Galois coverings and Krull-Gabriel dimension of algebras

Alicja Jaworska-Pastuszak Nicolaus Copernicus University in Toruń

ICRA 21, Shanghai, 5-9.08.2024

- 1. Basic definitions and some results on KG dimension.
- 2. Krull-Gabriel dimension of repetitive categories.
- 3. Krull-Gabriel dimension of cluster repetitive category.
- 4. Krull-Gabriel dimension of weighted surface algebras.

Assume $K = \overline{K}$.

- *R* is a **locally bounded** *K***-category**, that is, *R* is isomorphic with a bound quiver *K*-category of some locally finite quiver.
- MOD(R) is the category of right R-modules, that is, K-linear contravariant functors M: R → MOD(K).
- $\operatorname{mod}(R)$ is the full subcategory of **finite dimensional** *R*-modules, that is, $M \in \operatorname{mod}(R)$ if $\dim M = \sum_{x \in \operatorname{ob}(R)} \dim_{K} M(x) < \infty$.
- *F*(*R*) is the category of **finitely presented** contravariant *K*-linear functors *T*:mod(*R*) → mod(*K*), that is, all *T* such that there is an exact sequence of functors

$$_{R}(-,M) \xrightarrow{_{R}(-,f)} _{R}(-,N) \rightarrow T \rightarrow 0,$$

for some $M, N, f : M \to N \in \text{mod}(R)$. Thus $T \cong \text{Coker}_R(-, f)$. • $\mathcal{F}(R)$ is abelian. Assume C is a essentially small abelian category with Krull-Gabriel filtration $(C_{\alpha})_{\alpha}$ of C indexed by ordinal numbers.

- The Krull-Gabriel dimension $KG(\mathcal{C})$ of \mathcal{C} is the smallest ordinal number α such that $\mathcal{C}_{\alpha} = \mathcal{C}$, if it exists. Otherwise, we set $KG(\mathcal{C}) = \infty$ and say that the Krull-Gabriel dimension of \mathcal{C} is undefined.
- If $KG(\mathcal{C}) = \alpha \in \mathbb{N}$, then the Krull-Gabriel dimension of \mathcal{C} is **finite**.
- We set $KG(R) := KG(\mathcal{F}(R))$.

General fact:

Assume \mathcal{C}, \mathcal{D} are abelian categories and $F : \mathcal{C} \rightarrow \mathcal{D}$ is an exact functor.

- (1) If F is full and dense, then $KG(\mathcal{D}) \leq KG(\mathcal{C})$.
- (2) If F is faithful, then $KG(C) \leq KG(D)$.

The conjecture of Prest.

The algebra A is of domestic representation type if and only if KG(A) is finite.

All known results support the conjecture of Prest. In particular:

- A is of finite representation type if and only if KG(A) = 0 (Auslander '82).
- We have $KG(A) \neq 1$ (Krause '98).
- If A is hereditary of Euclidean type, then KG(A) = 2 (Geigle '86).
- A is a cycle-finite algebra of infinite representation type: A is domestic if and only if KG(A) = 2 (Skowroński'16).
- KG(A) = ∞ for wild (Prest '88), tubular (Geigle '86), string of non-domestic type (Schröer '00), pg-critical (Kasjan, Pastuszak '14).

Let R, A be locally bounded K-categories, G a group of K-linear automorphisms of R acting freely on ob(R). Then a K-linear functor $F : R \to A$ is a **Galois covering**, if F induces an isomorphism $A \cong R/G$ where R/G is the **orbit category**.

Remarks:

- G acts on mod(R) as ${}^{g}M := M \circ g^{-1}$ and on homomorphisms in a natural way.
- A finite convex subcategory D_R of R is called the fundamental domain of R, if for any M ∈ ind(R) there is g ∈ G with supp(^gM) ⊆ D_R.
- The category R is locally support-finite (lsf), if for any object x of R the union of supports supp(N), for N∈ind(R) with N(x) ≠ 0, is finite.
- The category *R* is **intervally-finite**, if any finite subcategory of *R* has finite convex hull.

Lemma:

- (a) If there is a fundamental domain \mathcal{D}_R of R, then R is lsf.
- (b) If R is lsf and intervally-finite, then there exists \mathcal{D}_R of R.

Theorem A. (Pastuszak '19)

Assume R is a lsf category, which is intervally-finite, G is a torsion-free admissible group of K-linear automorphisms of R and $F : R \rightarrow A$ the associated Galois covering. Then

$$\operatorname{KG}(R) = \operatorname{KG}(\mathcal{D}_R) = \operatorname{KG}(A).$$

Theorem B. (Pastuszak '23)

Assume $F : R \rightarrow A$ is a Galois covering. Then $KG(R) \leq KG(A)$.

2. Krull-Gabriel dimension of repetitive categories.

Theorem (Assem-Skowroński '88,'93).

(a) The repetitive category \widehat{A} of algebra A is lsf and tame if and only if $\widehat{A} \cong \widehat{B}$ where B is tilted algebra of Dynkin or Euclidean type, or tubular algebra.

(b) \widehat{B} is cycle-finite. $(M_0 \xrightarrow{f_1} M_1 \to \dots \xrightarrow{f_r} M_r = M_0 \Rightarrow f_1, \dots, f_r \notin \operatorname{rad}_R^{\infty})$ Remark: \widehat{B} admits fundamental domain $\mathcal{D}_{\widehat{B}} = \begin{bmatrix} B_0 & 0\\ D(B) & B_1 \end{bmatrix}$.

Corollary 1. (Pastuszak'19)

Let A be an algebra such that \widehat{A} is |sf. Then $KG(\widehat{A}) \in \{0, 2, \infty\}$ and:

- (a) $KG(\widehat{A}) = 0$ if and only if $\widehat{A} \cong \widehat{B}$ for B tilted of Dynkin type;
- (b) $KG(\widehat{A}) = 2$ if and only if $\widehat{A} \cong \widehat{B}$ for B tilted of Euclidean type;
- (c) $KG(\widehat{A}) = \infty$ if and only if \widehat{A} is wild or $\widehat{A} \cong \widehat{B}$ for B tubular.

Ad.(b) B- Euclidean type $\Rightarrow \widehat{B}$ - cycle-finite $\Rightarrow \mathcal{D}_{\widehat{B}}$ is cycle-finite of domestic type $\Rightarrow \operatorname{KG}(\mathcal{D}_{\widehat{B}})=2$ (Skowroński) $\Rightarrow \operatorname{KG}(\widehat{B})=2$ (Thm. A for $F:\widehat{B} \to T(B)$)

Theorem (Skowroński'89).

Let A be a standard selfinjective algebra A of infinite representation type, \hat{B} is a repetitive category of an algebra B and G an infinite cyclic admissible group of K-linear automorphisms of \hat{B} .

- (a) A is domestic if and only if $A \cong \widehat{B}/G$, where B is tilted algebra of Euclidean type,
- (b) A is non-domestic of polynomial growth if and only if $A \cong \widehat{B}/G$, where B is a tubular algebra.

Corollary 2. (Pastuszak'19)

Let A be a standard selfinjective algebra of infinite type.

- (a) If A domestic, then KG(A) = 2;
- (b) If A nondomestic of polynomial growth, then $KG(A) = \infty$.

Proof: Theorem A for $F:\widehat{B}
ightarrow A\cong \widehat{B}/G$ and Corollary 1

3. Krull-Gabriel dimension of cluster repetitive category.

C - tilted algebra, $E = \operatorname{Ext}^2_C(DC, C)$ - C-C-bimodule

$$\check{C} = \begin{bmatrix} \ddots & & & & & \\ & & & & & \\ & & C_{-1} & & & \\ & E_0 & C_0 & & & \\ & & E_1 & C_1 & & \\ & & & \ddots & & \end{bmatrix} - \text{cluster repetitive category of } C$$

Identity maps $C_i \to C_{i-1}$, $E_i \to E_{i-1}$ induce an automorphism $\nu : \check{C} \to \check{C}$ and we have a Galois covering $F : \check{C} \to \check{C}/\langle \nu \rangle = \tilde{C}$

Remarks:

- (a) $\tilde{C} \cong C \ltimes \operatorname{Ext}^2_C(DC, C)$ relation extension algebra
- (b) Assem-Brüstle-Schiffler:

 $ilde{C}$ for tilted alg. of type Q= cluster tilted alg. $\operatorname{End}_{\mathcal{C}_{\mathcal{Q}}}(T)$ of type Q

Question:

Relations between KG (\tilde{C}) , KG (\check{C}) and KG (\hat{C}) ?

Observations:

(1) An algebra $\mathcal{D}_{\check{C}} = \begin{bmatrix} C_0 & 0\\ E & C_1 \end{bmatrix}$ is a fundamental domain of $\check{C} \Rightarrow \check{C}$ is lsf \Rightarrow Theorem A for $F : \check{C} \to \check{C} / \langle \nu \rangle = \tilde{C} \Rightarrow \mathsf{KG}(\check{C}) = \mathsf{KG}(\check{C}).$

(2) Theorem (Assem-Brüstle-Schiffler'08): There is an additive K-lin. fun.

$$\phi: \operatorname{mod}(\widehat{C}) \to \operatorname{mod}(\check{C})$$

which is full, dense (and exact) such that $\operatorname{Ker}(\phi)$ equals the class of all homomorphisms in $\operatorname{mod}(\widehat{C})$ which factorize through $\operatorname{add}(\mathcal{K}_{\mathcal{C}})$, where $\mathcal{K}_{\mathcal{C}} = \{\widehat{P}_x, \tau^{1-i}\Omega^{-i}(\mathcal{C}) \mid x \in (\widehat{\mathcal{C}})_0, i \in \mathbb{Z}\}.$

3. Krull-Gabriel dimension of cluster repetitive category.

- (3) $\operatorname{add}(\mathcal{K}_{\mathcal{C}})$ is contravariantly finite class in $\operatorname{mod}(\widehat{\mathcal{C}})$.
- (4) $_{\check{C}}(\phi(-), Z) \in \mathcal{F}(\widehat{C})$ for any $Z \in \text{mod}(\check{C})$. Enough to show that $_{\check{C}}(\phi(-), \phi(N)) \in \mathcal{F}(\widehat{C})$ for any $N \in \text{mod}(\widehat{C})$, since ϕ is dense.

This follows from (3).

(5) If
$$U \in \mathcal{F}(\check{C})$$
, then $U \circ \phi \in \mathcal{F}(\widehat{C})$.
It follows from (4) and the fact that $\mathcal{F}(\widehat{C})$ is abelian.

Summing up: $\Lambda_{\phi} = (-) \circ \phi \colon \mathcal{F}(\check{C}) \to \mathcal{F}(\widehat{C}) \Rightarrow \text{ exact and faithful } \Rightarrow \operatorname{KG}(\check{C}) \leq \operatorname{KG}(\widehat{C})$ Hence $\operatorname{KG}(\widetilde{C}) = \operatorname{KG}(\check{C}) \leq \operatorname{KG}(\widehat{C}).$

Theorem (JP-Pastuszak'22).

 $KG(\tilde{C}) = KG(\check{C}) = KG(\hat{C}) \in \{0, 2, \infty\}$, for any tilted algebra C, and the following assertions hold:

- (a) C is tilted of Dynkin type if and only if $KG(\tilde{C}) = 0$.
- (b) C is tilted of Euclidean type if and only if $KG(\tilde{C}) = 2$.
- (c) C is tilted of wild type if and only if $KG(\widetilde{C}) = \infty$.

Sketch of the proof:

- C tilted of Dynkin type $\Rightarrow KG(\tilde{C}) = KG(\check{C}) \le KG(\hat{C}) = 0$, so $KG(\tilde{C}) = KG(\check{C}) = KG(\tilde{C}) = 0$
- C of Euclidean type $\Rightarrow \mathsf{KG}(\widetilde{C}) = \mathsf{KG}(\check{C}) \leq \mathsf{KG}(\widehat{C}) = 2$, but $\mathsf{KG}(\widetilde{C}) \neq 0, 1$
- C of wild type $\Rightarrow \widetilde{C}$ is also of wild type
- C either of Dynkin, or Euclidean or wild type equivalences

Remark:

Prest conjecture is valid for cluster-tilted algebras.

4. Krull-Gabriel dimension of weighted surface algebras.

A **triangulation quiver** is a pair (Q, f) such that: (a) Q is 2-regular with involution (⁻) on arrows (b) f is a permutation on arrows, $t(\alpha) = s(f(\alpha))$ (c) $f^3 = id$

Let T be triangulation of a surface S, \vec{T} an orientation of triangles. With a triangulated surface (S, \vec{T}) we associate a triangulation quiver $(Q(S, \vec{T}), f)$.

A weighted surface algebra $\Lambda = \Lambda(S, \vec{T}, m_{\bullet}, c_{\bullet})$ is algebra of the form KQ/I, where $(Q, f) = (Q(S, \vec{T}), f)$ is a triangulation quiver, generators of I depend on permutation f; m_{\bullet} and c_{\bullet} are weight and parameter functions on (Q, f), respectively.

Remark:

Q does not need to be the Gabriel quiver of Λ .

4. Krull-Gabriel dimension of weighted surface algebras.

Exceptional families: disc algebras $D(\lambda)$, $D(\lambda)^{(1)}$, $D(\lambda)^{(2)}$, tetrahedral algebras $\Lambda(\lambda)$, triangle algebras $T(\lambda)$, spherical algebras $S(\lambda)$ for any $\lambda \in K^*$.

Theorem (Erdmann-Skowroński'20).

For Λ not isomorphic to $D(\lambda)$, $\Lambda(\lambda)$, $T(\lambda)$, $S(\lambda)$, $D(\lambda)^{(1)}$, $D(\lambda)^{(2)}$, there exists a quotient algebra Γ of Λ which is a string algebra of non-polynomial growth.

Theorem (JP-Pastuszak'23).

Weighted surface algebras Λ have $KG(\Lambda) = \infty$.

4. Krull-Gabriel dimension of weighted surface algebras.

Sketch of the proof:

- $\Lambda \ncong D(\lambda), \Lambda(\lambda), T(\lambda), S(\lambda), D(\lambda)^{(1)}, D(\lambda)^{(2)}$: Thm. ES \Rightarrow faithful, exact functor $\Phi : \operatorname{mod}\Gamma \to \operatorname{mod}\Lambda \Rightarrow$ KG(Γ) \leq KG(Λ); Γ - string algebra of non-domestic type \Rightarrow KG(Γ) = ∞ (Schröer) \Rightarrow KG(Λ) = ∞ .
- $\Lambda(\lambda) \cong T(B(\lambda))$ for $B(\lambda)$ tubular algebra of type (2, 2, 2, 2) for $\lambda \neq 1$ and B(1) is pg-critical

 $S(\lambda) \cong T(C(\lambda))$ for $C(\lambda)$ tubular algebra of type (2,2,2,2) for $\lambda \neq 1$ and C(1) is pg-critical

 $T(\lambda) \cong S(\lambda)/\mathbb{Z}_2.$

 $D(\lambda)\cong \Lambda(\lambda)/\mathbb{Z}_3$,

By applying Theorem B in this case also $KG(\Lambda) = \infty$.

• $\Lambda \cong D(\lambda)^{(1)}$, $D(\lambda)^{(2)}$: similar arguments

A **hybrid algebra** is a block of idempotent algebra $e\Lambda e$ of weighted surface algebra Λ .

Remarks:

- The class of hybrid algebras contains all weighted surface algebras, all BGA and many other symmetric algebras of tame or finite representation type.
- The quiver (Q, f) of a hybrid algebra does not have to satisfy $f^3 = id$.

Theorem.

If a quiver (Q, f) of a hybrid algebra H is a triangulation quiver, different from quiver of exceptional families of algebras, then $KG(H) = \infty$.