Irreducible representation of cover of Lie algebras

Arjun S N

Department of Mathematics Cochin University of Science and Technology(CUSAT), Kerala, INDIA Supervising guide: Prof. P. G. Romeo

International Conference on Representation of Algebras (ICRA - 21, 2024)

Definition (Lie algebra, cf.[3])

A Lie algebra L over an arbitrary field \mathbb{F} is a vector space over \mathbb{F} endowed with an operation called Lie bracket satisfying the following properties :

1. Bilinearity : For $x,y,z\in L,a,b\in\mathbb{F}$

$$\begin{split} & [ax+by,z]=a[x,z]+b[y,z]\\ & [x,ay+bz]=a[x,y]+b[x,z] \end{split}$$

- 2. [x, x] = 0 for all $x \in L$
- 3. Jacobi identity : $[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 \text{ for all } x,y,z\in L.$

Let V be a finite dimensional vector space over the field \mathbb{F} . Then V is Lie algebra with Lie bracket

[x, y] = 0 for all $x, y \in V$

Let V be a finite dimensional vector space over the field \mathbb{F} . Then V is Lie algebra with Lie bracket

[x, y] = 0 for all $x, y \in V$

These Lie algebras are called *abelian* Lie algebras.

Let V be a finite dimensional vector space over the field \mathbb{F} . Then V is Lie algebra with Lie bracket

[x, y] = 0 for all $x, y \in V$

These Lie algebras are called *abelian* Lie algebras.

Example

End(V), the set of all linear transformations on a finite dimensional vector space V over a field \mathbb{F} is a Lie algebra with Lie bracket

$$[x, y] = xy - yx$$
 for $x, y \in End(V)$.

Let \mathcal{L} be a Lie algebra and \mathcal{M} be an abelian Lie algebra. Then $(\mathcal{E}; f, g)$ is an extension of \mathcal{L} by \mathcal{M} if there exists a Lie algebra \mathcal{E} such that the following is a short exact sequence :

$$0 \to \mathcal{M} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0.$$

Let \mathcal{L} be a Lie algebra and \mathcal{M} be an abelian Lie algebra. Then $(\mathcal{E}; f, g)$ is an extension of \mathcal{L} by \mathcal{M} if there exists a Lie algebra \mathcal{E} such that the following is a short exact sequence :

$$0 \to \mathcal{M} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0.$$

An extension $(\mathcal{E}; f, g)$ is *central* if $f(\mathcal{M}) \subseteq Z(\mathcal{E})$ where $Z(\mathcal{E})$ is the center of \mathcal{E} .

Consider the real Lie algebras

$$\mathcal{L} = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} : y, z \in \mathbb{R} \right\} \text{ and } \mathcal{M} = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : b \in \mathbb{R}$$

respectively.

Consider the real Lie algebras

$$\mathcal{L} = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} : y, z \in \mathbb{R} \right\} \text{ and } \mathcal{M} = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : b \in \mathbb{R}$$

respectively. Let

$$\mathcal{E} = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} : x, y, z \in \mathbb{R} \right\},$$

 $f: \mathcal{M} \to \mathcal{E}$ is the identity inclusion and $g: \mathcal{E} \to \mathcal{L}$ is given by

$$g\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}$$

Then f and g are Lie algebra homomorphisms and ker(g) = Im(f). Also $f(\mathcal{M}) = \mathcal{M} = Z(\mathcal{E})$, the center of \mathcal{E} . Thus $0 \to \mathcal{M} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0$ is a central extension.

Cover of a Lie algebra

Definition

Let ${\mathcal L}$ be a Lie algebra. Then a pair of Lie algebras $({\mathcal E}, {\mathcal M})$ such that

1. $L \cong \mathcal{E}/\mathcal{M}$ 2. $\mathcal{M} \subseteq Z(\mathcal{E}) \cup [\mathcal{E}, \mathcal{E}]$ 3. $dim(\mathcal{E})$ is maximal

is called a maximal defining pair of \mathcal{L} . In a maximal defining pair $(\mathcal{E}, \mathcal{M}), \mathcal{E}$ is called cover of \mathcal{L} and \mathcal{M} is called multiplier of \mathcal{L} .

Cover of a Lie algebra

Definition

Let ${\mathcal L}$ be a Lie algebra. Then a pair of Lie algebras $({\mathcal E}, {\mathcal M})$ such that

1. $L \cong \mathcal{E}/\mathcal{M}$ 2. $\mathcal{M} \subseteq Z(\mathcal{E}) \cup [\mathcal{E}, \mathcal{E}]$ 3. $dim(\mathcal{E})$ is maximal

is called a maximal defining pair of \mathcal{L} . In a maximal defining pair $(\mathcal{E}, \mathcal{M}), \mathcal{E}$ is called cover of \mathcal{L} and \mathcal{M} is called multiplier of \mathcal{L} .

Lemma

([1]) Let \mathcal{L} be a Lie algebra of finite dimension n and \mathcal{E} be the cover of \mathcal{L} . Then $\dim(\mathcal{E}) \leq \frac{n(n+1)}{2}$.

We can define the cover interms of central extensions using the following lemma.

Lemma

Let \mathcal{L} be a Lie algebra and \mathcal{E} be its cover. Then

- 1. $0 \to \mathcal{M} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0$ is a central extension for some Lie algebra \mathcal{M}
- 2. $Ker(g) \subseteq [\mathcal{E}, \mathcal{E}]$
- 3. $dim(\mathcal{E})$ is maximal.

Consider the central extension $0 \to \mathcal{M} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0$ of \mathcal{L} by \mathcal{M} as in Example 5. Here

$$[\mathcal{E}, \mathcal{E}] = span_{\mathbb{R}} \left\{ \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : b \in \mathbb{R} \right\}$$

and thus $Ker(g) = [\mathcal{E}, \mathcal{E}]$. Also $dim(\mathcal{E}) = 3$ which is maximal due to previous lemma. Hence, \mathcal{E} is a cover of \mathcal{L} .

A representation of a Lie algebra \mathcal{L} on a vector space V is a linear map $\phi : \mathcal{L} \to \mathfrak{gl}(V)$ such that ϕ is a Lie algebra homomorphism.

A representation of a Lie algebra \mathcal{L} on a vector space V is a linear map $\phi : \mathcal{L} \to \mathfrak{gl}(V)$ such that ϕ is a Lie algebra homomorphism.

• The *degree* of the representation ϕ is the dimension of the vector space V.

A representation of a Lie algebra \mathcal{L} on a vector space V is a linear map $\phi : \mathcal{L} \to \mathfrak{gl}(V)$ such that ϕ is a Lie algebra homomorphism.

- The *degree* of the representation ϕ is the dimension of the vector space V.
- A representation ϕ of \mathcal{L} on V is *reducible* if there is proper subspace of V which is invariant under ϕ , i.e, if there exists a proper subspace W of V such that $\phi(x)(w) \in W$ for all $x \in \mathcal{L}$ and $w \in W$. Otherwise, ϕ is called *irreducible*.

Cohomology of Lie algebras

• Consider $C^n(\mathcal{L}, \mathbb{C}) = \{f : \mathcal{L} \times \mathcal{L} \times \cdots \times \mathcal{L} \to \mathbb{C} | f \text{ is } n \text{-linear and alternating} \}.$

Cohomology of Lie algebras

- Consider $C^n(\mathcal{L}, \mathbb{C}) = \{f : \mathcal{L} \times \mathcal{L} \times \cdots \times \mathcal{L} \to \mathbb{C} | f \text{ is } n \text{-linear and alternating} \}.$
- Define $\delta_n : C^n(\mathcal{L}, \mathbb{C}) \to C^{n+1}(\mathcal{L}, \mathbb{C})$ by $\delta_n(f)(x_1, x_2, \cdots, x_{n+1}) =$ $\sum_{i < j} f([x_i, x_j], x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{j-1}, x_{j+1}, \cdots, x_n)$ for $f \in C^n(\mathcal{L}, \mathbb{C})$. Then δ_n is the coboundary map.

Cohomology of Lie algebras

- Consider $C^n(\mathcal{L}, \mathbb{C}) = \{f : \mathcal{L} \times \mathcal{L} \times \cdots \times \mathcal{L} \to \mathbb{C} | f \text{ is } n \text{-linear and alternating} \}.$
- Define $\delta_n : C^n(\mathcal{L}, \mathbb{C}) \to C^{n+1}(\mathcal{L}, \mathbb{C})$ by $\delta_n(f)(x_1, x_2, \cdots, x_{n+1}) =$ $\sum_{i < j} f([x_i, x_j], x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{j-1}, x_{j+1}, \cdots, x_n)$ for $f \in C^n(\mathcal{L}, \mathbb{C})$. Then δ_n is the coboundary map.
- One can obtain a chain

$$\cdots \xrightarrow{\delta_{n-2}} C^{n-1}(\mathcal{L}, \mathbb{C}) \xrightarrow{\delta_{n-1}} C^n(\mathcal{L}, \mathbb{C}) \xrightarrow{\delta_n} C^{n+1}(\mathcal{L}, \mathbb{C}) \xrightarrow{\delta_{n+1}} \cdots$$

with

Arjun S N

11 / 23

•
$$Z^n(\mathcal{L}, \mathbb{C}) = Ker(\delta_n) = \{ f \in C^n(L, \mathbb{C}) \mid \delta_n(f) = 0 \}$$

•
$$B^n(\mathcal{L}, \mathbb{C}) = Im(\delta_{n-1})$$

 $= \{ f \in C^n(L, \mathbb{C}) \mid \text{there exists } g \in C^{n-1}(\mathcal{L}, \mathbb{C}) \\ \text{such that } \delta_{n-1}(g) = f \}$

•
$$Z^n(\mathcal{L}, \mathbb{C}) = Ker(\delta_n) = \{ f \in C^n(L, \mathbb{C}) \mid \delta_n(f) = 0 \}$$

•
$$B^n(\mathcal{L}, \mathbb{C}) = Im(\delta_{n-1})$$

= $\{f \in C^n(L, \mathbb{C}) \mid \text{there exists } g \in C^{n-1}(\mathcal{L}, \mathbb{C})$
such that $\delta_{n-1}(g) = f\}$

Then the n-th cohomology group is given by

$$H^n(\mathcal{L},\mathbb{C}) = \frac{Z^n(\mathcal{L},\mathbb{C})}{B^n(\mathcal{L},\mathbb{C})}$$

where $Z^n(\mathcal{L}, \mathbb{C})$ and $B^n(\mathcal{L}, \mathbb{C})$ are called group of *n*-cocycles and group of *n*-coboundaries respectively.

For n = 2,

• The set of 2-cocycles is given by

$$\begin{split} Z^2(\mathcal{L}, \mathbb{C}) &= \{ f : \mathcal{L} \times \mathcal{L} \to \mathbb{C} : f \text{ is bilinear and } f([x, y], z) \\ &+ f([y, z], x) + f([z, x], y) = 0 \ \forall x, y, z \in \mathcal{L} \} \end{split}$$

For n = 2,

• The set of 2-cocycles is given by

$$Z^{2}(\mathcal{L}, \mathbb{C}) = \{ f : \mathcal{L} \times \mathcal{L} \to \mathbb{C} : f \text{ is bilinear and } f([x, y], z) \\ + f([y, z], x) + f([z, x], y) = 0 \ \forall x, y, z \in \mathcal{L} \}$$

• The set of 2-coboundaries are

 $B^{2}(\mathcal{L}, \mathbb{C}) = \{ f : \mathcal{L} \times \mathcal{L} \to \mathbb{C} : f \text{ is bilinear and there exists} \\ \sigma : \mathcal{L} \to \mathbb{C} \text{ such that } f(x, y) = -\sigma([x, y]) \}$

For n = 2,

• The set of 2-cocycles is given by

$$\begin{split} Z^2(\mathcal{L}, \mathbb{C}) &= \{ f: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{C} : f \text{ is bilinear and } f([x, y], z) \\ &+ f([y, z], x) + f([z, x], y) = 0 \ \forall x, y, z \in \mathcal{L} \} \end{split}$$

• The set of 2-coboundaries are

 $B^{2}(\mathcal{L}, \mathbb{C}) = \{ f : \mathcal{L} \times \mathcal{L} \to \mathbb{C} : f \text{ is bilinear and there exists} \\ \sigma : \mathcal{L} \to \mathbb{C} \text{ such that } f(x, y) = -\sigma([x, y]) \}$

- The second cohomology group of ${\mathcal L}$ is given by

$$H^2(\mathcal{L},\mathbb{C}) = \frac{Z^2(\mathcal{L},\mathbb{C})}{B^2(\mathcal{L},\mathbb{C})}$$

A projective representation of a Lie algebra \mathcal{L} on V is a linear map $\phi : \mathcal{L} \to \mathfrak{pgl}(V)$ such that ϕ is a Lie algebra homomorphism where $\mathfrak{pgl}(V)$ is the quotient Lie algebra $\mathfrak{gl}(V)/\{kI_V : k \in \mathbb{F}\}.$

A projective representation of a Lie algebra \mathcal{L} on V is a linear map $\phi : \mathcal{L} \to \mathfrak{pgl}(V)$ such that ϕ is a Lie algebra homomorphism where $\mathfrak{pgl}(V)$ is the quotient Lie algebra $\mathfrak{gl}(V)/\{kI_V : k \in \mathbb{F}\}.$

Example

Every linear representation of \mathcal{L} is a projective representation. For, consider a linear representation $\rho : \mathcal{L} \to \mathfrak{gl}(V)$ of \mathcal{L} and the natural homomorphism $\pi : \mathfrak{gl}(V) \to \mathfrak{pgl}(V)$, then the composition $\pi \circ \rho : \mathcal{L} \to \mathfrak{pgl}(V)$ is a projective representation.

Proposition

Let ϕ be a projective representation of \mathcal{L} on V. Then there is a linear map $\Phi : \mathcal{L} \to \mathfrak{gl}(V)$ and a bilinear map $\alpha : \mathcal{L} \times \mathcal{L} \to \mathbb{C}$ such that

$$[\Phi(x), \Phi(y)] = \alpha(x, y)I_V + \Phi([x, y]) \text{ for all } x, y \in \mathcal{L}.$$
(1)

Conversely, if there is a linear map Φ and a bilinear map α satisfying (1), then $\pi \circ \Phi : \mathcal{L} \to \mathfrak{pgl}(V)$ where $\pi : \mathfrak{gl}(V) \to \mathfrak{pgl}(V)$ is the canonical homomorphism, is a projective representation of \mathcal{L} .

Remark

Let \mathcal{L} be a Lie algebra. If there is a linear map $\Phi : \mathcal{L} \to \mathfrak{gl}(V)$ and a bilinear map $\alpha : \mathcal{L} \times \mathcal{L} \to \mathbb{C}$ satisfying the condition

$$[\Phi(x), \Phi(y)] = \alpha(x, y)I_V + \Phi([x, y]),$$

then one can obtain a projective representation of \mathcal{L} .

Observation

Suppose a Lie algebra \mathcal{L} admits a projective representation, then the bilinear map $\alpha : \mathcal{L} \times \mathcal{L} \to \mathbb{C}$ satisfies

$$\alpha([x, y], z) + \alpha([y, z], x) + \alpha([z, x], y) = 0.$$
(2)

In other words, α is a bilinear map satisfying the 2-cocycle condition. That is, $\alpha \in Z^2(\mathcal{L}, \mathbb{C})$.

Observation

Suppose a Lie algebra \mathcal{L} admits a projective representation, then the bilinear map $\alpha : \mathcal{L} \times \mathcal{L} \to \mathbb{C}$ satisfies

$$\alpha([x, y], z) + \alpha([y, z], x) + \alpha([z, x], y) = 0.$$
(2)

In other words, α is a bilinear map satisfying the 2-cocycle condition. That is, $\alpha \in Z^2(\mathcal{L}, \mathbb{C})$.

Thus the projective representation also referred to as an α -representation on the vector space V.

Recall the Hochschild - Serre spectral sequence of low dimensions ([1]). If I is an ideal of the Lie algebra \mathcal{L} , then there is an exact sequence of Lie algebra homomorphisms

$$0 \to I \xrightarrow{f} \mathcal{L} \xrightarrow{g} \mathcal{L}/I \to 0.$$
(3)

and $s: \mathcal{L}/I \to \mathcal{L}$ is a the section of g.

Recall the Hochschild - Serre spectral sequence of low dimensions ([1]). If I is an ideal of the Lie algebra \mathcal{L} , then there is an exact sequence of Lie algebra homomorphisms

$$0 \to I \xrightarrow{f} \mathcal{L} \xrightarrow{g} \mathcal{L}/I \to 0.$$
(3)

and $s: \mathcal{L}/I \to \mathcal{L}$ is a the section of g. For an \mathcal{L} -module A the sequence

$$Hom(\mathcal{L}/I, A) \xrightarrow{Inf_1} Hom(\mathcal{L}, A) \xrightarrow{Res} Hom(I, A) \xrightarrow{Tra} H^2(\mathcal{L}, A) \xrightarrow{Inf_2} H^2(\mathcal{L}/I, A)$$
(4)

is exact and is called the Hochschild - Serre spectral sequence (Theorem 3.1, cf. [1]), where Inf_1 and Inf_2 are inflation maps, *Res* is the restriction map and $Tra: Hom(I, A) \to H^2(\mathcal{L}, A)$ is the Transgression map and is defined by

$$Tra(\chi) = [\chi \circ \beta]$$

for $\chi \in Hom(I, A)$, where $\beta(x, y) = [s(x), s(y)] - s([x, y])$; s is the section of g in (3).

Arjun S N

18 / 23

Theorem

Let \mathcal{E} be the cover of a Lie algebra \mathcal{L} . Suppose $\Phi : \mathcal{L} \to \mathfrak{gl}(V)$ is α -representation of \mathcal{L} . If $[\alpha] \in Im(Tra)$, then there is a Lie algebra homomorphism $\Gamma : \mathcal{E} \to \mathfrak{gl}(V)$ such that $\Gamma(h)$ is a scalar multiple of the identity transformation on V for any $h \in \mathcal{L}'$.

Theorem

Consider the central extensions $0 \to \mathcal{L}' \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{L} \to 0$ and $0 \to \mathbb{F} \xrightarrow{\mu} \mathfrak{gl}(V) \xrightarrow{\pi} \mathfrak{pgl}(V) \to 0$ of Lie algebras. Then for all pairs of Lie algebra homomorphisms $\Gamma : \mathcal{E} \to \mathfrak{gl}(V)$ and $\alpha : \mathcal{L}' \to \mathbb{F}$ such that $\mu \circ \alpha = \Gamma \circ f$, there is a projective representation $\Phi : \mathcal{L} \to \mathfrak{pgl}(V)$ such that $\pi \circ \Gamma = \Phi \circ g$. The projective representation Φ of \mathcal{L} on the space V is called *irreducible* if 0 and V are the only Φ -invariant subspaces of V. Now let $Irr(\mathcal{E})$ denotes the set of all irreducible linear representations of \mathcal{E} and $Irr^{\alpha}(\mathcal{L})$ denotes the set of all irreducible α -representations of \mathcal{L} where $[\alpha] \in H^2(\mathcal{L}, \mathbb{C})$. The subsequent theorem establishes the correspondence between these sets. The projective representation Φ of \mathcal{L} on the space V is called *irreducible* if 0 and V are the only Φ -invariant subspaces of V. Now let $Irr(\mathcal{E})$ denotes the set of all irreducible linear representations of \mathcal{E} and $Irr^{\alpha}(\mathcal{L})$ denotes the set of all irreducible α -representations of \mathcal{L} where $[\alpha] \in H^2(\mathcal{L}, \mathbb{C})$. The subsequent theorem establishes the correspondence between these sets.

Theorem

Let \mathcal{E} be the cover of a Lie algebra \mathcal{L} . Then there is a bijection between the sets $Irr(\mathcal{E})$ and $\bigcup_{[\alpha]\in H^2(\mathcal{L},\mathbb{C})} Irr^{\alpha}(\mathcal{L})$.

References

- P. G. Batten, "Multilpliers and covers of Lie algebras", Ph.D Thesis, 1993.
- Arjeh M. Cohen and D. E. Taylor, "On a Certain Lie algebra Defined by a Finite Group", The American Mathematical Monthly, Aug. Sep., 2007.
- James E. Humphreys, "Introduction to Lie Algebras and Representation Theory", Springer - Verlag, 1972.
- Peyman Niroomand and Francesco G. Russo, "A Note on the Schur Multiplier of a Nilpotent Lie Algebra ", Communications in Algebra, Volume 39, 2011 - Issue 4.
- Charles A. Weibel, An Introduction to homological algebra, Cambridge University Press, 1994.

THANK YOU