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Definition (Lie algebra, cf.[3])
A Lie algebra L over an arbitrary field F is a vector space over
F endowed with an operation called Lie bracket satisfying the
following properties :

1. Bilinearity : For x, y, z ∈ L, a, b ∈ F

[ax+ by, z] = a[x, z] + b[y, z]
[x, ay + bz] = a[x, y] + b[x, z]

2. [x, x] = 0 for all x ∈ L
3. Jacobi identity :

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.
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Example
Let V be a finite dimensional vector space over the field F.
Then V is Lie algebra with Lie bracket

[x, y] = 0 for all x, y ∈ V

These Lie algebras are called abelian Lie algebras.

Example
End(V ), the set of all linear transformations on a finite
dimensional vector space V over a field F is a Lie algebra with
Lie bracket

[x, y] = xy − yx for x, y ∈ End(V ).
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Central extensions of Lie algebras

Definition
Let L be a Lie algebra andM be an abelian Lie algebra.
Then (E ; f, g) is an extension of L byM if there exists a Lie
algebra E such that the following is a short exact sequence :

0→M f−→ E g−→ L → 0.

An extension (E ; f, g) is central if f(M) ⊆ Z(E) where Z(E) is
the center of E .
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Example:
Consider the real Lie algebras

L = spanR{


0 0 y

0 0 z

0 0 0

 : y, z ∈ R} andM = spanR{


0 0 y

0 0 0
0 0 0

 : b ∈ R}

respectively.

Let

E = spanR{


0 x y

0 0 z

0 0 0

 : x, y, z ∈ R},
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f :M→ E is the identity inclusion and g : E → L is given by

g(


0 x y

0 0 z

0 0 0

) =


0 0 x

0 0 z

0 0 0

.

Then f and g are Lie algebra homomorphisms and
ker(g) = Im(f). Also f(M) =M = Z(E), the center of E .
Thus 0→M f−→ E g−→ L → 0 is a central extension.
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Cover of a Lie algebra

Definition
Let L be a Lie algbera. Then a pair of Lie algebras (E ,M)
such that

1. L ∼= E/M
2. M⊆ Z(E) ∪ [E , E ]
3. dim(E) is maximal

is called a maximal defining pair of L. In a maximal defining
pair (E ,M), E is called cover of L andM is called multiplier
of L.

Lemma
([1]) Let L be a Lie algebra of finite dimension n and E be the
cover of L. Then dim(E) ≤ n(n+1)

2 .
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We can define the cover interms of central extensions using the
following lemma.

Lemma
Let L be a Lie algebra and E be its cover. Then

1. 0→M f−→ E g−→ L → 0 is a central extension for some Lie
algebraM

2. Ker(g) ⊆ [E , E ]
3. dim(E) is maximal.
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Example

Consider the central extension 0→M f−→ E g−→ L → 0 of L by
M as in Example 5. Here

[E , E ] = spanR{


0 0 b

0 0 0
0 0 0

 : b ∈ R}

and thus Ker(g) = [E , E ]. Also dim(E) = 3 which is maximal
due to previous lemma. Hence, E is a cover of L.
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Representation of a Lie algebra

Definition
A representation of a Lie algebra L on a vector space V is a
linear map φ : L → gl(V ) such that φ is a Lie algebra
homomorphism.

• The degree of the representation φ is the dimension of the
vector space V .

• A representation φ of L on V is reducible if there is proper
subspace of V which is invariant under φ, i.e, if there exists
a proper subspace W of V such that φ(x)(w) ∈W for all
x ∈ L and w ∈W . Otherwise, φ is called irreducible.
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Cohomology of Lie algebras

• Consider Cn(L,C) = {f : L × L× · · · × L →
C| f is n-linear and alternating}.

• Define δn : Cn(L,C)→ Cn+1(L,C) by
δn(f)(x1, x2, · · · , xn+1) =∑

i<j

f([xi, xj ], x1, · · · , xi−1, xi+1, · · · , xj−1, xj+1, · · · , xn)

for f ∈ Cn(L,C).
Then δn is the coboundary map.

• One can obtain a chain
· · · δn−2−−−→ Cn−1(L,C) δn−1−−−→ Cn(L,C) δn−→ Cn+1(L,C) δn+1−−−→

· · ·

with
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• Zn(L,C) = Ker(δn) = {f ∈ Cn(L,C) | δn(f) = 0}
• Bn(L,C) = Im(δn−1)

= {f ∈ Cn(L,C) | there exists g ∈ Cn−1(L,C)
such that δn−1(g) = f}

Then the n-th cohomology group is given by

Hn(L,C) = Zn(L,C)
Bn(L,C)

where Zn(L,C) and Bn(L,C) are called group of n-cocycles and
group of n-coboundaries respectively.
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For n = 2,

• The set of 2-cocycles is given by
Z2(L,C) = {f : L × L → C : f is bilinear and f([x, y], z)

+f([y, z], x) + f([z, x], y) = 0 ∀x, y, z ∈ L}

• The set of 2-coboundaries are
B2(L,C) = {f : L × L → C : f is bilinear and there exists

σ : L → C such that f(x, y) = −σ([x, y])}
• The second cohomology group of L is given by

H2(L,C) = Z2(L,C)
B2(L,C)
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Projective representation

Definition
A projective representation of a Lie algebra L on V is a linear
map φ : L → pgl(V ) such that φ is a Lie algebra
homomorphism where pgl(V ) is the quotient Lie algebra
gl(V )/{kIV : k ∈ F}.

Example
Every linear representation of L is a projective representation.
For, consider a linear representation ρ : L → gl(V ) of L and
the natural homomorphism π : gl(V )→ pgl(V ), then the
composition π ◦ ρ : L → pgl(V ) is a projective representation.
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Proposition
Let φ be a projective representation of L on V . Then there is
a linear map Φ : L → gl(V ) and a bilinear map α : L × L → C
such that

[Φ(x),Φ(y)] = α(x, y)IV + Φ([x, y]) for all x, y ∈ L. (1)

Conversely, if there is a linear map Φ and a bilinear map α
satisfying (1), then π ◦ Φ : L → pgl(V ) where
π : gl(V )→ pgl(V ) is the canonical homomorphism, is a
projective representation of L.
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Remark
Let L be a Lie algebra. If there is a linear map Φ : L → gl(V )
and a bilinear map α : L × L → C satisfying the condition

[Φ(x),Φ(y)] = α(x, y)IV + Φ([x, y]),

then one can obtain a projective representation of L.
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Observation
Suppose a Lie algbera L admits a projective representation,
then the bilinear map α : L × L → C satisfies

α([x, y], z) + α([y, z], x) + α([z, x], y) = 0. (2)

In other words, α is a bilinear map satisfying the 2-cocycle
condition. That is, α ∈ Z2(L,C).

Thus the projective representation also referred to as an
α-representation on the vector space V .
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Recall the Hochschild - Serre spectral sequence of low
dimensions ([1]). If I is an ideal of the Lie algebra L, then there
is an exact sequence of Lie algebra homomorphisms

0→ I
f−→ L g−→ L/I → 0. (3)

and s : L/I → L is a the section of g.

For an L-module A the
sequence

Hom(L/I, A)
Inf1−−−−→ Hom(L, A)

Res
−−−→ Hom(I, A)

T ra
−−−→ H

2(L, A)
Inf2−−−−→ H

2(L/I, A) (4)

is exact and is called the Hochschild - Serre spectral sequence
(Theorem 3.1, cf. [1]) , where Inf1 and Inf2 are inflation maps,
Res is the restriction map and Tra : Hom(I, A)→ H2(L, A) is
the Transgression map and is defined by

Tra(χ) = [χ ◦ β]

for χ ∈ Hom(I, A), where β(x, y) = [s(x), s(y)]− s([x, y]); s is
the section of g in (3).
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Theorem

Let E be the cover of a Lie algebra L. Suppose Φ : L → gl(V )
is α-representation of L. If [α] ∈ Im(Tra), then there is a Lie
algebra homomorphism Γ : E → gl(V ) such that Γ(h) is a
scalar multiple of the identity transformation on V for any
h ∈ L′.
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Theorem

Consider the central extensions 0→ L′ f−→ E g−→ L → 0 and
0→ F µ−→ gl(V ) π−→ pgl(V )→ 0 of Lie algebras. Then for all
pairs of Lie algebra homomorphisms Γ : E → gl(V ) and
α : L′ → F such that µ ◦ α = Γ ◦ f , there is a projective
representation Φ : L → pgl(V ) such that π ◦ Γ = Φ ◦ g.
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The projective representation Φ of L on the space V is called
irreducible if 0 and V are the only Φ-invariant subspaces of V .

Now let Irr(E) denotes the set of all irreducible linear
representations of E and Irrα(L) denotes the set of all
irreducible α-representations of L where [α] ∈ H2(L,C). The
subsequent theorem establishes the correspondence between
these sets.

Theorem

Let E be the cover of a Lie algebra L. Then there is a bijection
between the sets Irr(E) and

⋃
[α]∈H2(L,C)

Irrα(L).
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