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Notation

R is a commutative ring with identity.

D is an integral domain with quotient field K .

K is a field.

R[X ],D[X ],K [X ] are the polynomial rings over R,D,K , respectively.

Max(R) is the set of maximal ideals of R.

Spec(R) is the set of prime ideals of R.

F(D) is the set of nonzero fractional ideals of D.

f(D) is the set of nonzero finitely generated fractional ideals of D.
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Goal

Can we characterize the maximal w -ideals of D[X ]A?

Is there a w -local property of D[X ]A?
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Localization at α

Let K be a field and let K [X ] is a polynomial ring over K .

Consider the point α ∈ K .

Mα = (X − α) is a maximal ideal of K [X ].

We obtain the ring K [X ]Mα ,
which is called the localization at α in K [X ].

In this case, K [X ] \Mα = {f ∈ K [X ] | f (α) ̸= 0}.
Now, consider the localization at 0 in K [X ].

K [X ] \M0 = {f ∈ K [X ] | f (0) ̸= 0}
= {f ∈ K [X ] | f (0) is a unit in K}
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Anderson rings

Consider the set A = {f ∈ R[X ] | f (0) = 1}.

A is a multiplicative subset of R[X ], whose saturation is
{f ∈ R[X ] | f (0) is a unit in R}.
We obtain the quotient ring R[X ]A.

In this case, R[X ]A is called the Anderson ring of R.

Daniel D. Anderson (1948 - 2022)
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Nagata rings and Serre’s conjecture rings

Let R be a commutative ring with identity.

Consider the multiplicative sets of R[X ]

N = {f ∈ R[X ] | c(f ) = R} and U = {f ∈ R[X ] | f is monic}

Ũ = {f ∈ R[X ] | the coefficient of lowest term in f is 1}.

We call R[X ]N the Nagata ring of R and
R[X ]U the Serre’s conjecture ring of R.

R[X ]A ⊆ (R[X ]A)[
1
X ] = R[X ]

Ũ
∼= R[X ]U ⊆ R[X ]N
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Maximal ideals of the Anderson rings

Theorem (Preprint, Baek and Lim)

Let R be a commutative ring with identity.
Then there is a one-to-one correspondence between
the maximal ideals of R and the maximal ideals of R[X ]A.
In fact, Max(R[X ]A) = {(M + XR[X ])A |M ∈ Max(R)}.

R[X ]A has finite character if and only if R is a semi-quasi-local ring.
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R[X ]N R[X ]U R[X ]A

Maximal ideal extension O O X

Maximal ideal correspondence O X O
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Localization of the Anderson rings at their maximal ideals

Lemma (Preprint, Baek and Lim)

Let R be a commutative ring with identity.
Then A = R[X ] \

⋃
M∈Max(R)(M + XR[X ]).

If R is a quasi-local ring, then A = R[X ] \ (M + XR[X ]).

If m ∈ Max(R[X ]A), then (R[X ]A)m = RM [X ]AM
, where

AM = {f ∈ RM [X ] | f (0) is a unit in RM} for some M ∈ Max(R).
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Local properties of the Anderson rings

Let R be a commutative ring with identity.

Let (P) be a property which satisfies that
R has a property (P) if and only if R[X ]A has a property (P)
(e.g., GCD-domains or Notherian rings).

RM has a property (P) for all M ∈ Max(R) if and only if
(R[X ]A)m has a property (P) for all m ∈ Max(R[X ]A).

Example
R is a locally Noetherian ring if and only if
R[X ]A is a locally Noetherian ring.
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Goal

Can we characterize the maximal w -ideals of D[X ]A?
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Star-operations

Let D be an integral domain with quotient field K .

A D-submodule F of K is a fractional ideal of D if
there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let D be an integral domain with quotient field K and
let F(D) be the set of nonzero fractional ideals of D.
Then a map ∗ : F(D) → F(D) given by F 7→ F∗ is a star-operation
if for F ,F1,F2 ∈ F(D), k ∈ K \ {0},
(1) (k)∗ = (k) and (kF )∗ = kF∗

(2) if F1 ⊆ F2, then (F1)∗ ⊆ (F2)∗

(3) F ⊆ F∗ and (F∗)∗ = F∗.
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Maximal ∗-ideals

Let D be an integral domain and let ∗ be a star-operation on D.

An ideal I of D is a ∗-ideal of D if I∗ = I .

An ideal I of D is a maximal ∗-ideal of D if there is no ∗-ideal
properly containing I .

∗-Max(D) is the set of maximal ∗-ideal of D, and called the
∗-maximal spectrum of D.
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w -operation

Let D be an integral domain with quotient field K and
let I be an ideal of D

For F ∈ F(D), set F−1 = {a ∈ K | aF ⊆ D}.

I is a Glaz-Vasconcelos ideal (GV-ideal), and denoted by I ∈ GV (D)
if I is finitely generated and I−1 = D.

For each F ∈ F(D), w -envelop of F is the set
FwD

:= {x ∈ F ⊗ K | xJ ⊆ F for some J ∈ GV (D)}.

The map w : F(D) → F(D)
given by F 7→ Fw := FwD

is a star-operation.

w -Max(D) ̸= ∅
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Goal

Can we characterize the maximal w -ideals of D[X ]A?

Is there a w -local property of D[X ]A?
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Basic properties of star-operations on the Anderson rings

Proposition (Preprint, Baek and Lim)

Let D be an integral domain and let I be a nonzero fractional ideal of D.
Then the following assertions hold.

(1) (ID[X ]A)
−1 = I−1D[X ]A.

(2) (ID[X ]A)v = IvD[X ]A.

(3) (ID[X ]A)t = ItD[X ]A.

(4) (ID[X ]A)w = IwD[X ]A.

For ∗ = v , t or w , then I is a ∗-ideal if and only if ID[X ]A is a ∗-ideal.
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w -Maximal spectrum of the Anderson rings

Theorem (Preprint, Baek and Lim)

Let D be an integral domain.
If m is a maximal w -ideal of D[X ]A, then m is exactly of the form

(1) MD[X ]A for some maximal w -ideal M of D, or

(2) pD[X ]A, where p ∈ w -Max(D[X ]) is an upper to zero in D[X ]
disjoint from A.

In addition, if D is integrally closed,
then the type (1) and (2) are the only maximal ideals of D[X ]A.

Question
Is the last argument in the previous theorem true without D being
integrally closed?
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Goal

Can we characterize the maximal w -ideals of D[X ]A? Yes!!

Is there a w -local property of D[X ]A?
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Application of w -maximal spectrum of the Anderson rings
with integrally closed

Let D be an integral doamin.

D is an H-domain if
for any ideal I of D with I−1 = D,
there exists J ∈ GV (D) such that J ⊆ I .

Proposition (Preprint, Baek and Lim)

Let D be an integrally closed domain.
Then D is an H-domain if and only if D[X ]A is an H-domain.
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Observation of the w -maximal spectrum of Anderson rings

Consider the following two sets:

A = {MD[X ]A |M ∈ w -Max(D)}
B = {pD[X ]A | p ∈ w -Max(D[X ]) is an upper to zero in D[X ]

= disjoint from A}.

A ∪B ⊇ w -Max(D[X ]A).

If D is integrally closed, then A ∪B = w -Max(D[X ]A).
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Application of w -maximal spectrum of the Anderson rings
without integrally closed

Let D be an integral domain.

D has finite w -character if every nonzero nonunit element belongs to
only finitely many maximal w -ideals of D.

Proposition (Preprint, Baek and Lim)

Let D be an integral domain.
Then D has finite w -character if and only if D[X ]A has finite w -character.

R[X ]A has finite character if and only if R is a semi-quasi-local ring.
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Localization of the Anderson ring at their maximal w -ideals

Let D be an integral domain.

For any m ∈ w -Max(D[X ]A),

either (D[X ]A)m = DM [X ]NM
or (D[X ]A)m = D[X ]p,

where NM = {f ∈ DM [X ] | c(f ) = DM and

p is an upper to zero in D[X ] disjoint from A.
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Application of w -maximal spectrum of the Anderson rings
without integrally closed

Let D be an integral domain.

D is a Dedekind domain if every nonzero ideal is invertible.

D is a w -almost Dedekind domain if
DM is a Dedekind domain for all M ∈ w -Max(D)

Proposition (Preprint, Baek and Lim)

Let D be an integral domain.
Then D is a w -almost Dedekind domain if and only if
D[X ]A is a w -almost Dedekind domain.
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w -local properties of the Anderson ring
without integrally closed

Let D be an integral domain.

Let (P) be a property which satisfies that
DVR has a property (P), and
D has a property (P) if and only if D[X ]N has a property (P)
(e.g., Notherian rings).

DM has a property (P) for all M ∈ w -Max(D)
if and only if (D[X ]A)m has a property (P) for all m ∈ w -Max(D[X ]A)

Example
D is a w -locally Noetherian domain if and only if
D[X ]A is a w -locally Noetherian domain.
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Goal

Can we characterize the maximal w -ideals of D[X ]A? Yes!!

Is there a w -local property of D[X ]A? w -almost Dedekind domain,
w -locally Noetherian domain, ...
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The end

Thank you for your attention!!

If you have any questions or comments,
please contact me at the following email addresses:

htbaek5@gmail.com

htbaek@knu.ac.kr
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