj

→ Φ(L)⊗ Φ(N) → Φ(M)⊗

(⊗
i∈I

L(fi)⊗ci

)
→ 0,

(2)

or the same sequence with arrows reversed, where

(ci)i∈I = κ(L,M,N), (dj)j∈I = κ(L,M′,N) + g(Im(h)).

In particular, hw(Φ(L))hw(Φ(N)) = hw(Φ(M))
(∏

i∈I fci
i
)
.
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Mesh relations I

If N is an indecomposable non-projective module and
L = τN, then M′ = 0 and α = dim(N). In this case, we
obtain the following exchange relation:

[Φ(τN)][Φ(N)] = [Φ(M)]

(∏
i∈I

[L(fi)]ci

)
+
∏
j∈I

[L(fj)]dj .
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Mesh relation II

In particular, for L = P(i)[1], N = I(i), we consider the
following non-split exchange triangles

P(i)[1] → 0 → I(i) → P(i)[2] = I(i),

I(i) →
(⊕

j:i→j
P(j)[1]

)
⊕

(⊕
j:j→i

I(j)
)

→ P(i)[1],

our theorem yields certain equations from T-systems.

[Φ(P(i)[1])][Φ(I(i))] = [L(fi)] +
∏
j:i→j

[Φ(P(j)[1])]
∏
j:j→i

[Φ(I(j))].
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A knitting algorithm of hw(HL-module)

We refer to the real prime modules in C ≤ξ
1 as

Hernandez–Leclerc modules (HL-modules for short). We
give a knitting algorithm of hw(HL-modules).

HL-modules of type A were studied and named by Brito
and Chari. Our method (for type A) is different with
Brito–Chari’s. Moreover, HL-modules of type
D, E6, E7, E8 are new.
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For ℓ ̸= 1

Our method is valid for reachable real prime modules. In
particular, we explicitly classify real prime modules for any
height function ξ, in the cases where

ℓ ≤ 4 in type A2, and
ℓ = 2 in type A3, A4.

In the cases, we use the representation theory of
cluster-tilting algebras.
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Thank you for your listening!
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