w-operation on the Anderson rings

Hyungtae Baek

School of Mathematics Kyungpook National University

The 21th International Conference on Representations of Algebras Shanghai Jiao Tong University, Shanghai, China

August 08, 2024

w-operation on the Anderson rings

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- R is a commutative ring with identity.
- D is an integral domain with quotient field K.
- K is a field.
- R[X], D[X], K[X] are the polynomial rings over R, D, K, respectively.
- Max(R) is the set of maximal ideals of R.
- $\operatorname{Spec}(R)$ is the set of prime ideals of R.
- F(D) is the set of nonzero fractional ideals of D.
- f(D) is the set of nonzero finitely generated fractional ideals of D.

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].
- We obtain the ring K[X]_{Mα}, which is called the *localization* at α in K[X].

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].
- We obtain the ring K[X]_{Mα}, which is called the *localization* at α in K[X].
- In this case, $K[X] \setminus M_{\alpha} = \{f \in K[X] \mid f(\alpha) \neq 0\}.$

Hyungtae Baek

w-operation on the Anderson ring

August 08, 2024

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].
- We obtain the ring K[X]_{Mα}, which is called the *localization* at α in K[X].
- In this case, $K[X] \setminus M_{\alpha} = \{f \in K[X] \mid f(\alpha) \neq 0\}.$

Now, consider the localization at 0 in K[X].

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].
- We obtain the ring $K[X]_{M_{\alpha}}$, which is called the *localization* at α in K[X].
- In this case, $K[X] \setminus M_{\alpha} = \{f \in K[X] \mid f(\alpha) \neq 0\}.$

Now, consider the localization at 0 in K[X].

•
$$K[X] \setminus M_0 = \{ f \in K[X] \, | \, f(0) \neq 0 \}$$

- Consider the point $\alpha \in K$.
- $M_{\alpha} = (X \alpha)$ is a maximal ideal of K[X].
- We obtain the ring $K[X]_{M_{\alpha}}$, which is called the *localization* at α in K[X].
- In this case, $K[X] \setminus M_{\alpha} = \{f \in K[X] \mid f(\alpha) \neq 0\}.$

Now, consider the localization at 0 in K[X].

•
$$K[X] \setminus M_0 = \{ f \in K[X] \mid f(0) \neq 0 \}$$

= $\{ f \in K[X] \mid f(0) \text{ is a unit in } K \}.$

Consider the set $A = \{f \in R[X] | f(0) = 1\}$.

Hyungtae Baek

w-operation on the Anderson rings

August 08, 2024

Consider the set $A = \{f \in R[X] | f(0) = 1\}$.

• A is a multiplicative subset of R[X], whose saturation is $\{f \in R[X] | f(0) \text{ is a unit in } R\}.$

Consider the set $A = \{f \in R[X] \mid f(0) = 1\}.$

- A is a multiplicative subset of R[X], whose saturation is $\{f \in R[X] | f(0) \text{ is a unit in } R\}.$
- We obtain the quotient ring $R[X]_A$.

Consider the set $A = \{f \in R[X] \mid f(0) = 1\}$.

- A is a multiplicative subset of R[X], whose saturation is $\{f \in R[X] \mid f(0) \text{ is a unit in } R\}$.
- We obtain the quotient ring $R[X]_A$.

In this case, $R[X]_A$ is called the *Anderson ring* of *R*.

Daniel D. Anderson (1948 - 2022)

Hyungtae Baek

w-operation on the Anderson ring

August 08, 2024

Let R be a commutative ring with identity.

$$N = \{f \in R[X] \mid c(f) = R\} \text{ and } U = \{f \in R[X] \mid f \text{ is monic}\}$$
$$\widetilde{U} = \{f \in R[X] \mid \text{the coefficient of lowest term in } f \text{ is } 1\}.$$

 $N = \{f \in R[X] \mid c(f) = R\} \text{ and } U = \{f \in R[X] \mid f \text{ is monic}\}$ $\widetilde{U} = \{f \in R[X] \mid \text{the coefficient of lowest term in } f \text{ is } 1\}.$

• We call $R[X]_N$ the Nagata ring of R and $R[X]_U$ the Serre's conjecture ring of R.

 $N = \{f \in R[X] \mid c(f) = R\} \text{ and } U = \{f \in R[X] \mid f \text{ is monic}\}$ $\widetilde{U} = \{f \in R[X] \mid \text{the coefficient of lowest term in } f \text{ is } 1\}.$

- We call $R[X]_N$ the Nagata ring of R and $R[X]_U$ the Serre's conjecture ring of R.
- $R[X]_A \subseteq (R[X]_A)[\frac{1}{X}] = R[X]_{\widetilde{U}}$

4/19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $N = \{f \in R[X] \mid c(f) = R\} \text{ and } U = \{f \in R[X] \mid f \text{ is monic}\}$ $\widetilde{U} = \{f \in R[X] \mid \text{the coefficient of lowest term in } f \text{ is } 1\}.$

We call R[X]_N the Nagata ring of R and R[X]_U the Serre's conjecture ring of R.
R[X]_A ⊆ (R[X]_A)[¹/_X] = R[X]_U ≅ R[X]_U ⊆ R[X]_N

4/19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nagata rings and Serre's conjecture rings

Hyungtae Baek

w-operation on the Anderson rings

August 08, 2024

э

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

KYUNGPOOK

4/19

Theorem (Preprint, Baek and Lim)

Let *R* be a commutative ring with identity. Then there is a one-to-one correspondence between the maximal ideals of *R* and the maximal ideals of $R[X]_A$. In fact, $Max(R[X]_A) = \{(M + XR[X])_A | M \in Max(R)\}.$

Theorem (Preprint, Baek and Lim)

Let *R* be a commutative ring with identity. Then there is a one-to-one correspondence between the maximal ideals of *R* and the maximal ideals of $R[X]_A$. In fact, $Max(R[X]_A) = \{(M + XR[X])_A | M \in Max(R)\}.$

• $R[X]_A$ has finite character if and only if R is a semi-quasi-local ring.

	$R[X]_N$	$R[X]_U$	$R[X]_A$
Maximal ideal extension	0	0	Х
Maximal ideal correspondence	0	Х	0

Lemma (Preprint, Baek and Lim)

Let *R* be a commutative ring with identity. Then $A = R[X] \setminus \bigcup_{M \in Max(R)} (M + XR[X])$.

Lemma (Preprint, Baek and Lim)

Let *R* be a commutative ring with identity. Then $A = R[X] \setminus \bigcup_{M \in Max(R)} (M + XR[X])$.

- If R is a quasi-local ring, then $A = R[X] \setminus (M + XR[X])$.
- If $\mathfrak{m} \in \operatorname{Max}(R[X]_A)$, then $(R[X]_A)_{\mathfrak{m}} = R_M[X]_{A_M}$, where $A_M = \{f \in R_M[X] \mid f(0) \text{ is a unit in } R_M\}$ for some $M \in \operatorname{Max}(R)$.

Let R be a commutative ring with identity.

Let *R* be a commutative ring with identity. Let (P) be a property which satisfies that *R* has a property (P) if and only if $R[X]_A$ has a property (P)

Let *R* be a commutative ring with identity. Let (P) be a property which satisfies that *R* has a property (P) if and only if $R[X]_A$ has a property (P) (*e.g.*, GCD-domains or Notherian rings).

Let *R* be a commutative ring with identity. Let (P) be a property which satisfies that *R* has a property (P) if and only if $R[X]_A$ has a property (P) (*e.g.*, GCD-domains or Notherian rings).

• R_M has a property (P) for all $M \in Max(R)$ if and only if $(R[X]_A)_{\mathfrak{m}}$ has a property (P) for all $\mathfrak{m} \in Max(R[X]_A)$.

Let *R* be a commutative ring with identity. Let (P) be a property which satisfies that *R* has a property (P) if and only if $R[X]_A$ has a property (P) (*e.g.*, GCD-domains or Notherian rings).

• R_M has a property (P) for all $M \in Max(R)$ if and only if $(R[X]_A)_{\mathfrak{m}}$ has a property (P) for all $\mathfrak{m} \in Max(R[X]_A)$.

Example

R is a locally Noetherian ring if and only if $R[X]_A$ is a locally Noetherian ring.

3

イロト イポト イヨト イヨト

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal *w*-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

Hyungtae Baek

w-operation on the Anderson rings

August 08, 2024

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), k \in K \setminus \{0\}$, (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subseteq F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), \ k \in K \setminus \{0\},$ (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subseteq F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), k \in K \setminus \{0\}$, (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subset F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), k \in K \setminus \{0\}$, (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subset F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), \ k \in K \setminus \{0\},$ (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subseteq F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

 A D-submodule F of K is a *fractional ideal* of D if there exists d ∈ D \ {0} such that dF ⊆ D.

Definition

Let *D* be an integral domain with quotient field *K* and let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of *D*. Then a map $*: \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_*$ is a *star-operation* if for $F, F_1, F_2 \in \mathbf{F}(D), \ k \in K \setminus \{0\},$ (1) $(k)_* = (k)$ and $(kF)_* = kF_*$ (2) if $F_1 \subseteq F_2$, then $(F_1)_* \subseteq (F_2)_*$ (3) $F \subseteq F_*$ and $(F_*)_* = F_*$.

3

Image: A match a ma

KYUNGPOOK

Let D be an integral domain and let * be a star-operation on D.

Let D be an integral domain and let * be a star-operation on D.

• An ideal I of D is a *-ideal of D if $I_* = I$.

Let D be an integral domain and let * be a star-operation on D.

- An ideal I of D is a *-*ideal* of D if $I_* = I$.
- An ideal *I* of *D* is a *maximal* *-*ideal* of *D* if there is no *-ideal properly containing *I*.
- *-Max(D) is the set of maximal *-ideal of D, and called the *-maximal spectrum of D.

• For
$$F \in \mathbf{F}(D)$$
, set $F^{-1} = \{a \in K \mid aF \subseteq D\}$.

- For $F \in \mathbf{F}(D)$, set $F^{-1} = \{a \in K \mid aF \subseteq D\}$.
- *I* is a *Glaz-Vasconcelos ideal* (*GV-ideal*), and denoted by $I \in GV(D)$ if *I* is finitely generated and $I^{-1} = D$.
- For each $F \in \mathbf{F}(D)$, *w*-envelop of F is the set $F_{w_D} := \{x \in F \otimes K \mid xJ \subseteq F \text{ for some } J \in GV(D)\}.$

- For $F \in \mathbf{F}(D)$, set $F^{-1} = \{a \in K \mid aF \subseteq D\}$.
- *I* is a *Glaz-Vasconcelos ideal* (*GV-ideal*), and denoted by $I \in GV(D)$ if *I* is finitely generated and $I^{-1} = D$.
- For each $F \in \mathbf{F}(D)$, *w*-envelop of F is the set $F_{w_D} := \{x \in F \otimes K \mid xJ \subseteq F \text{ for some } J \in GV(D)\}.$
- The map w : F(D) → F(D) given by F → F_w := F_{wD} is a star-operation.

∃ 990

イロト イポト イヨト イヨト

- For $F \in \mathbf{F}(D)$, set $F^{-1} = \{a \in K \mid aF \subseteq D\}$.
- *I* is a *Glaz-Vasconcelos ideal* (*GV-ideal*), and denoted by $I \in GV(D)$ if *I* is finitely generated and $I^{-1} = D$.
- For each $F \in \mathbf{F}(D)$, *w*-envelop of F is the set $F_{w_D} := \{x \in F \otimes K \mid xJ \subseteq F \text{ for some } J \in GV(D)\}.$
- The map $w : \mathbf{F}(D) \to \mathbf{F}(D)$ given by $F \mapsto F_w := F_{w_D}$ is a star-operation.

•
$$w$$
-Max $(D) \neq \emptyset$

∃ 990

イロト イポト イヨト イヨト

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

Basic properties of star-operations on the Anderson rings

Hyungtae Baek

w-operation on the Anderson rings

August 08, 2024

Proposition (Preprint, Baek and Lim)

Let D be an integral domain and let I be a nonzero fractional ideal of D. Then the following assertions hold.

(1)
$$(ID[X]_A)^{-1} = I^{-1}D[X]_A$$

- (2) $(ID[X]_A)_v = I_v D[X]_A$.
- (3) $(ID[X]_A)_t = I_t D[X]_A$.

(4)
$$(ID[X]_A)_w = I_w D[X]_A$$
.

Proposition (Preprint, Baek and Lim)

Let D be an integral domain and let I be a nonzero fractional ideal of D. Then the following assertions hold.

(1)
$$(ID[X]_A)^{-1} = I^{-1}D[X]_A$$

- (2) $(ID[X]_A)_v = I_v D[X]_A$.
- (3) $(ID[X]_A)_t = I_t D[X]_A$.

(4)
$$(ID[X]_A)_w = I_w D[X]_A$$
.

• For * = v, t or w, then I is a *-ideal if and only if $ID[X]_A$ is a *-ideal.

Theorem (Preprint, Baek and Lim)

Let D be an integral domain.

If \mathfrak{m} is a maximal *w*-ideal of $D[X]_A$, then \mathfrak{m} is exactly of the form

- (1) $MD[X]_A$ for some maximal w-ideal M of D, or
- (2) $\mathfrak{p}D[X]_A$, where $\mathfrak{p} \in w$ -Max(D[X]) is an upper to zero in D[X] disjoint from A.

Theorem (Preprint, Baek and Lim)

Let D be an integral domain.

If \mathfrak{m} is a maximal *w*-ideal of $D[X]_A$, then \mathfrak{m} is exactly of the form

- (1) $MD[X]_A$ for some maximal w-ideal M of D, or
- (2) $\mathfrak{p}D[X]_A$, where $\mathfrak{p} \in w$ -Max(D[X]) is an upper to zero in D[X] disjoint from A.

In addition, if D is integrally closed,

then the type (1) and (2) are the only maximal ideals of $D[X]_A$.

Theorem (Preprint, Baek and Lim)

Let D be an integral domain.

If \mathfrak{m} is a maximal *w*-ideal of $D[X]_A$, then \mathfrak{m} is exactly of the form

- (1) $MD[X]_A$ for some maximal w-ideal M of D, or
- (2) $\mathfrak{p}D[X]_A$, where $\mathfrak{p} \in w$ -Max(D[X]) is an upper to zero in D[X] disjoint from A.

In addition, if D is integrally closed, then the type (1) and (2) are the only maximal ideals of $D[X]_A$.

Question

Is the last argument in the previous theorem true without D being integrally closed?

- Can we characterize the maximal w-ideals of $D[X]_A$?
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$? Yes!!
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$? Yes!!
- Is there a *w*-local property of $D[X]_A$?

Application of *w*-maximal spectrum of the Anderson rings with integrally closed

Let D be an integral doamin.

• D is an *H*-domain if for any ideal I of D with $I^{-1} = D$, there exists $J \in GV(D)$ such that $J \subseteq I$.

Application of *w*-maximal spectrum of the Anderson rings with integrally closed

Let D be an integral doamin.

• D is an H-domain if for any ideal I of D with $I^{-1} = D$, there exists $J \in GV(D)$ such that $J \subseteq I$.

Proposition (Preprint, Baek and Lim)

Let D be an integrally closed domain. Then D is an H-domain if and only if $D[X]_A$ is an H-domain.

Consider the following two sets:

$$\mathfrak{A} = \{MD[X]_A \mid M \in w\text{-}Max(D)\}$$

 $\mathfrak{B} = \{\mathfrak{p}D[X]_A \mid \mathfrak{p} \in w\text{-}\mathsf{Max}(D[X]) \text{ is an upper to zero in } D[X] \\ \text{disjoint from } A\}.$

Consider the following two sets:

$$\mathfrak{A} = \{MD[X]_A \mid M \in w\text{-}Max(D)\}$$

- $\mathfrak{B} = \{\mathfrak{p}D[X]_A \mid \mathfrak{p} \in w\text{-}\mathsf{Max}(D[X]) \text{ is an upper to zero in } D[X] \\ \text{disjoint from } A\}.$
- $\mathfrak{A} \cup \mathfrak{B} \supseteq w$ -Max $(D[X]_A)$.
- If D is integrally closed, then $\mathfrak{A} \cup \mathfrak{B} = w$ -Max $(D[X]_A)$.

Consider the following two sets:

$$\mathfrak{A} = \{MD[X]_A \mid M \in w\text{-}Max(D)\}$$

- $\mathfrak{B} = \{\mathfrak{p}D[X]_A \mid \mathfrak{p} \in w\text{-}\mathsf{Max}(D[X]) \text{ is an upper to zero in } D[X] \\ \text{disjoint from } A\}.$
- $\mathfrak{A} \cup \mathfrak{B} \supseteq w$ -Max $(D[X]_A)$.
- If D is integrally closed, then $\mathfrak{A} \cup \mathfrak{B} = w$ -Max $(D[X]_A)$.

Let D be an integral domain.

• *D* has *finite w-character* if every nonzero nonunit element belongs to only finitely many maximal *w*-ideals of *D*.

Let D be an integral domain.

• *D* has *finite w-character* if every nonzero nonunit element belongs to only finitely many maximal *w*-ideals of *D*.

Proposition (Preprint, Baek and Lim)

Let D be an integral domain. Then D has finite w-character if and only if $D[X]_A$ has finite w-character.

Let D be an integral domain.

• *D* has *finite w-character* if every nonzero nonunit element belongs to only finitely many maximal *w*-ideals of *D*.

Proposition (Preprint, Baek and Lim)

Let D be an integral domain. Then D has finite w-character if and only if $D[X]_A$ has finite w-character.

• $R[X]_A$ has finite character if and only if R is a semi-quasi-local ring.

Let D be an integral domain.

• For any $\mathfrak{m} \in w$ -Max $(D[X]_A)$, either $(D[X]_A)_\mathfrak{m} = D_M[X]_{N_M}$ or $(D[X]_A)_\mathfrak{m} = D[X]_\mathfrak{p}$, where $N_M = \{f \in D_M[X] \mid c(f) = D_M$ and \mathfrak{p} is an upper to zero in D[X] disjoint from A.

Let D be an integral domain.

- *D* is a *Dedekind domain* if every nonzero ideal is invertible.
- D is a *w*-almost Dedekind domain if
 D_M is a Dedekind domain for all M ∈ w-Max(D)

Let D be an integral domain.

- *D* is a *Dedekind domain* if every nonzero ideal is invertible.
- D is a *w*-almost Dedekind domain if
 D_M is a Dedekind domain for all M ∈ w-Max(D)

Proposition (Preprint, Baek and Lim)

Let D be an integral domain.

Then D is a w-almost Dedekind domain if and only if

 $D[X]_A$ is a *w*-almost Dedekind domain.

Let D be an integral domain.

Let *D* be an integral domain. Let (P) be a property which satisfies that DVR has a property (P), and *D* has a property (P) if and only if $D[X]_N$ has a property (P)

Let *D* be an integral domain. Let (P) be a property which satisfies that DVR has a property (P), and *D* has a property (P) if and only if $D[X]_N$ has a property (P) (e.g., Notherian rings).

Let *D* be an integral domain. Let (P) be a property which satisfies that DVR has a property (P), and *D* has a property (P) if and only if $D[X]_N$ has a property (P) (*e.g.*, Notherian rings).

 D_M has a property (P) for all M ∈ w-Max(D) if and only if (D[X]_A)_m has a property (P) for all m ∈ w-Max(D[X]_A)

Let D be an integral domain.

Let (P) be a property which satisfies that

DVR has a property (P), and

D has a property (P) if and only if $D[X]_N$ has a property (P) (*e.g.*, Notherian rings).

 D_M has a property (P) for all M ∈ w-Max(D) if and only if (D[X]_A)_m has a property (P) for all m ∈ w-Max(D[X]_A)

Example

D is a w-locally Noetherian domain if and only if $D[X]_A$ is a w-locally Noetherian domain.

18/19

- Can we characterize the maximal w-ideals of $D[X]_A$? Yes!!
- Is there a *w*-local property of $D[X]_A$?

- Can we characterize the maximal w-ideals of $D[X]_A$? Yes!!
- Is there a *w*-local property of *D*[*X*]_{*A*}? *w*-almost Dedekind domain, *w*-locally Noetherian domain, ...

Thank you for your attention!!

If you have any questions or comments, please contact me at the following email addresses:

- htbaek5@gmail.com
- htbaek@knu.ac.kr

(* C) * 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 10 AL UNIVERSITY