•	•		•	*	•	•	*	•	*	•	•	•	٠	•	• •	•	•		•	*	•	•	*	•	•	*	•	•	•	•	•	•	•	•
•		•	•	٠		•	٠	•	٠		•	٠		•	• •	•			•	•	•	•		•	•	•	•	٠	•	•	•	•		•
•			•			•			٠							٠				•		•		•	•		•	•			•		•	
				٠	•					٠		٠	٠		• •	•	٠			•	•	•	٠	•	٠		•	•			٠		•	
		٠							٠			٠				•	0			•						٠							•	
•							ñ		D .		• •	-		i1		•	÷		:		1	••		•										
		٠		٠			U	191	TOY	M	a	ΠŊ	n -	th	edy	Ч.	50) . [60	U	CT	D	N. i	<u>SM</u>	St	em	S							
																-								U L										
														X	ap	>pl	10	tio	ns					•									•	
												٠	٠																		٠			
													. S	Sev	eni	n I	Bai	rme	İe	(•										
		٠		٠			٠		٠												•				•								•	
												. l	lniv	ver	sit	u c	र्म ।	Gol	DC	n	0													
																J .	J .		Ū															
																	0														•			
															10	R	A . 2	21																
																	•																	
																20	24																	
•		•	•	•		•		•		•	•	•	•				-	•					•	•			•		•	•	•	•	•	
•	•	۰	•		٠	•		•		•	•		•	•	• •		٠	٠	•	•	٠	•	٠	*			*	•	٠	•	•	•	•	•
•		•	٠	٠	•	٠	•	٠	•	۰	•	•	0	•	• •	•		•	•	•	•	•	٠	•	•	•	•	٠	•	•	۰	•	•	•
•		•	•	*	•	•	•	•	•	•		•	٠	•	• •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•

•	Ď	ef	Dr	ma	rti	เงา		h	20	ry	•		· V	υĥ	y	?"	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	.U	lnc	Je	rst	ar	nd	. \	101	ia	fio	י ה נ	of	- - - -	2	kn	D.				ect		100	læl	e,	cat				•	•	•	•
•	•	•	P	10(du		<u>ה</u>	191 191	<u>v</u>	ob	je	cts liff	5 j ere	ron Int,	M	ki ut	าด ⊳ศ	w.n ten				•	•	•	•	•	•	•	•	•	•	•	•	•
•	-		-	÷	÷				÷	÷	÷					÷		÷				ysi alu		i i)	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•				• \		•		•			•				•		•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Deformation theory — how?		•	•	• •		
Abstract answer	• •	•		••••	 	•
Controlled by <u>higher structures</u> on cochain complexe DG Lie / Loo algebra Pridham.	22	•	•	• •	• • •	•
DG Lie / Loo algebra Pridham,	Lurie	•	•	• •		
<u>Ex.</u> Hom (Bar. (A), A) + Gerstenhaber bracket Hochschild complex	· ·	•	•	• •	· •	•
controls deformations of	• •	•	•	• •		•
• associative algebras	• •	•	•	• •	• • •	•
• Abelian / DG enhanced triangulated categories	• •	•	•	• •	•	•
Keller, Lowen-Van den Bergh, Blanc-Katzorkov-Pandit	• •	•	•		, a) a	•
	• •	•	•	• •		•

Fundamental guestions	Planck's constan
• how to describe deformations explicitly?	ζ
· how to pass from formal to "strict" deformati	$ms? + m \rightarrow 1$
Deformation theory — how?	$\frac{1}{c} 1$
Concrete answer for $A = \frac{1}{RQ/I}$	speed of light
Main idea Replace Bar. (A) by smaller resolution	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

Reduction systems for
$$k(Q/I) \supset Gröbner-Shirshov bases$$

 $a/k/q noncomm. Gröbner bases$
 $Ex. A = k[x_1,...,x_n] = k\langle \langle C_{x_1}^{x_1} \rangle \rangle / comm.$
 $R = \{(x_j x_i, x_i x_j)\}_{1 \le i \le j \le n}$
 $reduction replace x_j x_i by x_i x_j for i \le j$
 $reduction replace x_j x_i by x_i x_j for i \le j$
 $reduction replace x_j x_i by x_i x_j for i \le j$
 $reductions always terminate after fin. many steps$
Diamond Lemma If R is reduction-finike then TFAE
 $reductions the Diamond Condition on all paths$
 $2 - reductible paths form a k-basis of $x_k x_j x_i$
 $A = kQ/(s-t)_{(s,t)\in R}$
 $i \le j \le k$$

Reduction systems -> resolutions

A = ₩Q/I algebra R reduction system projective bimodule resolution of A word combinatorics of higher overlaps Bardzell, Chouhy-Solotar Thm. [B-Wang] There are explicit homotopy deformation retracts $P_{\bullet} \stackrel{F_{\bullet}}{\underset{G_{\bullet}}{\longrightarrow}} Bar_{\bullet}(A) \bigcirc h$ $Hom(P, A) \longrightarrow Hom(Bar(A), A) \bigcirc$ Hochschild complex Hom (-, A)

The Homotopy Transfer Theorem yields (after several steps)
Thm. [B-Wang] There is an equivalence between
 formal deformations of A formal deformations of R → explicit deformed product controlled by p(Q,R) = (Hom(P,A), ∂,(-,-), L_∞ algebra
<u>Rmt.</u> D Every formal deformation of A is gauge equivalent to (Alt1, *)explicit formula
(2) $HH^{2}(A, A) \simeq \text{first-order def. of } R/\text{equiv.}$

Geometric picture	· · · · · · · · · · · · · · · · · · ·
Hom (K{ leading }, A)	
	Maurer-Cartan elements] strict of p(Q,R)
	Maurer-Cartan elements of p(Q,R) & 33
	tangent space Z ² (P [•]) first-order
	HH ² (A,A)
groupoid action <> eq	uivalence of reduction systems

Applications ~ new avenues
[B-Wang] Explicit description of Abelian deformations of Qcoh(X) for X any Noetherian scheme of finite type / Hc
Q Describe Gabriel spectrum of deformation of Qcoh(X)
[B-Schmitt] Strict deformation guantization of polynomial Poisson structures on R ^d completion w.r.t. to locally convex topology on C[x,,x]
<u>R</u> Explicit rational star products?

[B-Wang] A _∞ deformations of extended Khovanov arc algebras & solution of Stroppel's Conjecture (ICM 2010)
Q New knot invariants from A_{∞} deformations?
[B-Schroll-Wang] A _∞ deformations of portially wrapped Fukaya categories of surfaces ² hengfang Wang's talk
Q New classes of associative algebras closed under derived equivalence? use Chouhy-Solotar resolution for cofibrant replacement

Thank you!